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Abstract
We present a single-body adiabatic potential to investigate the role of virtual Positronium (Ps)

formation in positron scattering with atoms at energies below the Ps formation threshold. Our

model is applied to positron scattering by hydrogen and noble-gas atoms. The potential is decom-

posed into two components: the correlation-polarization (CP) potential, derived from perturbation

theory for the positron-hydrogen system and generalized for other atoms, and the virtual Positron-

ium (VPs) potential. The VPs potential is modeled as a short-ranged attractive term based on the

CP component but shifted toward the atom’s vicinity, with its strength controlled by a semiempir-

ical parameter fine-tuned to match the scattering length to reference values. Our results show that

the inclusion of the VPs term is essential for reproducing experimental measurements and results

from other theoretical models for both integrated and differential cross-sections.

This is the accepted version of the manuscript. The final published version is available at https:

//doi.org/10.1103/PhysRevA.111.052804.

∗ eliton.popovicz.seidel@pg.edu.pl

1

Postprint of: Eliton Popovicz Seidel, Jan Franz, Wagner Tenfen, Felipe Arretche (2025). Use of single-body potentials to accurately describe virtual positronium formation in positron 
collisions. PHYSICAL REVIEW A, 111, 052804. https://dx.doi.org/10.1103/PhysRevA.111.052804.

https://doi.org/10.1103/PhysRevA.111.052804
https://doi.org/10.1103/PhysRevA.111.052804
https://doi.org/10.1103/PhysRevA.111.052804
mailto:eliton.popovicz.seidel@pg.edu.pl
https://dx.doi.org/10.1103/PhysRevA.111.052804


I. INTRODUCTION

The interactions of positrons with atoms and molecules are important in medical appli-

cations like positron emission tomography [1] and in the localization of defects in material

sciences [2]. For simulations of the microscopic processes, a large amount of data in the

form of cross sections for collisions between positrons and different atoms and molecules at

many different collision energies are required [3]. However, obtaining accurate cross sections

for collision with energies below a few eV remains challenging, both experimentally and

theoretically [4, 5].

One of the main challenges for theoretical models lies in describing the Positronium (Ps)

formation [6]. Ps formation is real when the incident positron has sufficient energy to remove

the electron from the target, and virtual when it lacks the energy to do so [7]. It has been

showed that elastic cross sections from theory are likely to be too low in magnitude when

the virtual Ps interactions are not taken into account [8]. Gribakin and King [9] addressed

this problem by introducing a method to account for the contribution of virtual Ps within

the Many-Body Theory (MBT) approach.

An alternative approach to MBT and other ab initio methods is the use of single-body

potentials [10–19]. These kind of potentials have proven to be a powerful and efficient tool to

model positron interactions with atoms and molecules. This methodology aims to simplify

the complex many-body problem by describing the positron-target interaction through an

effective single-body potential, which may include adjustable parameters [20]. Despite their

simplified nature, these models are remarkably capable of providing reasonable results for

scattering and annihilation of positrons by atoms and molecules [10].

In this paper we propose a single-body adiabatic potential to model the effects of virtual

Ps in positron-atom scattering. With this potential, which depends on a single adjustable

parameter, we obtain elastic cross sections which are comparable to those from high-level ab

initio calculations [21–24]. By decomposing the full interaction potential into correlation-

polarization and virtual Ps components, we investigate important questions, such as the

impacts of virtual Ps formation on both integral and differential cross sections. We also

discuss the limitations of the adiabatic approximation.

Results for the hydrogen and noble-gas atoms are presented for energies below the Ps

formation threshold. Positron scattering by the H atom has been extensively investigated
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in previous studies, such as in the variational calculations from Schwartz [25], Bhatia et

al. [26, 27] and Register and Poe [28]. Another notable study is that of Humberston et al.

[29], in which the authors applied the Kohn variational method (KVM) to investigate the

effects of Ps formation on the elastic cross section. These variational calculations employed a

Hylleraas basis to accurately describe the correlation between the positron and the H atom,

yielding results that are nearly exact. Consequently, these results serve as a benchmark for

validating any newly developed methodologies. Other examples of successful non-variational

calculations for this system include the Convergent Close-Coupling (CCC) method by Bray

and Stelbovics [30], MBT approach by Gribakin and Ludlow [31], the R-matrix method by

Kernoghan et al. [32] and the T-matrix formalism of Mitroy and Ratnavelu [33].

For the He atom, the effects of virtual Ps formation were extensively studied by Van Reeth

and Humberston using the KVM [34–37]. Additionally, the Confined Variational Method

(CVM) has been successfully applied to calculate s-wave phase shifts for the positron-helium

system [38–40]. Non-variational ab initio methods have also been successfully applied to

noble gas systems, ranging from helium to xenon. Notable examples include the CCC [41–

43], the MBT [21, 44], and the Polarized Orbital Method (POM) calculations [45–47].

This article is organized as follows: In Section II we describe the differences between

electron and positron collision, the various terms of our model potential and introduce the

model potential for virtual Ps. In Section III we present results for phase shifts, potentials,

differential and integral elastic cross sections for positron collisions with hydrogen and kryp-

ton atoms. For both targets we discuss the effect of including the model potential for virtual

Ps. In addition we show differential and integral elastic cross sections for the noble-gases

helium, neon and argon. In Section IV we finish the article presenting our conclusions. In

the appendix we give more details about the matrix elements of the model potential. Phase

shifts as a function of positron momentum for all targets studied in this work are included in

the supplementary material. Atomic units are used throughout this article, unless otherwise

stated.

II. METHODOLOGY

One conventional way to discuss the optical potential is through the close-coupling ap-

proximation. In this section, we provide a basic overview of the close-coupling methodol-
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ogy. We then examine the fundamental differences between electron and positron scattering

problems, emphasizing how the nature of positron interactions, particularly the formation

of virtual Ps, introduces complexities absent in electron scattering.

For the electron scattering by the hydrogen atom, in the close-coupling approximation,

the wave-function is expanded in terms of the eigenfunctions of the target (ψα) [20]:

Ψ(r1, r2) =
∑
α

(ψα(r2)F
(±)
α (r1)± ψα(r1)F

(±)
α (r2)) (1)

where r1 and r2 are the coordinates of the electrons in respect to the nucleus, which is

considered to be at the coordinate origin. The sum in α runs over all the states of the

target, also including the continuum spectra. By substituting this scattering wave-function

into the Schrödinger equation, one obtains:(
E +

∇2
r1

2
− εα

)
F (±)
α (r1) =

∑
α′

Vαα′(r1)F
(±)
α′ (r1)±

∑
α′

∫
Kαα′(r1, r2)F

(±)
α′ (r2)d

3r2, (2)

where Vαα′(r1) ≡ ⟨ψα|(−1/r1 + 1/|r1 − r2|)|ψα′⟩, εα is the energy of the α state of the

target, E = k2/2 + ε1 is the total energy, and Kαα′(r1, r2) = ψα′(r2)(H − E)ψα(r1) with

H being the full electron-atom Hamiltonian operator, is the exchange potential, which is a

direct consequence of the antisymmetrization of the wave-function (1). The main idea of

the optical potential technique lies on, instead of solving the complicated system of coupled

equations (2), to reduce the problem into a simple mono-channel approximation. This is

accomplished by restricting the wave-function expansion to the target’s ground state (α = 1)

in the wave-function expansion (1). In doing so, the correlation-polarization effects that

arises from the first term of the right hand side of eq. (2) are, initially, not included. To

compensate for this omission, it is assumed that the optical potential will include an effective

adiabatic potential capable of describing the correlation-polarization effects. Consequently,

we obtain: (
k2

2
+

∇2
r

2
− Vopt(r)

)
F

(±)
1 (r) = 0, (3)

with:

Vopt(r) ≡ Vst(r) + Vcp(r) + Vex(r). (4)

where Vst(r) ≡ V11(r) is the static (ST) potential that emerges from the mono-channel ex-

pansion, Vex(r) is the exchange potential, and Vcp(r) is the effective correlation-polarization

potential introduced to account for the missing correlation-polarization effects from the sim-

plified wave-function expansion.
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For the positron case, following Mitroy [6], considering that r localizes the electron and

x the positron, the scattering wave-function for the positron-H system within the close-

coupling expansion framework is expressed as:

Ψ(r,x) =
∑
α

ψα(r)Fα(x) +
∑
β

ϕβ(ρ)Gβ(R), (5)

where R = (r + x)/2 denotes the position of the center of mass of the Ps in respect to

the atomic nucleus, and ρ = r − x is the internal Ps coordinate. The Gβ(R) describes the

movement of the Ps and ϕβ(ρ) is the eigenfunction of the Ps Hamiltonian with eigenenergy

ε̃β. Substituting this expansion into the Schrödinger equation, we obtain the set of coupled

equations:(
E +

∇2
r

2
− εα

)
Fα(x) =

∑
α′

Vαα′(x)Fα′(x) +
∑
β

⟨Ψα|(H − E)|ϕβGβ⟩ , (6)(
E +

∇2
R

4
− ε̃β

)
Gβ(R) =

∑
β′

Vββ′(R)Gβ′(R) +
∑
α′

⟨ϕβ|(H − E)|ψα′Fα′⟩ , (7)

with Vαα′(x) ≡ ⟨ψα|(1/x− 1/|r − x|)|ψα′⟩, Vββ′(R) ≡ ⟨ϕβ|(1/x− 1/r)|ϕβ′⟩ and H being

the full Hamiltonian of the system. Solving this system of equations is remarkably difficult,

and it requires the inclusion of many target and Ps states (and pseudo-states) to reach

satisfactory convergence [48]. For any target with more then one electron, the situation is

even more difficult, as the ionic states of the target as well as the exchange between the

Ps and the electrons of the ion must also be considered in the expansion of the scattering

wave-function [49].

As an initial approximation, the effects of the Ps states can be neglected by setting

Gβ(R) = 0 for any β in eq. (5). This, as expected, leads to significant simplifications.

Consequently, equation (6) reduces to a form analogous to the corresponding equation for

electron scattering (eq. (2)), but without the exchange term. Therefore, in this case, the

optical potential takes the form:

Vopt(x) = Vst(x) + Vcp(x), (8)

where Vcp(x) is similar with the one from the electron scattering case, and Vst(x) is also

similar but with an opposite sign. Throughout this article, we will refer to this approximation

as the "CP model," which indicates that the optical potential includes not only the static

term but also the correlation-polarization potential.
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It is not expected that converged results can be achieved with the CP approximation

alone, as this model completely neglects the virtual Ps (VPs) effects that are specially

relevant at low energies [9, 50]. To incorporate these essential contributions, we assume that

the optical potential takes the following form:

Vopt(x) = Vst(x) + Vcp(x) + VPs(x), (9)

where VPs(x) is introduced as an adiabatic potential that effectively accounts for the VPs

interactions. This potential depends on a free parameter that is determined according to

the scattering length (SL). By solving the scattering problem with this potential, as defined

in the expression above, we estimate the phase shifts, which are then used to compute both

the elastic cross section and the differential elastic cross section. Throughout this article,

we refer to this approximation as CP+VPs.

Since exchange and Ps formation can be rearrangement processes, in a given sense, ne-

glecting the VPs contribution is somewhat similar to not account for the exchange effect

in electron scattering: while this simplification may be sufficient at high projectile speeds,

it significantly breaks down at lower energies. For electron scattering, it is well-established

that the exchange interaction can be effectively modeled using a single-body potential [51–

53]. Following this reasoning, we assume that a similar treatment can be applied to the VPs

interaction in positron scattering.

A. The ST potential

The ST potential for the positron-H system is exact, and takes the form:

Vst(x) = e−2x

(
1 +

1

x

)
. (10)

For the noble-gas atoms studied in this work, we use the ST potential proposed by Salvat

et al. [54], which is given by:

Vst(x) =
Z

x

imax∑
i=1

Aie
−aix, (11)

where Z is the number of electrons of the atom, {Ai} and {ai} are fitting parameters

provided in ref. [54], and imax denotes the number of fitting parameters available for each

target, which is 2 for He, Ne, and Kr, and 3 for Ar. These parameters are presented in table

I for reference.
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A1 A2 A3 a1 a2 a3

He -0.2259 1.2259 - 5.5272 2.3992 -

Ne 0.0188 0.9812 - 34.999 -2.5662 -

Ar 2.1912 -2.2852 1.0940 5.5470 4.5687 2.0446

Kr 0.4190 0.5810 - 9.9142 1.8835 -

TABLE I. Parameters for the ST potential (11) for the noble-gas according to ref. [54].

B. The CP potential

The first step in constructing the full optical potential is to determine the adiabatic CP

potential. As discussed in ref. [20], an expression for the CP potential can be derived using

perturbation theory, although its application is only viable to the H atom. Therefore, we

begin by focusing on the positron-H system, with the primary objective of establishing an

analytical form for the CP potential. Once this form is obtained, we proceed to generalize

the CP potential using atomic parameters, thereby extending the methodology to treat

noble-gas atoms.

As discussed, we start from the adiabatic CP potential for the positron-H [20]:

Vcp(x) = −
∑
λ ̸=1

|V1λ(x)|2

ελ − ε1
, (12)

where:

V1λ(x) ≡ ⟨ψξ
1|V (r,x)|ψξ

λ⟩ . (13)

where V (r,x) is the electrostatic potential between the positron and the H atom. The ψξ
i (r)

is the H atom wave-function, with a scale factor ξ considered (this function is presented in

further details at appendix A). The introduction of this scale factor aims to generalize the

CP potential to other atoms, as previously mentioned. This will be discussed in greater

detail shortly.

The matrix element defined in (13) can be easily solved if we consider only the discrete

spectra of the H atom. In this case, we have:

Vcp(x) ≈
lmax∑
l=0

Vl(x), (14)
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where we defined:

Vl(x) ≡ −(2l + 1)

4π

nmax∑
n=l+1
n̸=1

vnl(x)
2

εn − ε1
. (15)

In the expressions above, lmax and a nmax represents the maximum values of l and n ac-

counted in the calculation, and εn = 1/ξn2. The function vnl(x) is presented in appendix A

(see eq. (A5)).

Neglecting the states of the continuum in the CP potential (14) will impact on the

polarization of the target, leading to polarizability values lower than the expected. This can

be showed through the asymptotic behaviour of CP potential for x→ +∞:

Vl(x→ ∞) ≈ − α′
l

2x2l+2
, (16)

where α′
l is the effective polarizability obtained from (15):

α′
l =

nmax∑
n=1+l

(2l + 1)c2nl
2π(εn − ε1)

, (17)

where the cnl coefficient is also calculated and presented in the appendix A. Due to the

fact that the cnl ∝ l (see eq. (A5)), it follows that α′
0 = 0. This implies that the V0(x)

component of the potential is purely short-ranged.

For the H atom (ξ = 1), the dipolar effective polarizability sufficiently converges with

nmax = 10 to the value of α′
1 ≈ 11/3 a30. This corresponds to only ≈ 81% of the exact value of

α1 = 9/2 a0, and, therefore, the asymptotic CP potential (14) does not behave as it should.

To deal with this problem, while keeping the calculation simple, we propose to introduce a

l dependent rescaling factor (γl) to account for the continuum spectra contribution:

Vcp(x) =
lmax∑
l=0

γlVl(x), (18)

For l > 0, it is easy to conclude that:

γl =
αl

α′
l

. (19)

where αl is the correct value of the polarizability. The numerical value of the polarizabilities,

which are now input parameters for the CP potential (18), are usually known or can be

calculated by means of quantum chemistry programs. The value of γ0, however, is not so

obvious. The l = 0 term is a pure correlation contribution to the total CP potential, as
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V0(x → ∞) = 0. Thus, there are no direct information that helps to attribute a value for

this factor. Faced with this problem, for the H atom we kept the original form of the derived

potential, meaning setting γ0 = 1. The comparison with external results was encouraging,

supporting this choice.

Finally, having knowledge of the γl factors and with expression (18), the CP potential is

completely known for positron-H. We now turn our attention to the generalization of this

CP potential for other atoms.

To achieve that goal, we assume that the CP potential found for positron-H can be

extended to other targets. This is where the ξ factor, previously introduced, becomes useful.

It seems logical to consider ξ as the numerical value of the atomic radius ra (ξ = ra/a0).

This choice is justified noting that electronic probability density r2|ψξ
1(r)|2 is maximum at

r = ξa0 and this point is used to define the H atomic radius. It is important to observe

that our intention with this is not to find eigenfunctions that describe the atom, but rather

to modify the CP potential derived for positron-H to effectively represent another target,

while keeping its simplicity.

The γl factor for l > 0 is still obvious, as we can simply use the polarizabilities of the

studied target. We are, then, left with the γ0 factor. As discussed, this term corresponds

to the correlation between the positron and the electrons of the target. Thus, it seems

reasonable to multiply it by the number of electrons of the target Z. This led, however, to a

overcorrelation problem, especially as the number of electrons of the target increased. This

implied that a screening effect is playing a role, and in fact, when we considered γ0 = Z∗,

where Z∗ is the effective nuclear charge of the outmost shell, the results came into reasonable

agreement with MBT calculations in the CP-approximation [9, 21, 50]. Thus, based on this

reason, we impose:

γ0 = Z∗. (20)

Finally, we have the CP potential generalization desired. It does not have any free

parameter, as it only depends on atomic parameters such as the atomic radius, the effective

nuclear charge and the polarizability. The table II presents these required parameters,

as used in this work. As shown in this table, only the dipole polarizability is provided,

which means that the calculation in this article were performed with lmax = 1 for the

CP potential (18). This approach was chosen because the inclusion of higher-order terms

demands additional input data, such as the numerical values of higher-order polarizabilities,
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H He Ne Ar Kr

Z∗ 1.000 1.688 5.758 6.764 9.380

ra 1.000 0.585 0.718 1.341 1.663

α1 4.500 1.383 2.670 11.10 16.80

rw 2.26 2.64 2.91 3.55 3.82

TABLE II. Required parameters for the CP potential model in a.u. Z∗ is the effective nuclear

charge of the outmost shell, obtained from ref. [55]; ra is the atomic radius obtained from ref. [56];

α1 is the dipole polarizability, obtained from ref. [57]; Van der Waals radius rw values from [58].

yet it did not lead to any significant changes in the calculated results.

C. The virtual Ps potential

To effectively describe the impact of VPs formation, we model this interaction as a short-

ranged attractive potential. It is well-known that VPs formation results in a significant

increase in electron density around the atom [7]. Therefore, we expect the VPs interactions

to have the greatest influence on the overall potential in this region. On the other hand,

the VPs potential at very short distances may be less relevant due to the dominance of the

static potential near the nucleus.

For these reasons, we model the VPs potential as the purely short-ranged component of

the CP-potential (l = 0), but shifted towards the vicinity of the atom. While using this

component of the CP-potential as the VPs potential is not accurate, it remains a reason-

able approximation. This is because the l = 0 component already captures the essential

positron-electron correlation in the atom’s inner region, allowing us to approximate the VPs

interaction more effectively in the outer regions where these effects are more prominent.

The ξ factor introduced in the CP-potential can also be used here for this purpose. This

raises an interesting question: what value of ξ should be chosen to effectively characterize

the “vicinity” of the atom? One suitable option for this task is the Van de Waals radius,

rw. Unlike the atomic radius, the Van de Waals radius is defined at a distance where the

electronic density is already very low [58], making it an ideal candidate to represent the

"vicinity" of the atom. Furthermore, it has been observed that the transition from the
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short-range potential to the long-range asymptotic behavior in model potential applications

tends to occur near this radius [59, 60].

Therefore, considering ξ = rw/a0, we propose:

VPs(x) = ρV
ξ= rw

a0
0 (x), (21)

where ρ is the semiempirical parameter of the model. The rw values used in this work are

also presented in table II.

As previously discussed, the Vξ
0(x) function is the same as defined in eq. (15). From the

analysis of the convergence of the results with the value of nmax, we found that using a value

of nmax as low as 2 is already enough to reach convergence in this case (the inclusion of more

states only impacts the numerical value of the ρ parameter). This allows us to simplify the

VPs potential to the simple and convenient form:

VPs(x) ≈ −ρe−3x/rw

(
1 +

3x

2rw

)2

. (22)

From this expression, it becomes clear that the ρ parameter exclusively controls the depth

of the potential, and plays no role in determining the range or shape of the interaction.

By fine-tuning ρ, we can modulate the strength of the VPs potential to match experi-

mental or theoretical results. In this work, we follow the approach of Arretche et al. [16, 61]

where the parameter is adjusted using the SL values found in literature. For this study, we

have considered the SL values obtained through MBT [21], as well as those from the POM

calculations [22, 45–47]. These values are listed in Table III, along with the correspond-

ing ρ values required to reproduce these SL values. Additionally, alternative SL values are

available, including the experimentally estimated values of -4.9 a.u. for Ar [62] and -10.3

a.u. for Kr [63]. However, since these values fall within the range obtained using the POM

and MBT methodologies, we report only the results obtained with MBT-SL and POM-SL

in this work.

For comparison, we also include the SLs obtained from the CP approximation (Acp)

in Table III. Notably, the SL magnitudes in the CP approximation are consistently lower

than the reference values, indicating that the potential is under-correlated when the VPs

contribution is not taken into account, as expected. The potential proposed here is valid for

energies up to the real Ps formation threshold. For reference, the Ps formation threshold

values are also provided in Table III.
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H He Ne Ar Kr

Acp -1.13 -0.36 -0.37 -1.87 -4.21

A -2.1a -0.435b/-0.53c -0.467b/-0.61c -4.41b/-5.3c -9.71b/-10.4c

ρ 5.581[-2] 3.790[-3]/7.790[-3] 3.955[-3]/9.618[-3] 3.480[-2]/4.304[-2] 3.186[-2]/3.430[-2]

EPs (eV) 6.8 17.79 14.76 8.80 7.20

TABLE III. The Acp values were obtained within the CP approximation (8); The scattering length

values A were taken from: [31] for a; [21] for b and [22, 45–47] for c. The semiempirical parameter

ρ was fine-tuned to reproduce the corresponding scattering length values listed in the row above;

The values for the Ps formation threshold (EPs) were taken from ref. [64].

III. RESULTS AND DISCUSSION

A. Validation of the Model

In this section, we evaluate the validity of the potentials proposed in this work. Equally

important to the VPs is the CP potential, as drawing meaningful conclusions from the inclu-

sion of the VPs term requires a good description of the correlation-polarization term. It is

important to notice that, unlike the VPs term, the CP potential contains no free parameter,

as discussed in section II B. After discussing the results obtained within the CP approxi-

mation, we proceed to analyze the implications of incorporating the VPs contribution. The

phase shifts (up to l = 8) as a function of positron momentum, calculated using the CP

and CP+VPs approximations for all targets considered in this work, are provided in tabular

format as supplementary material.

Fig. 1 presents the s-, p- and d-wave phase shifts for the CP and CP+VPs models for

momentum below the Ps formation threshold. The top-left panel presents the results for

positron-H compared to the MBT results of Gribakin and King [9] within the same level

of approximation. For the s-wave phase shift (δ0), good agreement for k from threshold up

to ≈ 0.2 a.u. is found. For larger values of k, our result differs from the MBT by a small

margin. Similar conclusions can been drawn for the p-wave phase shift (δ1), where very good

agreement is observed up to k ≈ 0.5 a.u. For the d-wave phase shift (δ2) the agreement is

observed for the whole region. Given the high accuracy of the MBT calculation within the
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polarization approximation, as discussed by Gribakin and King [9], it can be concluded that

the CP potential proposed in this work effectively captures the polarization interactions for

this system below the Ps formation threshold.

In the bottom-left panel of the same figure, the positron-Kr results for the s-, p- and

d-wave phase shifts within the CP approximation are compared with those obtained from

the MBT [21]. Overall, the conclusions are consistent with those drawn from the positron-

H system. For the s-wave phase shift strong agreement is observed up to k ≈ 0.4 a.u.,

with some discrepancies appearing for higher values of k. For the p- and d-wave phase

shifts, strong agreement are observed, with only minor discrepancies. This suggests that

the proposed generalization of the CP potential developed in this work is also adequate for

treating the noble-gas atoms. In fact, similar agreements are also observed with the elastic

cross section reported for He in [9], and for Ne and Ar in [50].

In the top-right panel of Fig. 1 it is presented the phase-shifts in the CP+VPs approxi-

mation for positron-H system. The MBT results with VPs from Gribakin and Ludlow [31]

are also shown in the figure for comparison. Very good agreement for the s-wave phase

shift with the MBT one is observed. This is an encouraging result for the proposed VPs

potential. For the p-wave phase shift the agreement remains good up to k ≈ 0.3 a.u. For

larger values, the MBT predicts a significantly higher phase-shifts compared to our result.

For the d-wave phase shift the agreement holds up to k ≈ 0.5 a.u., and, similarly to the

p-wave, the MBT result exhibits a higher magnitude compared to ours beyond this point.

The observed discrepancies in the p- and d-wave phase shifts are not surprising. As Grib-

akin and Ludlow discussed [31], the sudden increase in the contribution of the higher-order

partial waves are related to the VPs becoming more “real” as it approaches the threshold.

This energy-dependent effect cannot be accurately described by a simple adiabatic potential

such as the one proposed in this work.

The bottom-right panel of Fig. 1 shows the phase shifts for the CP+VPs approximation

for the positron-Kr system. The results are compared with those obtained from the MBT

[21] and the POM [47]. Our model’s results, incorporating the POM-SL and MBT-SL

approximations as shown in Table III, are very similar, with the largest discrepancy being

approximately 4% at the peak of the s-wave phase shift. For this reason, only the POM-SL

results for Kr are shown, as they demonstrate slightly better overall agreement with the

reference data. Similarly to the positron-H case, the s-wave phase shift (δ0) shows excellent
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agreement with the reference data. For the p- and d- phase shifts, our results compare

well with the MBT calculations up to k ≈ 0.3 a.u. and ≈ 0.5 a.u., respectively. Beyond

these values, the MBT results are higher than ours, though the discrepancies are smaller

compared to the positron-H results. However, when compared to the POM, our phase shifts

exhibits very good agreement, which is expected since the POM also employs an adiabatic

approach. Interesting conclusions may be drawn from these results: First, it confirms that

the VPs potential proposed in this work is capable of describing the effective interaction of

the virtual Ps for targets other than the H atom. Second, the fact that this simple adiabatic

potential offers good results suggests that the impact of virtual Ps as it approaches the Ps

formation threshold is more subtle for the Kr atom compared to the H atom.

One of the key advantages of a single-body potential, as the one proposed in this work,

is the possibility of analysing each component of the optical potential individually. This is

illustrated in Fig. 2, where the potential is plotted as a function of the positron’s distance

from the atomic nucleus. In panel (a), the CP potential is decomposed into its l = 0 and

l = 1 components, along with the VPs potential for positron-H. The comparison between

the VPs with the CP-l = 0 component clearly demonstrates the impact of using the Van

der Waals radius in (22): it extends the range of the correlation function. Interestingly, the

VPs resembles the CP-l = 1 component, which describes the long range dipole polarizability

interaction. The same pattern is observed for the positron-Kr in the panel (b), with the

notable exception that the CP-l = 0 component is significantly deeper, approaching ≈ −1.0

a.u. for x→ 0 a.u.

Yet in the same figure, the panels (c) and (d) show the potential within the ST only, the

ST+CP and the ST+CP+VPs approximations for H and Kr, respectively. As expected, the

inclusion of the VPs interaction makes the potential more attractive in regions where the

short-range CP-l = 0 contribution to the total potential is already minimal (x >∼ 2.0 a.u.

for the H and x >∼ 5.0 a.u. for the Kr atom). These results, along with those presented in

the top panels, elucidate the significant impact of the VPs interaction on the results. Unlike

the electron-atom problem, the ST potential is repulsive for positron, which makes the low

energy phase shifts to become very sensitive to the attractive part of the potential. Since

the VPs potential is modeled here as a correlation function with a relatively long range

compared to the CP-l = 0 component, its contribution becomes particularly significant as

the ST potential approaches zero. Consequently, the VPs interaction is as crucial as the

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


polarization interaction for the description of the positron-target problem.

To better understand the effects of the VPs potential on physical observables, we analyse

both the elastic cross section and the differential elastic cross section (DCS). This analysis

is conducted for the Kr atom, as the conclusions drawn are consistent with those for the H

atom, thereby avoiding redundant results.

Fig. 3 displays the elastic cross section as a function of the positron momentum for

positron-Kr, comparing our results with the ones from MBT [21], POM [47] and CCC [42].

Notably, there is a significant difference between the results obtained with and without the

VPs contribution: the CP result shows a much smaller magnitude compared to the CP+VPs

approximation. As expected from the phase shifts presented in the botom-right panel of fig.

1, the CP+VPs results is in good agreement with both reference models up to k ≈ 0.3 a.u.

Beyond this momentum, while our CP+VPs calculation remains consistent with the POM

result, the MBT and CCC results exhibits a higher magnitude. As previously discussed,

the discrepancies between the models arise from the varying approaches to (or omission of)

non-adiabatic VPs effects.

Fig. 4 presents the DCS for k = 0.1, 0.3, 0.5 and 0.7 a.u. for positron-Kr. The results

are compared with the ones from the MBT and POM. It is important to notice that, unlike

the elastic cross section, convergence of the DCS at small angles requires including a large

number of partial waves in the calculation. While this is manageable in semiempirical

calculations as the one present in this paper, it poses a significant computational challenge

for ab initio models such as the MBT and POM. Consequently, a common approach is

to compute a limited number (lc) of phase shifts using the ab initio formulation and then

make use of the modified effective theory equation for phase-shifts with l ≥ 1 to estimate the

contribution from the higher-order partial waves [65], which leads to the scattering amplitude

[21]:

f(θ) =
lc∑
l=0

(2l + 1)

(
e2iδl − 1

2ik
− πα1k

(2l − 1)(2l + 1)(2l + 3)

)
Pl(cos θ)−

πα1k

2
sin

θ

2
(23)

The DCS for the MBT and POM models were derived using the phase shifts reported in

their respective studies (lc up to 2 for the MBT and lc up to 6 for POM).

For a momentum of 0.1 a.u. (panel (a)), all models with VPs show good agreement. At

this momentum, the s-wave contribution is the dominant partial wave, so the absence of VPs

results in a DCS with considerably lower magnitude. For k = 0.3 a.u. (panel (b)), including

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


the VPs increases the DCS at small angles compared to the CP model. The addition of

the VPs correlation also alters the position and depth of the minimum in the DCS: the

minimum shifts from ≈ 83 to ≈ 101 degrees and becomes shallower. However, for angles

greater than ≈ 130 degrees, the DCS for the CP and CP+VPs models are relatively similar.

The comparison between the VPs and the DCS from the MBT and POM shows reasonable

agreement, though small differences are noted, primarily in the position of the minimum.

Similar trends are observed for k=0.5 a.u. (panel (c)) and k=0.7 a.u. (panel (d)). As k

increases, the discrepancies between the CP and CP+VPs models only become evident at

progressively smaller angles, where the VPs contributes with a significant increase in the

DCS. Furthermore, the differences between the CP+VPs model and POM with the MBT

due to non-adiabatic effects become more pronounced, especially for angles greater than 70

degrees.

The analysis of the DCS of fig. 4 highlights both the strengths and limitations of using

adiabatic potentials for positron. On the positive side, our results satisfactory matches the

accuracy of established ab initio methodologies for low momentum. These potentials offer

a large advantage in terms of computational speed, on the cost of requiring an additional

parameter, such as the SL. However, as the momentum approaches the real Ps formation

threshold, the inclusion of the VPs term did not affect the back-scattering and only showed

considerable differences at small and intermediate angles. This suggests that the high-angle

region is predominantly influenced only by the ST potential in our model. In contrast,

the MBT result demonstrate that the VPs interaction have a substantial impact on back-

scattering, enough to alter the integral elastic cross section, as shown in Fig. 3.

To analyze the sensitivity of the results to the adjustable parameter ρ, the SL and the

zero-angle DCS for various momenta are presented as functions of ρ in Table IV. The DCS at

θ = 0 degrees is selected to emphasize its pronounced increase at small angles as the potential

becomes more attractive. Considering the experimental SL of −10.3 ± 1.5 for positron-Kr,

as measured by Zecca et al. [63], the results obtained for 0.03 <∼ ρ <∼ 0.04 remain within a

reasonable range. By assuming ρ = 3.5 as a value close to the optimal one, the zero-angle

DCS may vary by approximately ±15% for k = 0.1 a.u., and by approximately ±11% for

k = 0.3, 0.5 and 0.7 a.u.. When the interaction potential becomes sufficiently attractive,

the Hamiltonian supports a bound state, causing the scattering length to change sign [10].

In this case, the transition occurs for ρ values between 0.08 and 0.09. In contrast to the
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zero-angle DCS for k = 0.3, 0.5 and 0.7 a.u., which consistently increase as ρ increases, the

result for k = 0.1 a.u. increases up to ρ ≈ 0.1, after which it starts to decrease.

DCS(θ = 0°)

ρ/10−2 A k = 0.1 k = 0.3 k = 0.5 k = 0.7

0.0 -4.21 12.96 12.81 13.24 13.28

1.0 -5.45 18.79 17.17 17.50 17.45

2.0 -7.06 26.38 22.26 22.41 22.22

3.0 -9.22 35.98 28.09 27.94 27.60

3.5 -10.62 41.57 31.29 30.95 30.51

4.0 -12.32 47.68 34.67 34.12 33.57

5.0 -17.11 61.21 42.00 40.92 40.15

6.0 -25.60 75.78 50.06 48.34 47.33

7.0 -44.75 90.03 58.82 56.36 55.09

8.0 -129.60 102.23 68.29 64.97 63.44

9.0 191.34 110.79 78.41 74.15 72.37

10.0 59.53 114.87 89.14 83.87 81.86

11.0 36.70 114.57 100.44 94.10 91.90

12.0 27.21 110.74 112.23 104.82 102.48

13.0 21.99 104.53 124.45 116.00 113.58

14.0 18.68 97.04 137.01 127.59 125.19

15.0 16.38 89.09 149.79 139.57 137.28

17.5 12.83 70.37 181.89 170.98 169.53

20.0 10.77 55.75 212.22 204.01 204.35

TABLE IV. The scattering length A and the zero-angle differential elastic cross section for k = 0.1,

0.3, 0.5 and 0.7 are tabulated as a function of the adjustable parameter ρ for the e++Kr system.

All values are expressed in atomic units.
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B. Helium

Fig. 5 shows the elastic cross section for positron-helium system. Overall, theoretical

models for this system exhibit relatively good agreement with each other, as well as with

experimental data of Sullivan et al. [66]. We observe that our CP approximation already

shows good agreement with the experimental results for energies above ≈ 3 eV, reflecting

a likely weak VPs effects on this atom. For the CP+VPs approximation, we consider two

different SL values to fine tune the ρ parameter (see Table III). Notably, the differences

between the CP and CP+VPs models are only significant at low energies (below ≈ 5 eV).

Furthermore, the result using the MBT-SL is in great agreement with the experimental

measurements, accurately describing the Ramsauer-Townsend minimum, which is highly

sensitive to the potential used. Excellent agreement is also observed with the theoretical

results obtained from the MBT [21], CCC [41] and KVM [36]. In contrast, the results

obtained using the POM-SL shows a elastic cross section with a higher magnitude in the

minimum region, possible indicating a over-correlation problem.

Fig. 6 presents the DCS at 2 eV and 12 eV in the top and bottom panels, respectively.

At 2 eV, the VPs term significantly increases the DCS for angles below ≈ 60 degrees com-

pared to the CP model. The greater the VPs contribution to the overall potential, the

more pronounced the increase in the DCS at small angles, as evidenced by the comparison

between the results using the MBT-SL and the POM-SL. A similar pattern is observed for

12 eV. However, in this case, the DCS increase is restricted to angles below ≈ 30 degrees.

Additionally, the DCS for the CP+VPs model is close to the one obtained by the CP model

for angles above ≈ 35 degrees.

These observations leads us to conclude that for high energies, the impact of the VPs for

this system is only appreciable at small angles, and these differences are suppressed by the

sine function when integrating the DCS to obtain the elastic cross section. This explains

why all the models presented in fig. 5 have similar elastic cross section at higher energies.

C. Neon

Positron interactions with the neon atom is an interesting case. One notable peculiarity

is its annihilation parameter at low energies, which is lower than its number of electrons.
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In Fig. 7, we present the elastic cross sections obtained in this work with the experimental

measurements of Jones et al. [23] and with the theoretical results from the POM [45],

MBT [21] and CCC [43]. For energies above ≈ 1 eV, the CP and CP+VPs models yield

similar results, all of which are in good agreement with the experimental and theoretical

data. However, at lower energies, similarly to the He atom, the CP model underestimates

the experimental data. In contrast, the CP+VPs model, particularly when fine-tuned with

the POM-SL, aligns more closely with the experimental data at the Ramsauer minimum

than the version with the MBT-SL. As expected, the MBT-SL results align more closely

with the MBT data, while the POM-SL results exhibit better agreement with the POM and

CCC data. Interesting conclusion may be drawn from the results in this figure: the early

agreement of the CP model with the measurements indicates that the VPs effects are modest

for neon. This modest effect likely explains why the annihilation parameter is unusually low

for this atom, as VPs formation is known to significantly enhance annihilation [67].

In Fig. 8, the Folded Differential Cross Sections (FDCS) obtained in this work are

compared with both experimental and theoretical results reported by Cheong et al. [24] for

energies of 1, 2, 3 and 5 eV. The FDCS is defined as the DCS symmetrically folded around 90

degrees to account for experimental limitations that prevent the resolution of forward and

backward scattering directions separately. Given that our POM-SL model showed better

agreement with the experimental total cross section in Fig. 7, only the results for this model

is presented here. The effect of the VPs manifests as a sharp increase in the FDCS at small

angles, and a decrease at larger angles. This decrease at larger angles is associated with the

shift of the minimum in the unfolded DCS toward angles closer to 90 degrees. For the 1 and

2 eV cases, our CP+VPs model shows very good agreement with the CCC results of Jones et.

al [23], except at small angles, where the CCC results becomes higher. Good agreement is

also found with the Relativistic Optical Potential (ROP) model across all energies. A more

recent theoretical investigation with the CCC methodology for this system was performed

by Mori et al., where the results obtained are very similar to the ROP ones (see fig. 5

of ref. [43]), and, for this reason, these results are omitted from this figure. Regarding

the comparison with the experimental data, good agreement is only found for 1 eV, and

some marginal agreement is observed for 2 eV. The reasons of the discrepancy between the

theoretical predictions and this experimental data are not yet understood [24, 43].
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D. Argon

Fig. 9 shows the elastic cross section as a function of energy for the positron argon system.

As it can be seen in the CP model and in the MBT without Ps calculation of [50], one notable

characteristic of the lack of VPs for this system is the presence of a Ramsauer minimum

in the results. This minimum vanishes when the VPs effects are included, as shown in the

CP+VPs calculations. Similar to the Kr atom case, the elastic cross section at higher energy

is influenced by non-adiabatic effects, as evident when comparing with the MBT, POM, and

CCC results from [21] [46] and [43], respectively. These non-adiabatic contributions likely

explain the discrepancies observed between our results and the experimental data of Jones

et al. [23] for energies above 3 eV, although the CP+VPs model shows better agreement

in this region when compared to the experimental measurements reported by Karwasz et

al. [68]. This suggests that non-adiabatic VPs effects play a crucial role in describing the

positron-argon interaction at higher energies, influencing both the magnitude and shape of

the elastic cross section, differently from the He and Ne cases.

IV. CONCLUSIONS

In this work, we decomposed the positron-target interaction single-body adiabatic po-

tential into two distinct components: the pure Correlation-Polarization and the virtual Ps

formation terms. For the CP term, we employed a potential initially derived for positron-

hydrogen interactions, which we then generalized to account for multi-electron targets. This

potential only depends on well-known target parameters, and presented strong agreement

with results from Many-Body Theory under similar approximation.

For the virtual Ps term, we introduced a simple attractive potential, derived from the

short-ranged component of the Correlation-Polarization potential. This potential depends

on the Van der Waals radius, which reflects on that fact that virtual Ps effects are expected

to be significant at regions beyond the target’s valence shell. Additionally, the potential’s

depth is controlled by an adjustable parameter, which is fine-tuned to match scattering

lengths consistent with established theoretical calculations. This approach allows for an

effective representation of virtual Ps interactions without over-complicating the potential’s

formulation.
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Results were obtained for the hydrogen and the noble-gas atoms. We have shown that

the inclusion of the virtual Ps potential produces results in good agreement with other

theoretical models and experimental measurements. The exceptions occurs at energies near

the virtual Ps formation threshold, where non-adiabatic effects become significant, leading

to some deviations from expected results, specially for the p and d-wave phase-shifts. This

highlights the limitations of the adiabatic approximation in such regimes and suggests the

need for more sophisticated approaches to fully capture the dynamics near the threshold.

We also examined how the inclusion of the virtual Ps term impacts on the differential

elastic cross sections. Our analysis revealed that the incorporation of the virtual Ps primarily

enhances the scattering at small angles for all the studied targets. The comparison of results

from this work with those obtained from Many-Body Theory indicates that non-adiabatic

effects can significantly influence the back-scattering.

Interestingly, while the virtual Ps formation poses a significant challenge for many-body

methodologies, in approaches based on a single-body optical potential it can be effectively

described using a simple additional correlation term, leading to results that align well with

experimental measurements.
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Appendix A: Matrix element

In this appendix, we present the solution of the matrix element given in eq. (13), which

is given by:

V1λ(x) ≡ ⟨ψξ
1|V (r,x)|ψξ

λ⟩ =
∫
ψξ∗
100(r)

(
1

x
− 1

|r − x|

)
ψξ
nlm(r)d

3r (A1)
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where ψξ
nlm(r) = Rξ

nl(r)Ylm(r̂), with Ylm(r̂) being the spherical harmonic function, and:

Rξ
nl(r) = N ξ

nle
−r/ξn

(
2r

ξn

)l

L
(2l+1)
n−l−1

(
2r

ξn

)
, (A2)

being L(a)
b (r) the associated Laguerre function. The normalization factor is:

N ξ
nl =

√(
2

ξn

)3
(n− l − 1)!

2n(n+ l)!
. (A3)

Using the multi-polar expansion in (A1) and solving the angular integral, the matrix element

reduces to V1λ(x) = −vnl(x)Ylm(x̂), with:

vnl(x) ≡
∫ ∞

0

r2Rξ
10(r)

rl<
rl+1
>

Rξ
nl(r)dr. (A4)

The solution of the above integral is:

vnl(x) =

√
4π

2l + 1
N ξ

10N
ξ
nl

n−l−1∑
i=0

(−1)i

i!

(
2

ξn

)i+l(
n+ l

n− l − 1− i

)

×

[
(2 + 2l + i)!(

1
ξ
+ 1

ξn

)3+2l+i

xl+1

(
1− e−(

1
ξ
+ 1

ξn)x
2+2l+i∑
j=0

[(1
ξ
+ 1

ξn
)x]j

j!

)

+
(1 + i)!xle−(

1
ξ
+ 1

ξn)x(
1
ξ
+ 1

ξn

)2+i

1+i∑
j=0

[(1
ξ
+ 1

ξn
)x]j

j!

]
,

The asymptotic form of the vnl(x) for x sufficiently large reduces to vnl(x→ ∞) = cnl/x
l+1,

with:

cnl ≡ l

√
4π

2l + 1
N ξ

10N
ξ
nl

(
2

ξn

)l
(n+ l)!

(n− l − 1)!

(
1
ξ
− 1

ξn

)n−l−2

(
1
ξ
+ 1

ξn

)n+l+2

2

ξ
. (A5)
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FIG. 1. Phase Shifts as a function of momentum within the CP and CP+VPS approximations.

Top-left panel: results within the CP model for positron-H compared with the MBT results from

Gribakin and King [9]; Bottom-left panel: results within the CP model for positron-K compared

with the MBT results from Green et al. [21]. Top-right panel: results within the CP+VPs model

for positron-H compared with the MBT results from Gribakin and Ludlow [31]; Bottom-right panel:

results within the CP+VPs model for positron-Kr compared with the MBT results from Green et

al. [21] and POM results from McEachran et al. [47]. Legends in figure.
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FIG. 2. Potential energy as a function of positron’s distance from the atomic nucleus. Panel

(a): VPs, CP-l = 0 and CP-l = 1 components for positron-H; Panel (b): same as a panel (a), but

for positron-Kr; Panel(c): full potential in the ST, ST+CP and ST+CP+VPs approximations for

positron-H; Panel (d): same as panel (c), but for positron-Kr. Legends in figure.
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FIG. 3. Elastic cross section as a function of momentum for the positron-Kr system. Legends in

figure. The MBT, POM and CCC results were taken from references [21], [47] and [42], respectively.
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FIG. 4. Differential elastic cross sections as a function of the angle for positron-Kr. Panel (a):

results for k = 0.1 a.u.; Panel (b): results for k = 0.3 a.u.; Panel (c): results for k = 0.5 a.u.; Panel

(d): results for k = 0.7 a.u. The MBT and POM results were calculated as described in the text,

with the phase-shifts taken from references [21] and [47], respectively.
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FIG. 5. Elastic cross section as a function of energy for positron-He. Legends in figure. The MBT-

SL and POM-SL indicate that the results were obtained by fine-tuning the free parameter to match

the SL with those from the MBT and POM, respectively (see Table III). The experimental results

were taken from ref. [66]. The POM, MBT, CCC and KVM results were taken from references

[22], [21], [41] and [36], respectively.
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FIG. 6. Differential elastic cross sections as a function of the angle for positron-He. Top panel:

results for 2 eV; Bottom Panel: results for 12 eV. Legends in figure. The MBT-SL and POM-SL

indicate that the results were obtained by fine-tuning the free parameter to match the SL with

those from the MBT and POM, respectively (see Table III).
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FIG. 7. Elastic cross section as a function of energy for positron-Ne up to 14 eV. Legends in

figure. The MBT-SL and POM-SL indicate that the results were obtained by fine-tuning the free

parameter to match the SL with those from the MBT and POM, respectively (see Table III). The

experimental results were taken from ref. [23]. The POM, MBT and CCC results were taken from

references [45], [21] and [43], respectively.
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FIG. 8. Folded Differential Cross Sections (FDCS) as a function of the angle for positron-Ne. The

FDCS is defined as the DCS symmetrically folded around 90 degrees. Panel (a): results for 1 eV;

Panel (b): results for 2 eV; Panel (c): results for 3 eV; Panel (d): results for 5 eV. Legends in figure.

The experimental and ROP results were taken from ref. [24], and the CCC results was taken from

ref. [23].
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FIG. 9. Elastic cross section as a function of energy for positron-Ar. Solid line: present CP+VPs

result obtained with the MBT-SL; Dashed line: present CP+VPs result obtained with the POM-SL;

Dash-dotted line: present CP result; Double-dash-dotted line: MBT result from ref. [21]; Dash-

dotted short line: MBT results without VPs from ref. [50]; Dotted line: POM result from ref. [46];

Double-dot-dashed line: CCC from ref. [43]; Squares: experimental measurements from ref. [68];

Circles: experimental measurements from [23].
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