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Abstract

Identifying different vehicle types can help manage
traffic more efficiently, reduce congestion, and improve
public safety. This study aims to create a classification
model that can recognize vehicle types based on the
sound of passing vehicles. To achieve this, a database
of raw audio files containing 1763 samples from two
sources was assembled. The time-domain signals
were converted to a time-frequency representation
using the short-time Fourier transform to generate
Mel Spectrograms. Mel-frequency Cepstral Coefficients
(MFCCs) were also generated using the discrete cosine
transform. In our experiments we compared these
approaches. Since the data was imbalanced we applied
online augmentation. Based on the literature review, we
chose a Convolutional Neural Network (CNN) classifier
because it is particularly well suited for analyzing
large datasets due to its automatic feature extraction,
parameter sharing and sparsity. The results showed that
Mel Spectrograms were more effective for audio data
preprocessing in this particular use case, achieving the
highest accuracy of 0.875 and the highest f1-score of
0.877 compared to MFCCs.

Keywords: vehicle type recognition, vehicle type
detection, sound, acoustics, mfcc, mel-frequency
cepstral coefficient, spectrogram.

1. Introduction

Vehicle type detection is a crucial technology in the
traffic scene today. With its ability to identify different
types of vehicles, it can support managing traffic more
efficiently, reducing congestion, and improving public
safety. So far, there are many approaches investigated
for vehicle identification based on different kinds of
signals (shown in Kobiela et al., 2024; Suhao et al.,
2018; Wu et al., 2020, 2022). The most promising
approach for vehicle identification is the one that is
based on acoustic signals since moving vehicles emit
characteristic sounds. Deep learning techniques are the
most used ones (as in H. Chen et al., 2020; Luo et al.,
2021; Wieczorkowska et al., 2018). Amongst them,
the Convolutional Neural Network (CNN) is the most
promising one (used in H. Chen et al., 2020; Dong et al.,
2015; Kurowski et al., 2020). The obtained results are
compared with the second most used model, the Support
Vector Machine (SVM), used in the paper prepared by
Czyżewski et al., 2019. This work is the continuation
of the aforementioned paper in which we focus on
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classification of data coming from multiple different
sensors. To our knowledge, this is a considerably
less explored topic related to acoustic analysis of road
traffic. It is however, an important problem because
merging already existing datasets is one of viable
ways of obtaining datasets large enough to produce
high performing acoustic vehicle type classifiers. We
would like to address aforementioned research gap by
proposing a vehicle type classifier architecture which
can be trained on a heterogeneous dataset comprised of
audio recordings coming from:

• the data used in Kurowski et al., 2020 which
were obtained with a sound probe employing
microphones based on microelectromechanical
systems (MEMS),

• and data from Bazilinskyy et al., 2018 which
was obtained by using a smartphone and a
8-microphone array.

It is also worth mentioning that data from Kurowski
et al., 2020 was collected by recording a real-life road
traffic. Due to this fact, the data contain class imbalance.
In this paper, we propose a simple oversampling-based
approach which could help to mitigate this imbalance.
Knowledge on how to mitigate such a problem is
important especially for researchers and engineers who
intend to design robust machine learning algorithms
which are employing continual, reinforcement and other
machine learning paradigms in which input training data
tend to be imbalanced. Examples of such algorithms
are intrusion detection algorithm for computer networks
employing adversarial reinforcement learning (as in Ma
and Shi, 2021), object detection in very high resolution
remote sensing images (as in X. Chen et al., 2023),
or underwater acoustic target classification (as in Pala
et al., 2023).

2. Background and related work

Today, as a global society, we recognize the
problems of an ever-changing environment and global
warming (Radziszewski et al., 2021). The emission of
greenhouse gases, mainly caused by the use of private
automobiles for transportation, is one of the major
causes of global warming (Romero et al., 2024). In
this view, vehicle recognition is an important and timely
research topic for at least two reasons.

First, it is critical to emissions enforcement,
helping to identify and penalize high-polluting vehicles,
thereby reducing their contribution to global warming
(A. A. Ahmed et al., 2023). It helps law enforcement
identify vehicles that violate environmental regulations,

contributing to the global effort to combat climate
change (L. Chen et al., 2023). Vehicle recognition
helps optimize traffic flow by directing different types
of vehicles to appropriate routes, minimizing overall
emissions in urban areas (Huang et al., 2020). The
data collected by vehicle recognition systems can inform
policy decisions aimed at reducing the environmental
impact of transportation on a global scale.

Second, in light of the Smart Cities research agenda
(Mora et al., 2023), by recognizing vehicle types,
cities can implement differentiated tolls and taxes that
encourage the use of low-emission vehicles, thereby
supporting sustainable development goals (Palomares
et al., 2021). By identifying vehicle types, cities
can better plan and develop infrastructure that supports
sustainable transportation, such as dedicated lanes
for electric vehicles and bicycles (C. Chen et al.,
2020). Such technologies can identify non-compliant
vehicles in low emission zones, ensuring that only clean
vehicles contribute to urban traffic. Besides, the ability
to accurately identify vehicles enables better traffic
management in smart cities, reducing congestion and
associated carbon emissions (L. Zhang et al., 2020). In
addition, vehicle recognition can improve the efficiency
of public transportation systems by prioritizing buses
and electric vehicles, contributing to cleaner air and
more sustainable urban mobility (Ceder, 2021). For
example, recent advances in computer vision technology
are enabling dynamic pricing for parking based on
vehicle type, encouraging the use of smaller, more
fuel-efficient cars and reducing the carbon footprint of
cities.

Having said that, the current literature review aimed
to learn about models used to recognize vehicles by
their sound. Furthermore, it was desired to see the
advantages and disadvantages of those models in the
selected field of interest and also find out what results
should be expected from the used implementation. It
was found that the most common models used in vehicle
type recognition based on sound are CNN, SVM, DNN
(Deep Neural Networks) and LSTM (Long short-term
memory networks), as shown in the Table 1.

Furthermore, these models are often combined to
create more advanced network models and achieve
better results. Through the Systematic Literature
Review (SLR), it was also discovered that extracting
the sound features that go into the network input is
as necessary or even more important than the model
used. Some articles focused on developing a complex
network, while others focused on the best features to
extract from recorded vehicle sound. The last twenty
articles used for data extraction are: (Abdul Rahim
et al., 2011; A. Ahmed et al., 2021; Anwar et al., 2019;
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Becker et al., 2020; H. Chen et al., 2020; Jakubowski
& Jackowski, 2021; Kurowski et al., 2019, 2020; S. Lee
et al., 2017; Li et al., 2020; Luo et al., 2021; Montino &
Pau, 2019; Scarpiniti et al., 2021; Sunu et al., 2018; Vij
& Aggarwal, 2020; L. Wang & Roggen, 2019; Q. Wang
et al., 2021; Wieczorkowska et al., 2018; Wu et al.,
2020, 2022).

Note that the detailed report of the performed
literature review can be found in the attached GitHub
repository.

Table 1: Identified vehicle recognition models and the
number of occurrences of their use in research.

Model Count
Convolutional Neural Network (CNN) 9
Support Vector Machine (SVM) 7
Deep Neural Network (DNN) 7
Long-Short Term Memory (LSTM) 4
Recurrent Neural Network (RNN) 2
k-Nearest Neighbours (k-NN) 2
Gated Recurrent Unit (GRU) 1
Probabilistic Neural Network (PNN) 1
Siamese Neural Network (SNN) 1
Hybrid: S-CRNN (CNN + RNN) 1
Hybrid: LSTM+CNN 1
Random Forest 1
Decision tree 1
Naive Bayes 1

3. Input Data

Input data for the project is the raw audio file with
the sound of the approaching vehicle. The dataset
consisted of 1763 samples from two sources gathered by
Kurowski et al., 2020 and by Bazilinskyy et al., 2018.
The dataset was partially already tagged and partially
self-tagged by the authors of this article. Raw audio
files were cut into fixed 6 seconds length recordings.
Most of the sample length were about 4 seconds, as
shown in Figure 1, so the additional time was filled
with silence up to 6 seconds for every sample. In
the case of audio samples longer than 6 seconds, the
centre of every audio sound was found, and then +/– 3
seconds of the audio sound center were taken. After data
preprocessing, all the source videos were saved in the
WAV (Waveform Audio Format) shown in Figure 2a, 2b,
2c. WAV is an audio file format that offers lossless audio
quality. Additionally, the video in AVI (Audio Video
Interleave) format of the vehicles was provided (shown
in Figure 2d, 2e, 2f). AVI is a commonly used file
format developed by Microsoft for storing video data.
The video data was used to tag the audio data into one
of the three classes: car, motorcycle or truck. According
to the pilot study, the ”truck” class contained vehicles
such as trucks, buses, and vans.

Figure 1: Histogram of samples duration distribution

To convert signals from the time domain into a
time-frequency representation, there were used the
Short-Time Fourier Transform (STFT), with the aim of
obtaining mel-spectrograms that served as a model input
(as shown in Figure 2j, 2k, 2l). Short-time Fourier
transform is a sequence of Fourier transforms of a
windowed signal. STFT provides the time-localized
frequency information for situations in which frequency
components of a signal vary over time, whereas the
standard Fourier transform provides the frequency
information averaged over the entire signal time interval
(Kehtarnavaz, 2008). Second data transformation was
made using Discrete Cosine Transform (DCT) in order
to create Mel-frequency cepstral coefficients (MFCCs,
shown in the Figures 2g, 2h, 2i). Both representation
types (mel-spectrograms and MFCCs) were used as
model input. The main problem with the data was
the imbalanced number of learning examples for every
class - 1174 cars, 467 trucks and 122 motorcycles. It
was decided to use online data augmentation techniques
to upsample fewer classes (truck and motorcycle).
Augmentation consisted of time shift: random shift of
the raw input audio by a selected time from a range
between 0 and 2 seconds. Change was made randomly
back or forth. As a result, the fixed 6 seconds audio
window contained more silence at the beginning or end
of the window. Augmentation also consisted of masking
out mel-spectrograms. Vertical black bars masked the
selected time of the record, while horizontal black bars
masked selected frequencies.

4. Research design and pilot study

Pilot study experiments were executed on a
small subset of data. Experiments were conducted
sequentially, one after another, starting from choosing
the model type. The best approach from the previous
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(a) sample car waveplot (b) sample truck waveplot (c) sample motorcycle waveplot

(d) sample car (screenshot from video) (e) sample truck (screenshot from video) (f) sample motorcycle
(screenshot from video)

(g) sample car MFCC (h) sample truck MFCC (i) sample motorcycle MFCC

(j) sample car mel-spectrogram (k) sample truck mel-spectrogram (l) sample motorcycle mel-spectrogram

Figure 2: Sample car, track and motorcycle data processing: from audio and movie tagging to MFCC and
mel-spectrograms
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phase was used for the next experiment. Each training
was executed ten times to ensure the excellent reliability
of the experiments. Results in each epoch were the
mean value of 10 executions. During all experiments,
the number of learning epochs was set to 500 with an
early stopping parameter equal to 25 epochs (according
to validation loss). The research questions were:

(a) What is the most optimal architecture type?
Choose from Dense, 2x Dense, 3x Dense,
Convolutional, 2xConvolution, 3xConvolutional,
Dense+Convolutional.

(b) What is the optimal number of kernels (units) in
each layer? Choose from 10, 30, 50, 80, 100.

(c) What is the best optimizer? Choose from
RMSprop, Adadelta, Adagrad, Adam, SGD, Ftrl,
Nadam, and Adamax.

(d) What is the best activation function? Choose from
tanh, sigmoid, ReLu, softmax.

The best hyperparameters found after experiments
are Adam and RMSprop optimizer (which allows for
reduced training length), ReLu activation function, and
4xCNN architecture with 100 kernels in each layer. It
took, on average, 150 epochs to train the model. A
detailed report about research design and pilot study can
be found in the attached GitHub source code repository.
Final experiments were performed on multiple variants
of data: with and without online data augmentation,
with different numbers of hop length parameter, with
the usage of MFCCs and mel-spectrograms. Models
were implemented using PyTorch and Tensorflow
frameworks to eliminate the framework’s influence and
compare the results achieved. The dataset was divided
into train and test sets using an 80:20 proportion.

5. Model

According to the SLR and pilot study results, the
model of choice was CNN. It was implemented in
both PyTorch and Tensorflow frameworks. CNN is
a Deep Learning algorithm that can take in an input
image (in this case - mel-spectrogram or MFCC),
assign importance (learnable weights and biases) to
various aspects or objects in the image, and be able
to differentiate one from the other. The preprocessing
required in a ConvNet is much lower than other
classification algorithms. While in primitive methods,
filters are hand-engineered, with enough training,
ConvNets can learn these filters or characteristics (Saha,
n.d.). The chosen architecture of the model can be seen
in Table 2. It consists of 25,147 trainable parameters

(also total parameters), and the estimated total size of
the architecture is 2.92 MB. Output data from the model
is the class of the given audio file. Models return one out
of three classes, where 0 indicates car, 1 indicates truck,
and 2 indicates motorcycle. Details about the model
architecture can be found in the source code repository.

Table 2: CNN model architecture

Layer (type) Output Shape Parameters
Conv2d-1 [-1, 8, 32, 235] 408
ReLU-2 [-1, 8, 32, 235] 0
BatchNorm2d-3 [-1, 8, 32, 235] 16
Conv2d-4 [-1, 16, 16, 118] 1,168
ReLU-5 [-1, 16, 16, 118] 0
BatchNorm2d-6 [-1, 16, 16, 118] 32
Conv2d-7 [-1, 32, 8, 59] 4,640
ReLU-8 [-1, 32, 8, 59] 0
BatchNorm2d-9 [-1, 32, 8, 59] 64
Conv2d-10 [-1, 64, 4, 30] 18,496
ReLU-11 [-1, 64, 4, 30] 0
BatchNorm2d-12 [-1, 64, 4, 30] 128
AdaptiveAvgPool2d-13 [-1, 64, 1, 1] 0
Linear-14 [-1, 3] 195

6. Results

Results obtained by the models are as follows. Table
3, Figures 3 and 4 shows the results for the model with
the usage of mel-spectrograms (the highest values of
metrics), while Table 4 and Figure 5 shows the results
for model with the usage of MFCCs. Table 5 shows
the compared results obtained by Czyżewski et al., 2019
(SVM model).

Table 3: Best model metrics (usage of
mel-spectrograms)

Vehicle Precision Recall F1-score
car 0.94 0.89 0.91
truck 0.75 0.86 0.80
motorcycle 0.70 0.78 0.74
macro avg 0.80 0.84 0.82
weighted avg 0.88 0.88 0.88

Table 4: Second model metrics (usage of MFCCs)

Vehicle Precision Recall F1-score
car 0.89 0.88 0.88
truck 0.66 0.71 0.69
motorcycle 1.00 0.71 0.83
macro avg 0.85 0.77 0.80
weighted avg 0.83 0.83 0.83
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Figure 3: Confusion matrix for the best model (usage of
mel-spectrograms)

Figure 4: Best model accuracy and loss during the
training of the model (usage of mel-spectrograms)

Figure 5: Confusion matrix for the model with the usage
of MFCCs

Table 5: SVM model results (obtained by Czyżewski
et al., 2019)

Vehicle Precision Recall F1-score
car 0.706 0.703 0.704
truck 0.136 0.375 0.200
macro avg 0.421 0.539 0.452

7. Discussion

The Tensorflow framework was more effortless in
the implementation, more user-friendly thanks to Keras
API. Results achieved using both frameworks were
pretty similar, the difference was neglectible. The
results showed the superiority of mel-spectograms over
MFCCs in the given use case (see Tables 3 and 4).
The highest accuracy equal to 0.875, along with the
highest f1-score equal to 0.887 (see Table 3), was
achieved by the model implemented in PyTorch with
the usage of mel-spectrograms and with the augmented
data, although the results obtained by the model without
augmentation were not much lower. As it was decided
to use time shift and masking out with horizontal and
vertical black bars (time and frequency) as augmentation
techniques, we think that better up-sampling methods
are needed. The confusion matrix can provide additional
information about the results (see Figure 3). The model
did pretty well in classifying cars (almost no mistakes,
94% correct answers), while it sometimes mixed tracks
with cars - 75% correct classifications (which is pretty
predictable because tracks, vans and busses were put
into one class). A similar problem occurred with
motorcycles (70% correct classifications) - here, it may
come with too few learning examples (the collection
of cars was much more extensive than the collection
of motorcycles). The learning of the model went as
predicted during the pilot study (see Figure 4). The
model was trained until the validation loss increased
( ≥ 15 epochs). Then, the early stopping worked,
and the saved best model was taken (from the 43rd
training epoch). The comparison of data preprocessing
methods showed that the usage of mel-spectrograms
gives better results (see Table 3) in the data modelling
phase in terms of accuracy and f1-score than the usage of
MFCCs. A described model using MFCC metrics has an
accuracy of 0.83 and f1-score equal to 0.83 (see Table 4).
Obtained results are also shown in the confusion matrix
(see Figure 5). Because of the small support of the
class ”motorcycle”, the confusion matrix (100% correct
classifications) results are unreliable. In comparison to
the SVM model used by Czyżewski et al., 2019, which
obtained macro average accuracy at the level of 0.929

Page 1222

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


and macro average F1-score at the level of 0.452, the
tested solution (CNN architecture) is only 5% lower
in terms of accuracy, but about 43% higher in terms
of F1-score. We hypothesize that mel-spectrograms
provided better performance due to the fact that they do
not focus on periodic structures present in the analyzed
sound spectrum unlike the cepstrum-based MFCCs. It
is likely that while such focus on signal spectrum
periodicity is beneficial for tasks such as speech signal
processing, it may be at the same time detrimental for
classification of acoustic spectra produced by passing
vehicles.

The approach shown in this paper is an example of
a relatively simple way of dealing with the imbalance
present in the training data. Hence, it is likely that
despite of a relatively large size of the input dataset
(comprised of 1763 samples), the imbalance still has
a considerable effect on classification accuracy of less
represented classes. It is a limitation of our study.
However, one should remember that in applications such
as monitoring of real-live road traffic the problem of
data imbalance is often hard to avoid. Therefore, in the
future we would like to investigate more sophisticated
ways of addressing the input data imbalance and
improving the overall performance of the proposed
architecture. Firstly, we would like to train the machine
learning model architecture presented in this paper
on extended version of the dataset described in this
study. This extended dataset which would contain
additional examples for currently underrepresented
classes. Secondly, it is possible to use more advanced
oversampling techniques such as the synthetic minority
oversampling technique (SMOTE) which is described
in detail in e.g. Chawla et al., 2002. The SMOTE
algorithm was successfully employed for tasks such as
classification of imbalanced hyperspectral images (as in
Özdemir et al., 2021) or developing a deep learning
model for voice pathology detection (as in J.-N. Lee
and Lee, 2023). Thirdly, it is also possible to use
different types of advanced data augmentation such as
augmentation employing generative adversarial models
(GANs) or diffusion models. Technique employing
GAN-based augmentation was used in addressing the
task of material characteristics classification with the use
of imbalanced spectral data (as in Chung et al., 2024).
Approach based on diffusion models was successfully
employed for data augmentation for lung ultrasound
images classification (as in X. Zhang et al., 2023).
Finally, there is also a potential to improve the input
features by using self-attention mechanisms. Thanks to
such treatment, the model would be capable of focusing
only on relevant the part of audio frames which may
further improve the vehicle type classification accuracy.

This approach was successfully used in tasks of sound
event detection such as one described in Miyazaki et al.,
2020.

Source code, SLR reports, and data sources
used

Source code for this paper and SLR results
are available at: github.com/DariuszKobiela/
vehicle-type-recognition-based-on-audio-data.
Collected and tagged data sources used for this paper
are available at: www.kaggle.com/datasets/brinkor/
vehicle-type-sound-dataset.
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Czyżewski, A., Kurowski, A., & Zaporowski, S. (2019).
Application of autoencoder to traffic noise

analysis. Journal of the Acoustical Society of
America, 146, 2958–2958.

Dong, Z., Wu, Y., Pei, M., & Jia, Y. (2015). Vehicle
type classification using a semisupervised
convolutional neural network. IEEE
Transactions on Intelligent Transportation
Systems, 16(4), 2247–2256. https://doi.org/10.
1109/TITS.2015.2402438

Huang, Y.-Q., Zheng, J.-C., Sun, S.-D., Yang, C.-F.,
& Liu, J. (2020). Optimized yolov3 algorithm
and its application in traffic flow detections.
Applied Sciences, 10(9), 3079. https://doi.org/
10.3390/app10093079

Jakubowski, J., & Jackowski, J. (2021). Recognition
of moving tracked and wheeled vehicles
based on sound analysis and machine
learning algorithms. International Journal
of Automotive and Mechanical Engineering,
18(1), 8478–. https://doi.org/10.15282/ijame.
18.1.2021.07.0642

Kehtarnavaz, N. (2008). Chapter 7 - frequency domain
processing. In N. Kehtarnavaz (Ed.), Digital
signal processing system design (second
edition) (Second Edition, pp. 175–196).
Academic Press. https : / / doi . org / 10 . 1016 /
B978-0-12-374490-6.00007-6

Kobiela, D., Groth, J., Hajdasz, M., & Erezman, M.
(2024). Vehicle type recognition: A case study
of mobilenetv2 for an image classification task.
Knowledge-Based and Intelligent Information
Engineering Systems: Proceedings of the 28th
International Conference KES2024.
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