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Abstract: Accounting for manufacturing tolerances is an essential part of a reliable microwave design process. Yet, 
quantification of geometry and/or material parameter uncertainties is challenging at the level of full-wave electromagnetic 
(EM) simulation models. This is due to inherently high cost of EM analysis and massive simulations necessary to conduct the 
statistical analysis. In this paper, a low-cost and accurate yield estimation procedure for compact microwave couplers is 
proposed. Our technique involves variable-fidelity electromagnetic (EM) simulation models, as well as fast surrogates 
constructed using a response feature approach. In order to improve the computational efficiency of the analysis, the primary 
surrogate is obtained from the characteristic points of the low-fidelity model and, subsequently, corrected using a single 
evaluation of the high-fidelity model. Combination of both methods results in an extremely low cost of yield estimation being 
just a few high-fidelity EM analyses. For the sake of demonstration, a compact hybrid rat-race coupler operating at 1 GHz is 
considered. Yield estimation is carried out under several scenarios concerning various probability distributions of the 
geometry parameter deviations. Reliability of the approach is verified by comparing the results with direct Monte Carlo 
analysis and single-fidelity feature-based yield estimation. 

1. Introduction

Typical microwave design procedures or optimization

methods used therein (e.g., [1], [2]), as well as vast majority 

of novel topologies of particular components and devices 

(filters [3], couplers [4], power dividers [5], etc.) aim at 

producing so-called nominal designs. This means that 

geometry and material parameters are assumed, upon 

prototyping, to feature the values they were designed for. 

Potential deviations due to the fabrication tolerances or other 

uncertainties (e.g., the lack of knowledge of the actual value 

of substrate dielectric permittivity) are neglected. Obviously, 

the tolerances may play a major role in the actual system 

performance. Consequently, quantification of these effects, 

both aleatory (or pertinent to manufacturing deviations) and 

epistemic (e.g., related to limited knowledge of the operating 

conditions or the computational model utilized to represent 

the system), is critical from the point of view of adequate 

assessment of the design robustness. In robust design [6]-[9], 

as opposed to nominal design, the purpose is not to simply 

improve the values of given performance figures as much as 

possible but to maximize the probability of satisfying given 

design specifications under the assumed distributions of the 

tolerances. Various techniques have been developed to carry 

out robust design, under different names and sometimes 

slightly different objectives (tolerance-aware design, design 

centering, yield-driven design [10], [11]).  

The fundamental component of robust design 

algorithms is statistical analysis [12]-[15]. The goal of it may 

be determination of the statistical moments of the system 

response outputs assuming certain probability distributions of 

the input parameters (and/or operating conditions) [15]. The 

objective may also be estimation of the yield, which is 

probability of satisfying performance requirements imposed 

upon the system, again under the assumed manufacturing 

tolerances and other uncertainties. Conventional methods 

such as Monte Carlo (MC) analysis become problematic if 

the structure of interest is evaluated using full-wave 

electromagnetic (EM) simulation. This is due to the high 

computational cost of massive EM evaluations necessary. In 

particular, the Monte Carlo analysis is slowly convergent so 

that anything between a few hundred to a few thousands of 

random samples are necessary for reliable yield estimation. A 

worst-case analysis is a possible workaround [16], however, 

it normally provides overly pessimistic results. Nowadays, 

computational speedup is usually achieved by means of 

surrogate models such as response surface approximation 

(RSA) one [17], or polynomial chaos expansion [14], [18]. At 

the same time, the issues related to dimensionality of the 

parameter space, can be addressed to certain extent by 

utilizing techniques such as principal component analysis 

(PCA) [19] or space mapping [20], [21]. 

Yet another approach, which allows for addressing both 

the problem of response nonlinearity and design space 

dimensionality, is utilization of so-called response features 

[22]. It is applicable in situations where the response of the 

component of interest has a well-defined structure (e.g., 

narrow-band or multi-band antennas, microwave filters, etc.). 

Feature-based statistical analysis of microwave filter has been 

demonstrated in [22]. The key factor here is that 

reformulating the surrogate modelling problems in terms of 

appropriately defined characteristic points permits 

“smoothing out” the functional landscape of the component 

response. This results in a significant reduction of the number 

of training data points necessary to construct the surrogate. 
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The purpose of this work is to advance the feature-based 

statistical analysis into a variable-fidelity framework, where 

the surrogate is primarily constructed using the data from the 

low-fidelity EM model, subsequently corrected by means of 

sparsely sampled data from the high-fidelity model. Assuming 

sufficient correlation between EM simulations of various 

fidelities (which is normally the case, especially if both models 

are evaluated using the same solver), the surrogate model is 

reliable yet established at much lower computational cost as 

compared to single-fidelity framework. As a result, the yield 

estimation can be realized considerably faster. For the sake of 

demonstration, a compact equal split rat-race coupler operating 

at 1 GHz is considered. The yield estimation is carried out 

under various scenarios concerning probability distributions of 

manufacturing tolerances. The computational cost of the 

process corresponds to only less than three EM simulations of 

the coupler at high-fidelity level of analysis. At the same time, 

the accuracy is satisfactory, as confirmed through 

benchmarking with both direct EM-based Monte Carlo and 

single-level feature-based analyses. The main original 

contributions of the work include: (i) incorporation of variable-

fidelity EM simulations into the statistical analysis framework 

resulting in dramatic reduction of the computational cost of the 

process, (ii) correlation analysis of the low- and high-fidelity 

model feature point coordinates resulting in the development 

of the appropriate type of correction technique for the former, 

and (iii) demonstrating of the proposed concept on the 

challenging real-world design case study. 

2. Response Features for Microwave Couplers 

In this section, we briefly recall the concept of feature-

based analysis, define response features for microwave 

couplers as well as illustrate the benefits of formulating the 

statistical analysis problem at the level of feature points rather 

than original responses (here, S-parameter characteristics). 

 

2.1. Statistical Analysis Using Response Features 
 

Statistical analysis is carried out to account for 

perturbations of geometry and material parameters due to 

manufacturing tolerances. These are quantified using the 

assumed probability distributions, typically Gaussian or 

uniform. For many types of microwave structures, the system 

responses are highly nonlinear and therefore difficult to 

handle even locally (e.g., when constructing auxiliary 

surrogates). A feature-based framework proposed in [23] 

suggested reformulating the original design problem with the 

objective function defined at the level of frequency 

characteristics ([23] focused on solving optimization tasks) in 

terms of appropriately defined characteristic points of the 

system response. This leads to a reduced nonlinearity of the 

functional landscape under consideration, and, consequently, 

computational savings. Later, the feature-based approach has 

been successfully applied to a statistical analysis of 

microwave filters [22]. 

  

2.2. Response Features of Microwave Couplers 

 

In this paper, the class of microwave structures of interest 

are couplers. One of the challenges is the necessity of handling 

several performance figures such as operating frequency f0, 

bandwidth B (typically at the –20 dB level for matching and 

isolation characteristics), as well as power split (i.e., difference 

of the transmission responses dS = |S31| – |S21| at f0). A typical 

S-parameter characteristics of a coupler, here optimized for f0 

= 1 GHz, are shown in Fig. 1. The same figure also shows the 

response features which are defined to permit accounting for 

the aforementioned design requirements. In practice, the 

characteristic points are extracted from the original responses 

through post-processing. 

 

2.3. Advantages of Feature-Based Approach 

 

The primary benefits of using response features can be 

observed by analysing the variability of the original coupler 

responses (S-parameters vs. frequency) and the characteristic 

points as shown in Fig. 2. As indicated in Fig. 2(b), the 

dependence of the feature point coordinates on the geometry 

parameters is much smoother and only weakly nonlinear. This 

enables a possibility of constructing accurate surrogate models 

using a small number of training samples. At the same time, 

feature-based models carry sufficient information to account 

adequately for the performance specifications. 

3. Yield Estimation by Variable-Fidelity Response 

Features 

In this section, the yield estimation technique using 

variable-fidelity response features is explained in detail. 

Section 4 provides a verification case study. 

 

3.1. Yield Estimation 

 

The aggregated vector of feature points, i.e., the vector 

containing both their frequency and level coordinates, will be 

denoted by Ff(x). The essential coupler performance figures—

here, the bandwidth B(Ff(x)) and the power split ratio 

dS(Ff(x))—can be readily extracted from Ff(x). The design 

requirements are imposed through the maximum power split 

error dSmax and the minimum accepted bandwidth Bmin. Given 

these, the estimated yield can be found as  

 
1 ( )

1
( )

N k

k
Y N H


  x     (1) 

 

where H(x) = 1 if |dS(Ff(x))|  dSmax and B(Ff(x))  Bmin; H(x) 

= 0 otherwise. The set x(k) = x(0) + dx(k), k = 1, …, N, is a sample 

set in which x(0) stands for a nominal design, whereas dx(k) are 

random deviations allocated according to the assumed 

probability distribution. 

 

3.2. Response-Feature Surrogates 

 

The primary way of reducing the computational cost of 

statistical analysis is to perform yield estimation using an 

auxiliary surrogate model s(z) constructed at the level of 

response features, where z stands for a vector of perturbations 

with respect to the nominal design x(0). The model is a second-

order polynomial of the form (here, [ ]2 is understood 

component-wise) 
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Fig. 1. S-parameters of a microwave coupler along with 
response features corresponding to –20 dB bandwidth B, 
operating frequency f0, and the power split. Here, a symmetric 
part of the bandwidth is considered as marked using the thick 
horizontal line. The level features L1 (S21) and L2 (S31) are 
marked by (○). Frequency features (from the left) B1, B2, B3, 

and B4 are marked by (). Note an overlap between some of 
the points, which is due to equal power split for the particular 
design shown here. 

 
a 

 
b 

Fig. 2. Variability of the S-parameters and selected response 
feature point coordinates when evaluating the coupler response 
along a selected line segment in the design space tx(1) + (1–t)x(2), 

parameterized by 0  t  1:  
(a) S-parameters,  
(b) selected response features (top: frequency, bottom: level 
coordinates). 

 
2

(0) (0)
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The model coefficient matrix A = [a0 A1
T A2

T]T is obtained by 

solving the following regression problems  

 

s(x(0) + xB
(j)) = F(x(0) + xB

(j))      (3) 

 

where z = xB
(j), j = 0, 1, …, NB, are the base designs. Here, a 

star distribution design of experiments is utilized [24] with 

xB
(0) being a zero vector and xB

(j) = d∙e(j) for even j and xB
(j) = 

–d∙e(j) for odd j. Here, e(j) are the standard Rn basis vectors of 

the form e(j) = [0 … 0 1 0 … 0]T with 1 on the jth position; d 

is the maximum assumed parameter deviation (e.g., 

0.05 mm). The rationale behind selecting the particular 

analytical form of the surrogate (2), i.e., low-order 

polynomial is twofold: (i) only slightly non-linear 

dependence of feature point coordinates on geometry 

parameters of the circuit under analysis (cf. Section 2.2) only 

requires to account for main variable interactions and 

curvatures, especially that the analysis in conducted in a small 

vicinity of the nominal design; (ii) the considered surrogate 

can be established using a small number of training data 

samples, here, 2M + 1 (with M being the number of structure 

parameters) which dramatically reduces the cost of analysis 

compared to EM-based MC, and well corresponds with the 

factorial design of experiments strategy (specifically, the 

mentioned star distribution). 

 

3.3. Variable-Fidelity Surrogates 

 

In this paper, in order to achieve an additional speedup, 

the feature-based surrogate constructed at the level of the 

high-fidelity EM model is replaced by the corresponding 

model obtained based on the low-fidelity EM simulation data, 

denoted as Fc(x). In practice, the low-fidelity model can be 

made several times faster than the high-fidelity one by 

reducing discretization density of the structure. Clearly, this 

leads to a certain loss in accuracy: usually both the frequency 

and level shifts can be observed between the low- and high-

fidelity model responses. Despite these discrepancies, the 

models are well correlated as illustrated in Fig. 3 for selected 

(random) pairs of designs.  

Before the surrogate model (2) constructed from the 

low-fidelity feature point vectors can be used for yield 

estimation, it has to be corrected to account for the model 

discrepancies. Here, the correction is implemented using a 

single high-fidelity model evaluation at the nominal design. 

Consequently, it is of a zero-order type and takes a form of  

 
(0) (0)( ) ( ) ( ) ( )c f c

    s z s z F x F x     (4) 

 

The particular choice of response correction term originates 

directly from the correlation analysis presented in Fig. 3. 

Because the changes of the feature point coordinate are very 

similar for both the low- and high-fidelity model throughout 

the design space, the model correction only needs to 

incorporate the model bias, specifically, the differences 

between the low- and high-fidelity model characteristic 

points at a particular design (most conveniently, the centre of 

the surrogate model domain, i.e., x(0)). Consequently, the term 

Ff(x(0)) – Fc(x(0)) arises naturally. Graphical illustration of the 

correction mechanism can be found in Fig. 4. As yield 

estimation is performed by running the MC analysis on the 

surrogate, its computational cost is only one evaluation of the 

high-fidelity model and 2n evaluations of the low-fidelity 

one. For example, if the simulation time ratio between the 

models is five and n = 10, the speedup can be as high as 76 

percent (the cost of analysis at the level of the surrogate can 

be neglected). 
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4. Case Study and Results 
 

In this section, the methodology for rapid variable-

fidelity-model-based yield estimation is validated using a 

compact hybrid rat-race coupler, operating at 1 GHz. Several 

scenarios are considered concerning probability distributions 

of manufacturing tolerances. Comparison with direct Monte 

Carlo analysis is also provided. 

 

4.1. Miniaturized Rat-Race Coupler 

 

Consider a compact equal-split rat-race coupler (RRC) 

shown in Fig. 5 [25]. The coupler is implemented on a Rogers 

RO4003 substrate (h = 0.813 mm, εr = 3.38). There are eight 

independent parameters describing the RRC geometry x = [w1 

l1 l2 l3 w2 l4 l5 l6]T, whereas dimension w0 = 1.7 is set constant 

to ensure 50-ohm input impedance. The dependent variables 

are y = [w3 w4]T, where w3 = 20w1+19l1 and w4 = 6w2 + 7l5. 

All dimensions are in mm. The EM simulation models are 

implemented in Keysight Momentum: high-fidelity model 

(5600 mesh cells, simulation time ~5 min), low-fidelity 

model (450 cells, ~ 25 seconds). 

 

4.2. Yield Estimation and Benchmarking 

 

The nominal design of the RRC is x(0) = [0.41 0.20 2.19 

1.88 0.22 0.43 5.01 7.18]T mm. Design specifications are set to 

dSmax = 0.2 dB and Bmin = 100 MHz.  

 

 
Fig. 3. Correlation between response features of the high- (left 

bars) and low-fidelity model (right bars). Shown are differences 

between selected feature point coordinates (both frequency and 

level; for definition see Fig. 1) for several pairs of randomly 

generated designs.  

 

In order to carry out comprehensive verification, we 

consider six cases, different in terms of the probability 

distributions of geometry parameter deviations (all assumed 

to be independent). Three cases are with uniform distributions 

and maximum deviations of 0.02 mm, 0.03 mm, and 0.05 

mm, respectively. The other three cases are with Gaussian 

distributions with zero mean and variances of 0.007 mm, 0.01 

mm, and 0.017 mm, respectively. The numerical results are 

gathered in Table 1. Figures 6 and 7 show the RRC 

comparison of direct EM-based yield estimation and feature-

based analysis for the selected cases. 

 

 
Fig. 4. Example responses of the low- (- - -) and high-fidelity 

model (—), corresponding feature points (○), as well as feature 

point correction vectors Ff(x) – Fc(x) marked using thick lines. 

 

 
Fig. 5. Geometry of the compact microstrip RRC [25]. 

 

Table 1: Yield Estimation Results for Compact RRC 

Case 
Design Specs/ 

Distribution1 

Yield Estimation 

Method 

Estimated 

Yield 

CPU 

Cost2 

I 

dSmax = 0.2 dB 

Bmin = 100 MHz 

U(0.02 mm) 

This work 0.86 2.5 

High-fidelity FBA3 0.87 17 

EM-based MC 0.82 500 

II 

dSmax = 0.2 dB 

Bmin = 100 MHz 

U(0.03 mm) 

This work 

High-fidelity FBA3 

EM-based MC 

0.56 

0.56 

0.58 

2.5 

17 

500 

III 

dSmax = 0.2 dB 

Bmin = 100 MHz 

U(0.05 mm) 

This work 

High-fidelity FBA3 

EM-based MC 

0.18 

0.20 

0.28 

2.5 

17 

500 

IV 

dSmax = 0.2 dB 

Bmin = 100 MHz 

G(0.007 mm) 

This work 

High-fidelity FBA3 

EM-based MC 

0.98 

0.98 

0.96 

2.5 

17 

500 

V 

dSmax = 0.2 dB 

Bmin = 100 MHz 

G(0.01 mm) 

This work 0.83 2.5 

High-fidelity FBA3 0.84 17 

EM-based MC 0.81 500 

VI 

dSmax = 0.2 dB 

Bmin = 100 MHz 

G(0.017 mm) 

This work3 0.59 2.5 

High-fidelity FBA3 0.59 17 

EM-based MC 0.63 500 
1 Probability distribution of parameter deviations: U(d) – uniform with maximum 

deviation d, G() – Gaussian with zero mean and variance . 
2 Estimation cost in number of high-fidelity EM analyses. Feature-based 

yield estimation utilizes N = 5000 random samples. 
3 FBA – feature-based analysis. 

w1

l3
l5

l1

l2

l6

l4w3

w4

w01 2

3 4

w2
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Fig. 6. Monte Carlo analysis of the RRC of Fig. 5 using EM 
simulations (gray plots) and variable-fidelity response feature 
surrogate model (circles). The nominal design shown black. 
Shown are plots for Case I of Table 1. 

 
Fig. 7. Monte Carlo analysis of the RRC of Fig. 5 using EM 
simulations (gray plots) and variable-fidelity response feature 
surrogate model (circles). The nominal design shown black. 
Shown are plots for Case V of Table 1. 
 
 
The first observation is that the variable-fidelity response-
feature procedure allows for extremely low cost of yield 
estimation (here, corresponding only to about 2.5 EM 
simulations of the RRC at high-fidelity level) even though the 
time evaluation ratio between the high- and low-fidelity model 
is only around twelve. At the same time, the accuracy of yield 
estimation using the proposed method (yield estimated using 
N = 5000 random samples) is very good as confirmed by 
comparison with direct Monte Carlo analysis (N = 500 
samples) and high-fidelity feature-based estimation. 

5. Conclusion 
 

The paper introduced a technique for rapid yield 

estimation of miniaturized microwave components. The 

proposed methodology exploits auxiliary response-feature 

surrogates constructed using data obtained from low-fidelity 

EM simulation model, corrected by means of a single 

evaluation of the high-fidelity EM model of the coupler. The 

combination of these two concepts permits yield estimation at 

extremely low cost of just a few EM analyses (less than three 

for the considered example of a rat-race coupler). At the same 

time, the estimation accuracy is very good as confirmed by 

comparison with two independent methods, direct Monte 

Carlo analysis and single-level feature-based technique. The 

topic of the future work will be extension of the proposed 

technique into a yield-driven design optimization framework. 
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