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Familial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of pre-
mature coronary artery disease is 13 times higher than in the general population. Early diagnosis and
treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life.
One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those
under 45 years old. Therefore, by detecting a CA, it might be possible to reduce the number of undiag-
nosed FH cases. In this paper, we propose using convolutional neural networks (CNN) for automatic
recognition of the presence of a corneal arcus. To achieve this goal, we created a dataset of images of irises
containing different stages of CA as well as irises without a CA. The core of the dataset consists of images
acquired from patients with a corneal arcus, enroled in the National Centre of Familial
Hypercholesterolemia in Gdansk. To increase the number of images, the dataset was complemented with
images downloaded from the Internet. This dataset created for training and testing the model consisted of
nearly 4000 images. To detect a CA in photographic images, we tested neural network models based on
the VGG16, ResNet and Inception architectures. Finally, the performance of the models was evaluated on
a set of images acquired from volunteers with a custom mobile application. The accuracy of CA detection
in a real life scenario was 88% and the F1 score was 86%
� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Familial hypercholesterolemia (FH) is a common autosomal
dominant genetic disorder of the lipid metabolism, characterised
by a life-course elevated blood low-density lipoprotein cholesterol
(LDL-C) concentration, leading to early atherosclerosis and prema-
ture coronary heart disease (Raal and Santos, 2012). Mortality due
to cardiovascular diseases among FH patients between 20 and
39 years is 100 times higher and the onset of premature coronary
artery disease is 13 times higher than in the general population
(Hypercholesterolemia, 1999). The prevalence of FH in Poland
has been estimated at one in 250 adults (Pajak et al., 2016).
Chlebus et al. (2018) estimate that 102,000 patients in the Polish
population are undiagnosed (nearly 98%). Through early diagnosis,
intensive lifestyle modifications and pharmacotherapy, the inci-
dence of cardiovascular events might be significantly decreased.
Among the clinical features of FH, we distinguish a corneal arcus,
tendon xanthomatosis, and xanthelasma. A corneal arcus (CA) is
a lipid-rich and predominantly extracellular deposit that forms at
the corneoscleral limbus. The prevalence of a corneal arcus in the
FH population is approximately 50% (Ogura et al., 2016; Pajak
et al., 2016). A corneal arcus reflects widespread tissue lipid depo-
sition (Zech and Hoeg, 2008), therefore its presence (especially
among people under 45 years old) is an indicator for examination
for lipid abnormalities (Fernández et al., 2007).

Image processing can help to determine the presence of a CA,
and can therefore play an important role in indicating further
examination toward FH, among others. Most CA detection methods
rely on an image threshold (using the Otsu algorithm) and
histogram operations. Usually, these operators are applied on a
erolemia
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normalised image of an iris. The authors (Ramlee et al., 2011;
Songire and Joshi, 2016) state that the values of a histogram of
an image with a CA present concentrate near the higher values,
as opposed to images of a CA-free iris. A similar approach was pro-
posed by Bhangdiya (2014). Kumar proposed using a mean value,
standard deviation, entropy, skewness, kurtosis and a Support Vec-
tor Machine (SVM) for corneal arcus classification. A feature-based
approach was also presented by Nasution and Kusuma (2009), who
used a hybrid N-feature neural network (HNFNN) instead of an
SVM for classification.

The rapid development in the area of machine learning (ML)
and image oriented deep learning (DL) is allowing solutions to be
found for more and more complex tasks. Developments in artificial
intelligence (AI) make it attractive for medical applications allow-
ing new areas to be explored where computer algorithms can
improve medical processes (Patel et al., 2009; Laksanasopin et al.,
2015; Castaneda et al., 2015). Convolutional neural networks
(CNN) constitute a valuable method in visual recognition and are
also widely applied in the medical field. They are widely appreci-
ated in a variety of applications including breast tumor detection
(Rouhi et al., 2015), lung image patches (Li et al., 2014; Ciompi
et al., 2015), skin cancer classification (Esteva et al., 2017), radiol-
ogy workflow triage (Titano et al., 2018), ECG analysis (Khamis
et al., 2018) or improving the accuracy of classification of conjunc-
tivitis (Li et al., 2019). Moreover, neural networks proved to be very
useful in terms of organs segmentation. In their work (Zhao et al.,
2019) presented combination of deep-learning and traditional
methods for small organs segmentation despite the limited train-
ing data while (Wang et al., 2019) showed how deep-learning
approach can resolved the problem of gland segmentation in his-
tology images. Simonyan and Zisserman designed a CNN model
(Simonyan and Zisserman, 2014) (VGG) of substantially deeper
architecture with 16 or 19 weight layers. The fundamental part
of the Inception model is the concept of the inception layer or
inception block that essentially is a combination of convolutional
layers of different kernel size with their outputs concatenated.
The resulting single vector constitutes an input to another block
(Szegedy et al., 2016). The ResNet model consists of so-called resid-
ual blocks. The idea behind the residual block is to pass the data to
the consecutive layers or skip some layers and feed a layer after a
few steps. The deep network structure of the ResNet model was
designed to overcome the backpropagation problem.

Finding undiagnosed patients is a challenging task. We decided
to exploit the fact that corneal arcus is a visible factor of familial
hypercholesterolemia. Developing the algorithm and application
that can recognize presence of corneal arcus in an photographic
image of an eye can influence potential patient’s decision to visit
a specialist towards lipid screaming.

In this paper, we present a new model inspired by the VGG
architecture and its application for corneal arcus detection. The
Fig. 1. Example images of an iris taken from two different angles. (a) T

2

motivation behind this study is to provide a reliable algorithm
and a tool for investigating the presence of CA, and via that, screen-
ing against potential familial hypercholesterolemia. The algorithm
is designed to work with images recorded with a phone camera. In
addition to the algorithm and the mobile application, we con-
tributed to the creation of a dataset of irises with a corneal arcus.

The rest of the paper is organised as follows: the methodology is
presented in section II. Section III describes the implementation
and testing. The obtained results are presented in section IV and
discussed in section V. The whole paper is concluded in section VI.

2. Method

Usually, deep learning performs best when trained on a large
dataset of images. However, it is quite difficult to build a large
dataset of medical images, especially when considering a rare
medical condition. In our research, we focused on the detection
of the presence of a corneal arcus in photographic images. In gen-
eral, there are two types of corneal arcus: arcus senilis and arcus
juvenilis. Arcus senilis appears as a white/whitish ring or arc
around the cornea of the eye. The condition is usually seen in older
adults but can affect people of all ages, even appearing at birth.
Sometimes it appears in people under 40 and is called arcus juve-
nilis. In these cases, the rings may be a result of high cholesterol
levels in the bloodstream (Desnick et al., 2001; Brewer et al.,
2005; Winder et al., 1998).

2.1. Dataset

Collecting the dataset started with images acquired at the
National Centre of Familial Hypercholesterolemia (University Clin-
ical Centre Gdansk, Poland). The images of an iris were acquired
from 50 patients (34 female, 16 male, age: 27–58). Each patient
was asked to expose the affected area of their iris two times (2
images were acquired per patient). Exemplary views are presented
in Fig. 1. All of the images were taken by two experts (specialists in
cardiology with at least 3 years work experience in the familial
hypercholesterolemia clinic). To increase the number of iris
images, it was decided to extend the dataset with images obtained
from various Internet resources. We queried the Google Image
browser for ‘‘corneal arcus”, ‘‘corneal juvenilis” and ‘‘corneal
senilis”. A retrieved image was included into the dataset after the
content and the quality of the image were visually inspected and
approved by the experts. To avoid false classification based on
extreme condition of the eye (evident presence of corneal arcus
or extreme degradation of the iris) such images as well as the dif-
ferent instances of the same image were excluded from the data-
set. As a result, the dataset labeled as ”CA class” contained 195
images. A corresponding dataset of images labeled as ‘‘NO CA
class”, presenting a healthy iris, was generated in similar way.
he CA partially exposed. (b) The CA visible around the whole iris.
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The entire dataset contained 390 images equally divided into
the two classes.

2.2. Data preparation

Because of the different angles of image acquisition, we decided
to extract only the iris area. The main assumption was to get the
classification based on the medical conditions and not on the pres-
ence of additional features such as skin colour, eyelashes etc. To
detect the iris, previously designed algorithms for pupil detection
were utilised (Kocejko et al., 2009; Kocejko and Wtorek, 2013).
The pupil detection algorithm needed some adjustments such as
the adaptive threshold and the size of the structuring element used
for morphological image operations. In general, the iris extraction
algorithm was composed of two parts. The first part was pupil
region detection. The V-channel (the YUV color model) was
extracted from the original input image. Next, a Gaussian blur
was applied along with erosion and closing operations. The pupil
region intensity was enhanced by squaring up the image. Next,
the adaptive threshold was applied. The assumption was that the
pupil region boundaries will be represented by the largest inbound
contour which was approximated with a bounding box (square).
The pupil center and radius were represented by bounding box
parameters. The overview of the pupil detection algorithm is pre-
sented in Algorithm1.

Algorithm1: pupil detection algorithm

1: Get V-component
2: Gaussian filtering (kernel size: 9)
3: Erosion (3x3 rectangular structuring element)
4: Morphological Opening (5x5 eliptical structuring element)
5: Intensity enhancement (squaring up the image)
6: Adaptive Threshold
7: procedure Modified Longest Segment Detection
8: Points x; y coordinates of beginning and end of longest

vertical segment
9: lvert  lengthvert of longest vertical segment
10: Points x; y coordinates of beginning and end of

longest horizontal segment
11: lhor  lengthhor of longest horizontal segment
12: for each row in image do
13: l Get Segment length
14: if l > 0:5 � lhor and l < 0:9 � lhor then
15: Points x; y coordinates of beginning and end of

segment
16: for each col in image do
17: l Get Segment length
18: if l > 0:5 � lver and l < 0:9 � lver then
19: Points x; y coordinates of beginning and end of

segment
20: Fit ellipse to Points
21: Fit bounding box around ellipse

The second part of the iris extraction algorithm relied on the
detected pupil size and position. The iris candidates were detected
by the circle Hough transform applied on the V-channel image. To
limit the number of detected circles, the accepted size of the
detected circles was related to the pupil size estimated in the pre-
vious step (parameters of the bounding box). The constrains were
that the detected circle diameter should be in the range from one
to five lengths of the bounding box. Next, the iris candidate was
selected based on the minimum distance from the pupil center to
the center of the detected circle. The overview of the iris detection
is presented in Algorithm 2. Finally the imaged was cropped to the
3

iris bounding box and resized to 512 by 512 pixels. The whole data-
set was reviewed for correct iris estimation. An incorrectly detected
iris was manually validated. A similar procedure was applied on
images representing the second, NO CA class. Additionally, an
image mask was applied to separate the iris from the background.
It is worthmentioning that the corneal arcus appears on the bound-
ary of the iris. Therefore the mask was also applied over the inner
part of the iris. The radius of applied masks were 250 and 170 pix-
els. The general overview of the algorithm is presented in Fig. 2. We
utilised black and white background masks. As a result, two data-
sets were obtained with different background masks. It was impor-
tant to verify if different distributions of iris colours in the dataset
was an important factor in any image classification problem. To
overcome the problem of the differing quality levels of the acquired
images, all images were normalised according to formula:

Xnorm ¼ X �minðXÞ
maxðXÞ �minðXÞ ð1Þ

where: Xnorm is normalized value, X is original value, maxðXÞ and
minðXÞ are maximum and minimum value of image.

Algorithm2: Iris detection algorithm

1: Get V-component
2: Gaussian filtering (kernel size: 9)
3: Inpaint pupil region
4: Otsu Threshold
5: circles Hough circle detection
6: for circel in circles do
7: center  circle center
8: dist  distance between center and pupilcenter
9: if dist < mindist then
10: mindist  dist
11: radiusiris  circle radius
12: centeriris  center
13: Fit bounding box around circle
A data augmentation procedure was used to increase the size
and diversity of the dataset available for the training phase. Each
image was rotated nine times in the range from 1 to 359 degrees.
This was done to simulate the presence of a CA in different spatial
locations of an eye. As a result, each dataset was increased in size
to 3900 images (390 unrotated images and 9x390 rotated ones).

Fig. 3 presents example of images from each dataset. The man-
ual procedure of dividing the data into training, test and validation
set was adopted to avoid including an image acquired from the
same person in the training and validation set, or in the training
and test set. It has to be underlined that images from the Internet
and the clinic were stored in separate folders. Images acquired
from the interent were divided into the training, validation and
test sets. Images acquired from the clinic were stored in separate
subfolders for each subject (for each subject enrolled into studies
separate subfolder was created to store obtained images). The sub-
folders were divided into training, test and validation set. Finally,
images from all training, validation and test folders and their sub-
folders (internet and clinic) were moved to the corresponding
training, validation and test folder.

The described algorithms of pupil and iris detection were
implemented using Python3.6 and the OpenCV library. The soft-
ware for manual iris region correction was written in QT C++.

2.3. Model architecture

In this study, the most common CNN architectures were evalu-
ated in terms of the corneal arcus presence classification problem
including Inception v3, ResNet-50 and VGG-16. An overview of the
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Fig. 2. Simplified diagram of iris detection and isolation.

Fig. 3. Examples of images included in a dataset, (a) and (d) are original images, (b) and (e) are normalized images with white mask applied, (c) and (f) are normalized images
with black mask applied.
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designs of these models is presented in Fig. 4. The choice of these
models was justified by the models’ performance in the ImageNet
competition. The final layers of the models were experimentally
chosen toobtainbest classification results. Additionally, a batchnor-
malization layer was added before the dense layer. According to
4

Simon et al. (2016), batch normalisation appears to be crucial for
the successful training and convergence of the model. In general,
networks with batch normalisation train faster and converge much
morequickly. Suchanetwork shouldproducemore reliable andcon-
sistent results.

http://mostwiedzy.pl


Fig. 4. Overview of utilized architectures: (a) Inception v3, (b) ResNet 50, (c) VGG-
16.
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2.4. Training the models

A series of experiments were performed to identify the best
models and to establish which dataset should be used to train
our models. Each model was trained for over 100 epochs. The fol-
lowing methods to prevent the overfitting problem were used:
data split (training, validation and test), cross-validation (five
folds), data augmentation, dropout/batch normalization and early
stopping. Using callback functions allowed us to save the weights
when the model was considered the best. Before the training ses-
sion, each dataset was randomly divided into a training set (60%),
a validation set (20%) and a test set (20%). This operation was
repeated five times. It was assumed that the images from a patient
that belongs to the test set can not be present in a training and val-
idation set. Therefore the augmentation procedure was applied
after data split.

The other training parameters were: the Adam optimiser with
an initial learning rate of 0.0001, and the categorical crossentropy
loss function. The accuracy of the CNN-based classification was
compared to the accuracy of a human-based classification per-
formed by our experts (two experts with over 3 years of work
5

experience each, in a FH clinic). Additionally to analyse to role of
the mask applied for a original image a subset of 50 randomly
selected images with mask from the test set were again evaluated
by experts and by the model. All experiments were performed on
an NVIDIA DGX Station platform using Keras (v. 2.2) with a Ten-
sorFlow (v. 1.8.0) back-end. The software to support the experts
during the evaluation process was written in QT C++ (random
image selection, image presentation and GUI widgets to provide
the expert’s feedback).
3. Implementation and testing on data acquired with mobile
phone

In many situations general practitioners, physicians and other
care givers does not have access to professional equipment. With
a dedicated application they can easily acquire image with a
mobile phone and process an image over on-line classification ser-
vice. This allows not only for current disease detection but in a
future also the long term monitoring of changes and differential
analysis. To check this, we designed a simple mobile application
for taking images of the eye, extracting the iris and applying the
mask. The pre-processed images were then transferred to the
machine learning server for classification. Using this application,
24 volunteers (age 33 to 67 yo.) were tested (12 with a CA and
12 without). The images of the iris acquired in this part of the study
were not used during the network training and the evaluating
phases. The application was used for image acquisition in a noisy
environment, but in the future it could be extended to detect and
observe CA changes. The mock-up of the application GUI is pre-
sented in Fig. 5.
4. Results

The metrics that were used in this study for the analysis of the
results are: Recall, Specificity, Precision, F1 score, and Accuracy.

Recall ¼ TP
TP þ FN

ð2Þ

Specificity ¼ TN
TN þ FP

ð3Þ

Precision ¼ TP
TP þ FP

ð4Þ

F1score ¼ 2TP
2TP þ FP þ FN

ð5Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð6Þ

where: TP - true positive, TN - true negative, FP - false positive, FN -
false negative.

First, the selected models were applied on pre-processed
images from original dataset (pre-augmentation procedure).
Table 1 shows the results obtained for images with the white mask
applied while Table 2 presents the results obtained for images with
the black mask applied.

The analysis of the results obtained for the particular network
trained and tested on images with the white mask applied are pre-
sented in Table 3 while Table 4 shows the results obtained for the
networks trained and tested on images with the black mask.

In pursuit of optimal model performance the models were
trained with different learning rate values (0:0001;0:00001 and
0:000001). The values of accuracy function for the trained models
are presented in Figs. 6–8. Although we trained each model five
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Fig. 5. Application demonstrating how to test for the presence of a CA (a) Mock-up (b) Demo application ‘‘TestHiperCam”.

Table 1
Analysis of the results obtained across the utilized network architectures for the original dataset (no augmentation) with the white mask applied.

Model lr. Acc. Recall Spec. Prec. F1

ResNet 10�4 0.88 0.94 0.80 0.86 0.90

Inception 10�4 0.77 0.84 0.68 0.77 0.81

VGG 10�4 0.72 0.77 0.64 0.77 0.77

Table 2
Analysis of the results obtained across the utilized network architectures for the original dataset (no augmentation) with the black mask applied.

Model lr. Acc. Recall Spec. Prec. F1

ResNet 10�4 0.77 0.82 0.7 0.8 0.81

Inception 10�4 0.77 0.82 0.70 0.80 0.81

VGG 10�4 0.75 0.82 0.67 0.77 0.79
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times, for further analysis, we selected the ones with the highest
accuracy.

Further, we juxtaposed the best obtained accuracy of all five
training sessions for all tested models. The values of Accuracy,
Recall, Specificity, Precision and F1 score obtained for the different
configurations of the models are presented in Tables 3 and 4. One
of the challenges related to the classification approach based on a
neural network is to avoid false classification results based on
inappropriate image features. In this case, we tried to design a
Table 3
Analysis of the results obtained across the utilized network architectures for the augment

Model lr. Acc. Rec

ResNet 10�4 0.92 0.9

ResNet 10�5 0.93 1.0

ResNet 10�6 0.92 0.9

Inception 10�4 0.85 0.9

Inception 10�5 0.83 0.9

Inception 10�6 0.81 0.8

VGG 10�4 0.81 0.8

VGG 10�5 0.81 0.9

VGG 10�6 0.81 0.8

6

model that will classify images based on the presence of a specific
medical condition (corneal arcus). To verify if the trained model is
not sensitive only on image quality, we calculated the signal to
noise ratio (SNR) for each image in the dataset. The results are pre-
sented in Fig. 9, 10 and Table 7. For comparison, we also calculated
the average SNR and standard deviation (std. dev.).

Finally, the models that generated the best results were also
tested on a set of iris images acquired from 24 volunteers and
never used during the network training and evaluating phases.
ed dataset with the white mask applied.

all Spec. Prec. F1

7 0.85 0.9 0.93

0.85 0.89 0.94

8 0.85 0.89 0.93

5 0.75 0.81 0.87

4 0.73 0.78 0.85

6 0.74 0.82 0.84

8 0.73 0.8 0.84

0.7 0.77 0.83

7 0.74 0.83 0.85

http://mostwiedzy.pl


Table 4
Analysis of the results obtained across the utilized network architectures for the augmented dataset with the black mask applied.

Model lr. Acc. Recall Spec. Prec. F1

ResNet 10�4 0.9 0.97 0.81 0.86 0.91

ResNet 10�5 0.9 1.0 0.8 0.85 0.91

ResNet 10�6 0.89 0.97 0.8 0.85 0.91

Inception 10�4 0.84 0.9 0.76 0.83 0.87

Inception 10�5 0.84 0.95 0.73 0.79 0.86

Inception 10�6 0.81 0.89 0.72 0.79 0.84

VGG 10�4 0.84 0.87 0.78 0.86 0.87

VGG 10�5 0.85 0.95 0.74 0.79 0.86

VGG 10�6 0.8 0.89 0.71 0.78 0.83

Table 5
Analysis of the results obtained across the utilized network architectures for a dataset simulating a ”real life” scenario with the white mask applied.

Model lr. Acc. Recall Spec. Prec. F1

ResNet 10�5 0.88 1.0 0.8 0.75 0.86

Inception 10�4 0.88 1.0 0.8 0.75 0.86

VGG 10�4 0.83 0.79 0.9 0.92 0.85

Fig. 6. Training and validation accuracy for compared models trained with learning
rate lr = 0.0001.

Fig. 7. Training and validation accuracy for compared models trained with learning
rate lr = 0.00001.

Fig. 8. Training and validation accuracy for compared models trained with learning
rate lr = 0.000001.

Fig. 9. Graphic presentation of SNR values calculated for sample images from a
training set divided into two classes: ‘‘CA class” (blue) and ‘‘NO CA class” (red).
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These images were pre-processed and duplicated to create two
datasets, one for the white mask and one for the black mask appli-
cation. The analysis of the obtained results is presented in Fig. 5 for
the images with the white mask and 6 for the images with the
black mask.
7

To identify if the CNN model is classifying based on the correct
features (the presence of a corneal arcus), we checked Class Activa-
tion Maps for all of the images acquired using the mobile applica-
tion. This technique allows the scores associated with an output
class to be visualised - the features the trained model is focusing
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Fig. 10. Graphic presentation of SNR values calculated for sample images from a
test set divided into two classes: ‘‘CA class” (blue) and ‘‘NO CA class” (red).

Table 7
Average SNR and std. dev. values calculated for images for the training and test
datasets.

Training set Test set

CA no CA CA no CA

Average SNR 2.37 2.19 2.43 2.20
Std Dev. 0.68 0.50 0.57 0.47
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on (Kwaśniewska et al., 2017; Selvaraju et al., 2016). Fig. 11 shows
what part of the images has activated the neurons of a particular
network.

In most cases, the corneal arcus is easy to recognize by an
expert. However, we wanted to compare the results of the classifi-
cation performed by experts and by the trained CNN. Likewise, the
images included in the dataset were also geometrically normalised.
The image mask was implemented to focus on the iris region.
Fig. 12 shows the comparison of the accuracy between the better
expert and the chosen model.
5. Discussion

One of the reasons that familial hypercholesterolemia is under-
diagnosed among the population is that it relies on a blood choles-
terol level test, which in Europe is not standard among patients
under 40 years old (Mach et al., 2020). The presence of a corneal
arcus does not unequivocally indicate that the patient has familial
hypercholesterolemia, but it is considered to be one of the indica-
tors of this disease (Ogura et al., 2016; Pajak et al., 2016; Fernández
et al., 2007). The hypothesis of conducted research was quite sim-
ilar that the distinctive part of FH patients also have developed a
corneal arcus. Earlier studies focused on the detection of a corneal
arcus have been mainly based on hand-crafted features (e.g. colour
features) (Kumar and Gunasundari, 2016; SV and Gunasundari,
2018). There were also examples to implement such algorithms
in the form of a mobile application. Some of these papers clearly
indicated that the future of corneal arcus detection lies with
machine learning (Alhasawi et al., 2018). In this paper, we applied
VGG16, ResNet and Incetion v3-based models to the problem of
corneal arcus classification. These architectures proved to be suc-
cessful on image classification tasks. Their models, pre-trained on
the ImageNet dataset, can be easily used for fine-tuning and trans-
fer learning. It was very helpful at the early stage of this project
when we just started to collect the samples to our dataset. It must
be underlined that the process of building such a dataset is very
time consuming. Despite that fact we were able to fine-tuned these
Table 6
Analysis of the results obtained across the utilized network architectures for a dataset sim

Model lr. Acc. Rec

ResNet 10�4 0.83 0.7

Inception 10�4 0.75 0.7

VGG 10�4 0.79 0.8
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networks and start investigate which architecture (sequential or
the one with ”building blocks”) can produce better results. More-
over, these architectures are suitable for conversion to the models
that can be deployed in mobile application. To train the classifier,
we built a dataset that is, before data augmentation, more than
two times larger then the dataset utilised by (Kumar and
Gunasundari, 2016; SV and Gunasundari, 2018; Nasution and
Kusuma, 2009). We also developed a deep learning algorithm for
CA detection as well as a basic mobile application. The small num-
ber of patients diagnosed with hypercholesterolemia limits the
possibility of enrolling these patients into a study on corneal arcus
detection. The dataset was augmented by rotating all of the
images, which simulated different special locations of corneal
arcus. Moreover, we created our dataset based on images acquired
in a similar way to those taken with a hand-held camera or smart-
phone (close proximity to the eye).Therefore the processed images
are not a high resolution images that can be acquired from high
class medical devices. The intention is, that these images are sim-
ilar to the images every general practitioner (care giver or patient)
can take with his personal device. The models presented in this
paper have proven to be very successful in medical applications
solving classification problems. However, these models are usually
applied on a dataset acquired from professional medical equip-
ment whose solely purpose is to capture precise medical images
such as retinal images (Yu et al., 2017). In this paper, we utilized
popular models on images captured by regular phone cameras in
very unpredictable conditions. Photographic images taken by a
smartphone or hand-held camera are versatile in terms of resolu-
tion, zoom and lightning. All of these factors can influence the clas-
sification process, making it quite challenging. Even though there
are databases containing iris images (Proença et al., 2009), it is dif-
ficult to find a dataset that corresponds to our dataset. In this
study, we focused on the practical application and the possibility
of using neural networks in a real-life application for CA screening.
Reducing distortion in the images included in our dataset was
desired. Therefore we decided to apply masks that cover the irrel-
evant parts of the image. We evaluated the performance of the uti-
lized networks on images covered with white and black masks. The
results are presented in Figs. 6–8 as well as in Tables 3 and 4. We
tried to minimize validation loss by changing the initial learning
rate. After all of this, we came to the conclusion that in this partic-
ular case, the increase of the learning rate does not produce better
results in terms of validation loss. We decided to assess the net-
works by obtained accuracy and F1 score and therefore in the final
test performed on the images acquired from 24 volunteers, a lim-
ited number of evaluated network models and configurations was
used. The results from Tables 3–5 suggest that using the ResNet-
based models produces the best results. We decided to evaluate
ulating a ”real life” scenario with the black mask applied.

all Spec. Prec. F1

9 0.9 0.92 0.85

5 0.75 0.75 0.75

2 0.77 0.75 0.78
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Fig. 11. Image of an eye with a corneal arcus detected. The ground truth images, with the corneal arcus marked by an expert are presented in (a,b,c) while the corresponding
Class Activation Maps for the trained models are presented in (d,e,f) for VGG (white mask); (g,h,i) ResNet (white mask); and (j,k,l) Inception (white mask).
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the networks using the Class Activation Matrix approach. The
results presented in Fig. 11 show that the results produced by
the Inception-based model are most consistent with the ground
truth images, but only when the white mask is applied. On the
other hand, the ResNet-based model although it showed high accu-
racy and F1 score, seems to make its decision based on the wrong
features. However when it comes to images covered with the black
mask, the ResNet architecture produces better results. In general,
the best results can be obtained when the white mask is applied,
as the results obtained on images acquired with the mobile appli-
cation are slightly better for images covered with the white mask.

Due to the specific character of the problem and the dataset it is
difficult to compare our findings to other similar research. In they
work (Kumar and Gunasundari, 2016; SV and Gunasundari, 2018
and Nasution and Kusuma, 2009) reports nearly 0.96 and 0.93
accuracy of corneal arcus detection respectively. It has to be under-
9

line though that theses research focused on detecting arcus senilis
and even cataract (features that are very distinctive eye condition
easily noticed even by untrained personnel). In case of our studies
we focused on detecting arcus juvenilis that is less distinctive and
therefore more difficult to detect. We have made every effort to
build the dataset used in this study based mostly on the images
with arcus juvenilis. The feature based approach may provide bet-
ter results for small datasets but its performance can decrease
when introduced to new slightly different data (like early stage
of corneal arcus). The advantage of using neural network over fea-
ture based approach is that the network can be re-trained to new
data even if they will slightly differ from initial core of the data
(different stages of corneal arcus). The performance of the designed
network was compared to the performance of experts. Although
the data presented in Fig. 12 suggest that the CNN model classifies
with a higher level of accuracy than experts (0.98 compared to
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Fig. 12. Confusion matrix for a classification performed by, (a) human expert (b) chosen model.
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0.90), it should be underlined that the experts were asked to make
a decision based on the pre-processed data (the same images that
the CNN model was trained on). The accuracy of corneal arcus
detection was higher, nearly 100% accurate, when the specialist
was presented with the whole image of the eye (not within the
mask). A future iteration of the model might benefit from process-
ing the entire eye (including the iris and sclera).

6. Conclusions

In our work, we showed another application where a CNN-
based model can be successfully utilised to accurately detect the
presence of an illness. Although using a CNN for object (or feature)
detection is not original, the application of a CNN for corneal arcus
classification in images has not been previously reported. The prac-
tical aim of this project was to design a mobile application that will
help detect the presence of a CA. Like it was mentioned before, in
many situations physicians and other care givers does not have
access to professional equipment. Dedicated application will pro-
vide service for instant assessment of a CA presence but more
importantly it will allow the long term monitoring of its changes
and possibility of differential analysis. Designing the application
that can help in distance diagnosis of potential disease has a grate
importance in all situations were access to health care and special-
ists is limited. Moreover, we have evaluated the most popular net-
works in terms of the features that activated the neurons in each
tested model. It is worth mentioning that selected machine learn-
ing models can be deployed on mobile device or as a web service.
We also showed that, generally it is better to use a white mask
when covering irrelevant part of the image, at least for corneal
arcus classification. Although the dataset was larger than in previ-
ous studies, it still needs to be enlarged for future deep learning
applications. However, the obtained high accuracy values and high
correlation with the decisions of experts are satisfying, and consti-
tute a good foundation for further studies. Currently, we are work-
ing on enlarging the dataset with new CA cases. The enlarged
dataset will allow further studies focused on corneal arcus localisa-
tion, and classification of the different CA stages. Creating an algo-
rithm that classifies the medical condition with high accuracy
provides great potential for screening toward a disease such as
familial hypercholesterolemia, and to hopefully reduce the number
of undiagnosed patients.
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