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Developing contemporary antennas is a challenging endeavor that requires considerable engineering 
insight. The most laborious stage is to devise an antenna architecture that delivers the required 
functionalities, e.g., multiband operation. Iterative by nature (hands-on topology modifications, 
parametric studies, trial-and-error geometry selection), it typically takes many weeks and requires 
considerable engagement from a human expert. Consequently, only a few possible design options 
concerning the fundamental antenna geometry may be considered. Automated topology rendition 
and geometry parameter optimization are highly relevant, especially from the industrial perspective. 
Therein, reducing time-to-market and limiting the involvement of trained experts is critical. This 
research proposes an innovative procedure for unsupervised development of planar antennas. Our 
method leverages flexible antenna parameterization based on re-sizable elliptical patches. It permits 
the realization of a massive number of geometries of diverse shapes and complexities using a small 
number of decision variables. Computational intelligence methods are employed to conduct antenna 
evolution exclusively based on specifications and possible constraints (e.g., maximum size). Fine-
tuning of the structure geometry is achieved through low-cost local search routines. Our methodology 
is demonstrated by designing several antennas featuring distinct characteristics (broadband, single-, 
dual- and triple-band). The obtained results, supported by experimental data, underscore the 
presented approach’s versatility and capability to render unconventional topologies at reasonably low 
computational expenses. As mentioned earlier, the design process is fully automated without human 
expert involvement.

Keywords Unsupervised design, Antenna parameterization, Machine learning, Design automation, Bio-
inspired optimization

Antennas are the fundamental elements of wireless communication systems (mobile phones, satellite 
communication, internet of things, etc1–4). , and other technologies such as radio-frequency identification, ambient 
energy harvesting, wearable/implantable electronics, medical imaging, to name just a few5–8. Conventional 
design approaches typically begin with existing antenna geometries available in previous generations of 
products, scientific publications, or structures developed using engineer’s insight. Subsequently, modifications 
are made to achieve the required functionality (e.g., circular polarization, multi-band operation). Having a 
rough design, parametric studies are employed9,10, or, recently, rigorous optimization methods such as bio-
inspired techniques enhanced by the response-feature technology11 or multi-objective Bayesian optimization12 
to adjust antenna dimensions, thereby boosting its performance concerning the figures of interest (impedance 
matching, gain, axial ratio). Most development stages, including optimization, use full-wave electromagnetic 
(EM) simulation models13 for evaluation dependability. The literature is replete with optimization strategies, 
specialized in local (e.g., sensitivity-based, derivative-free14–18), global19–29 and multi-objective design30–34, 
and uncertainty quantification (UQ)35–38. Local methods incorporate various gradient-based algorithms14 also 
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based on dedicated fast solvers15, procedures with sparse sensitivity updating schemes16,17, or stencil-based 
methodologies (i.e., various types of pattern search methods18). Global approaches often employ nature-inspired 
routines such as Grey Wolf Optimizer (GWO)19 or particle swarm optimization20, but also diverse machine 
learning methods22, and surrogate-assisted algorithms using both forward models (e.g., neural networks23, 
kriging24) and inverse ones21. On the other hand, multi-objective optimization is typically involving surrogate 
models (e.g., kriging)30, and incorporating mechanisms such as dimensionality reduction31 or objective 
aggregation32. UQ is heavily based on fast replacement models36 often specialized ones such as polynomial chaos 
expansion (PCE)37. Numerous accelerated techniques were developed as EM-driven design exerts significant 
computational costs35. Some worth mentioning methods include already mentioned surrogate-based routines, 
which can be based on data-driven metamodels (e.g., kriging36,38, PCE37,39, diverse types of artificial neural 
networks38,41,42–45,46, sometimes enhanced by other technique such as response features40. On the other hand, 
physics-based surrogates are also utilized, such as space mapping47,48 or a combination thereof with neural 
networks49. A popular method for accelerating EM-driven design is machine learning (ML)50,51, where the 
surrogate model (e.g., neural network52,53, deep neural network54) is used as a predictor yielding presumably 
high-quality candidate designs is iteratively updated using accumulated EM data55,56. Other popular techniques 
include the response feature technology57, exploiting a specific structure of the system’s outputs and weakly 
nonlinear dependence of the characteristic points on design variables58, often in connection with other methods 
(e.g., space mapping59 and multi-fidelity models60). Yet another approach is variable-resolution methods61, 
where the design process is expedited by incorporating faster but less accurate coarse-discretization models (or 
even equivalent circuit representations)62,63. To be reliably used in the design process, the lower-fidelity models 
are typically corrected using sparsely sampled high-fidelity data64 or utilized to carry out selected operations 
within the optimization framework65. A recent review of model- and ML-based antenna design methods can be 
found in66.

Performance enhancement and implementing additional functionality is often realized by adjusting basic 
antenna geometries (patches, monopoles, etc.), depending on the designer’s experience and preferences. 
Geometry optimization typically leads to designs that resemble the initial ones67,68. This and the long time 
required for experimentation with any given architecture are serious limiting factors regarding the number of 
alternative topologies that might be considered as potentially better options for a given application. Topology 
optimization (TO) is a different approach that allows for the adjustment of antenna geometry. One possibility 
is the spatial discretization of the area assigned to the antenna into pixels (square or rectangular shape), which 
may be filled with metal or left empty69–73. For example, in69, a radiator part of the antenna is discretized in 
the abovementioned manner, whereas in70, a discretized surface is employed to generate a high-performance 
metalens antenna. The work71 presents a subwavelength planar monopole antenna designed through the 
evolutionary generation of metalization patterns of the antenna’s radiator. Similar idea is exploited in73 to create 
a rectangular horn antenna. The pixel arrangement is typically determined using computational intelligence 
methods, primarily genetic algorithms (e.g.,74,75,80 binary particle swarm optimizer (BPSO)76, or quantum genetic 
algorithm77. In all these cases, due to the discretized structure of the antenna, the applied bio-inspired methods 
must be adopted to handle the combinatorial nature of the underlying optimization task. These techniques 
improve design flexibility at the expense of turning antenna development into a combinatorial problem of high 
complexity. In some approaches, only a specific antenna part (e.g., the radiator) is discretized69. Pixel antennas 
are a somehow different approach where the structure geometry is decided by allocating connections between 
pre-defined unit cells (typically squares). In some cases, the arrangement of the building block connections is 
realized using bio-inspired metaheuristic algorithms78,79. In other cases, multi-objective evolutionary algorithms 
are used82, or even gradient-based optimization incorporating adjoint sensitivities81,83. Yet another option is 
free-form TO, which enables considerably improved flexibility as the antenna geometry may take almost any 
shape84–89. For example, in84 an isolation structure in MIMO antenna has been developed through TO, whereas 
in85 topology optimization has been used to design a conical-beam antennas. The reference86 presents design of 
sub-wavelength antenna using TO. The design of antennas for energy harvesting can be found in87. Meanwhile, 
in88, TO was employed to develop both linear- and circularly polarized patch antenna structures. Finally89, 
presents the optimization of a multi-layer metasurface using a combination of TO and inverse neural network 
models. Free-form TO methods often employ fast custom-designed EM solvers to accelerate the development 
process15,90–94. This is necessary because the underlying optimization tasks are large-scale, so fast antenna 
evaluation is essential to make the TO-based methods practical. For example, the work90 employs a custom-
designed finite-difference time-domain (FDTD) solver, similar to91 and94, whereas in92, a fast method of moments 
has been presented. A disadvantage of free-form TO is that the optimization uses gradient-based algorithms, 
making the outcome dependent on the initial architecture. Also, these techniques cannot be integrated with 
commercial simulation software packages, which is another limiting factor from the engineering perspective.

Considering the deficiencies of the above methods, a procedure allowing simultaneous determination 
of antenna geometry, and its optimum dimensions would be of considerable practical value. The crucial 
prerequisites include sufficient flexibility (in terms of an extensive range of architectural variations), the 
capability of implementing structures of diverse characteristics (broadband, multiband), and the possibility 
to integrate with commercial EM solvers. These features are essential for industrial applications from the 
perspective of time-to-market and the ability to devise unconventional antenna topologies potentially better 
suited for highly functional devices. This research attempts to deliver an innovative procedure that exhibits 
the mentioned properties and allows for automated specification-driven planar antenna development. The 
presented methodology capitalizes on the flexible parameterization of the antenna geometry involving elliptical 
patches and gaps of adjustable position and sizes. This allows for the implementation of a massive number of 
topologies of various shapes and complexity while using a limited set of decision variables. The design process 
is unsupervised and employs a combination of computational intelligence techniques to generate devices that 
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fulfill the specifications concerning reflection responses and optional constraints (such as maximum size). 
Final geometry parameter tuning is done using local (gradient-based) algorithms. The specific dimensions 
and topology may be altered to boost the system’s performance at this stage. For demonstration, our technique 
is applied to design several antenna structures operating at different frequency bands and offering various 
functionalities (broadband, single-, dual- and triple-band). The results corroborate the versatility of our method 
and underscore its capability to produce unconventional topologies at practically acceptable computational 
expenses. The design process is utterly unsupervised, and no human-expert interaction is required.

This study delivers several technical contributions, which include (i) a novel and versatile antenna 
parameterization for generating immense variety of geometries with limited number of design variables, (ii) 
the development of automated design procedure combining bio-inspired and conventional (gradient-based) 
algorithms, (iii) demonstrating the capability of our method to conduct unsupervised antenna evolution and 
dimension tuning, (iv) demonstrating versatility of the framework through the design of structures featuring 
diverse functionalities obtained through purely specification-driven algorithm execution with no setup 
adjustments whatsoever, (v) ensuring that the presented approach can work in synergy with commercial EM 
simulation packages, thereby making it suitable for academic and industrial applications. Given the listed 
properties, the suggested algorithm can be considered an interesting and practical alternative to existing antenna 
design automation methodologies.

Specification-driven antenna design: the algorithm
This part of the study explains the details of the proposed automated development procedure. The considered 
type of antennas are planar structures implemented on single-layer dielectric substrates. Section 2.1 discusses 
antenna parameterization and demonstrates its flexibility. Section 2.2 and 2.3 outline the computational model 
and the algorithmic tools utilized to carry out the evolution and dimension adjustment of the antenna structure, 
respectively. The complete framework is summarized in Sect. 2.4.

Antenna parameterization
The fundamental component of the unsupervised design framework is antenna parameterization. Its essential 
features are simplicity (for easy handling), flexibility (to allow a multitude of distinct geometries, e.g., 
monopoles, dipoles, and patch antennas), and a limited set of design variables. The latter is essential to make the 
antenna evolution and optimization process numerically tractable and keep the computational costs practically 
acceptable. The design variables should be continuous to permit gradient-based tuning and discrete parameters 
to adjust the structure’s complexity as necessary. Furthermore, the parameterization must be straightforward 
to implement within commercial EM simulation environments (here, CST Microwave Studio is used as an 
underlying EM solver).

The components of the proposed parameterization that comply with the mentioned requirements have been 
listed in Table  1. In this study, the antenna is assumed to be rectangular, with an adjustable-length ground 
plane, discrete port, and several patches and gaps of adjustable location and size. The number NP of patches 
and NG of gaps determine the antenna complexity and can be treated as auxiliary variables during the antenna 
development. Another option is to decide about the complexity upfront and only employ continuous parameters, 
which will be employed when demonstrating the procedure in Sect. 3. For convenience, the position and sizes 
of all components relative to the substrate width W and length L. They are recalculated into absolute (physical) 
values for EM analysis.

The parameters listed in Table 1 are aggregated into a single vector that will be handled by the optimization 
procedures outlined in the next section. Given NP and NG, this takes the form of

 
x =

[
LW Px.rPy.rLgSx.1.rSy.1.rax.1.ray.1.r . . . Sx.Np.rSy.Np.rax.Np.rax.Np.r . . .

Rx.1.rRy.1.rbx.1.rby.1.r . . . Rx.NG.rRy.NG.rbx.NG.rby.NG.r

]T

 (1)

Total number of design variables is n = 5 + 4(NP + NG).
Figure 1 shows assembling the antenna geometry by concatenating the elliptical patches and etching out 

the gaps for an exemplary setup. As indicated in Fig. 2, our parameterization enables a large variety of distinct 
topologies, even with a relatively small number of parameters (here, shown for NP = 5 and NG = 3). These 
shapes cannot be generated using traditional methods. Further, as the position and sizes of the building blocks 
are continuous variables, the antenna architecture may undergo global evolution and local tuning. For specific 
application areas, the antenna size may also be the subject of optimization or setup fixed to any specific substrate 
width and length values. This is a significant advantage over both pixel antennas and free-form topology 
optimization. Removing specific components from the computational model is realized by assigning them zero 
size.

Computational model
The computational representation of the designed device is prepared in CST Microwave Studio95. Table  1 
lists all components of the proposed model. The pre-implemented number of patches and gaps is ten and six, 
respectively, which is more than sufficient for practical applications. As mentioned earlier, if the actual number 
of building blocks is set to smaller values, the redundant ones are assigned zero size, effectively being disabled.

To evaluate antenna characteristics, the design variable vector x is recalculated from relative to absolute 
parameters (cf. Table  1). The excessive patch metallization is trimmed to the substrate size. EM simulation 
is carried out in a batch mode with the antenna parameters controlled through a Visual Basic script. Upon 
simulation, the antenna responses are extracted from the output files exported by CST. The operating flow of the 
EM model evaluation scheme using the abovementioned concepts is presented in Fig. 3.
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Optimization-driven antenna development
Here, we formulate the design task and discuss the architecture development of the antenna using computational 
intelligence methods and its final tuning through gradient-based optimization.

Design task
The design problem is posed for antenna impedance matching to make sure that the in-band |S11| ≤ − 10 dB over 
the band of interest F. For multi-band antennas, F = [f1 – B1/2, f1 + B1/2] ∪ [f2 – B2/2, f2 + B2/2] ∪ … ∪ [fK – BK/2, 
fK + BK/2], where fk and Bk are the center frequencies and the respective bandwidths (K being the number of 
bands). Consequently, our objective is to identify the parameter vector x*

Component Graphical Illustration

Parameters

CommentsRelative Absolute

Substrate – W – width
L – length

Rectangular substrate is 
assumed

Discrete port Px.r – horizontal position
Py.r – vertical position

Px = Px.rW/2
Py = Py.rL/2

Port position is determined 
relative to the substrate center

Ground 
plane Lg.r – ground plane length Lg = Lg.rL/2 Ground plane length is relative 

to the substrate length

Elliptic patch
Sx.i.r – horizontal position of ith patch
Sx.i.r – vercical position of ith patch
ax.i.r – horizontal axis of ith patch
ay.i.r – vertical axis of ith patch

Sx.i = Sx.i.rW/2
Sy.i = Sy.i.rL/2
ax.i = ax.i.rW/2
ay.i = ay.i.rL/2

Patch size is relative to the 
substrate size

Elliptic gap
Rx.i.r – horizontal position of ith gap
Rx.i.r – vercical position of ith gap
bx.i.r – horizontal axis of ith gap
by.i.r – vertical axis of ith gap

Rx.i = Rx.i.rW/2
Ry.i = Ry.i.rL/2
bx.i = bx.i.rW/2
by.i = by.i.rL/2

Gap size is relative to the 
substrate size

Table 1. Components of flexible planar antenna parameterization.
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Fig. 3. Operating flow of antenna response evaluation. Design variables and simulation setup are used along 
with the computational model templates to prepare the project file. After the batch-mode EM analysis, antenna 
characteristics are extracted from the exported simulation data.

 

Fig. 2. Flexibility of the proposed antenna parameterization demonstrated using random architectures 
generated assuming NP = 5 and NG = 2. Front-side metallization is shown (gray), along with the location of the 
discrete port (black dot).

 

Fig. 1. Assembling antenna geometry (front metallization only): (a) combined elliptic patches, (b) location of 
gaps, (c) complete geometry obtain by Boolean-wise subtracting metallization at the gaps.
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x∗ = arg min

x∈X
U (x) (2)

with

 
U (x) = max

f∈F
{|S11 (x, f)|} (3)

In (2) X is the design space delimited by the bounds on geometry parameters. Recall that the parameterization 
proposed in Sect.  2.1 enables the vector x to represent both the antenna architecture and dimensions. 
Consequently, solving the problem (2) simultaneously adjusts the geometry and improves impedance matching 
performance. Additional requirements might also be imposed (e.g., miniaturization, gain, and/or radiation 
pattern requirement), which will be considered elsewhere.

It should be noted that in the considered case, a minimax objective function (3) is employed, which improves 
the impedance matching over the target frequency ranges. This is the formulation used in the result section 
(Sect. 3) of this work. Other formulations are possible, for example, targeting the improvement of the antenna 
gain, reducing its footprint (when using the substrate’s width and length are additional design variables), etc. In 
this paper, we focus on perhaps the most widely addressed objective which is impedance matching. Other design 
scenarios will be considered elsewhere.

Similarly, it is possible to make the parameterization even more flexible by incorporating additional 
parameters such as elliptical patches and gaps for the ground plane (rather than using a simple rectangular 
ground). This and other options will be considered in future work.

Antenna topology evolution
The first stage of antenna development is simultaneous global optimization of the architecture (spatial allocation 
of the patches and gaps) and the adjustment of building block dimensions. This is realized using a floating-
point evolutionary algorithm 96,97 that incorporates elitism and adaptive mutation rate, outlined in Fig. 4. It 
should be noted that pm gradually decreases to zero later in the optimization process, improving the algorithm’s 
exploitation capability.

Local tuning
The final design process stage is local tuning aimed at improving the antenna performance regarding the cost 
function U (here, in-band impedance matching enhancement). At this point, antenna topology is essentially 
fixed. Only the sizes/locations of its building blocks vary slightly. This research’s underlying algorithm is the 
trust-region (TR) routine with numerical gradients98,99,102, outline in Fig. 5. The optimization process is handled 
by solving a sequence of sub-problems (cf. (8)), each producing the next optimum approximation. The search 
is performed in the vicinity of the current design using a Taylor expansion model of frequency characteristics. 
The task (8) is resolved by means of the Sequential Quadratic Approximation (SQP) algorithm100 built in Matlab 
Optimization Toolbox101.

Each iteration costs n + 1 EM simulations, n being the number of decision variables. However, as some 
building blocks have minor effects on antenna responses (e.g., due to their specific allocation), the respective 
parameters are excluded from further optimization if their impact (detected in the first iteration) is low. This 
way, the cost-effectiveness of the refinement process is greatly improved. For additional cost reduction, the 
global design stage uses coarse-discretization EM analysis. It is replaced by a higher-fidelity one in the second 
stage (final tuning).

Complete framework
The workflow of the suggested unsupervised design framework is illustrated in Fig. 6. As mentioned earlier, the 
antenna development process is specification-driven and requires no human expert input. The input parameters 
include parameters of the substrate (permittivity, thickness), substrate size (if treated as fixed), and target 
operating bands (cf. Section 2.3.1). The user may also decide the structure complexity by setting the number of 
active patches and gaps (NP and NG, respectively). During the two design stages, the antenna topology is first 
decided upon through evolutionary optimization (global stage), and final tuning (local stage).

It should be reiterated that the proposed methodology does not require setting up any initial values of the 
design parameters. The first stage of the design process is executed using a global search routine, here, the 
evolutionary algorithm. Its initial population is established randomly. This is a considerable advantage of the 
proposed method over many other techniques, e.g., free-form topology optimization, which relies on local 
search procedures (typically gradient-based). Because the design variables are relative (only recomputed to 
absolute antenna dimensions concerning the assumed substrate size), the parameter bounds are set very wide 
(from almost zero to 0.9), eliminating the problem of meticulous bound adjustment.

 Demonstration examples
This part of the paper demonstrates the capability of our procedure regarding the unsupervised antenna design. 
It is used to develop several broadband and multi-band structures operating at diverse frequency ranges. 
Identical algorithm setup is employed for all examples to indicate that no control parameter tuning is necessary. 
Experimental data for selected designs support numerical results. The rest of the section is arranged as detailed 
below. Section 3.1 discusses the design prerequisites. Section 3.2 through 3.10 provide the results for specific test 
cases, whereas Sect. 3.11 summarizes the findings.
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Experimental setup
The following arrangements have been made concerning the algorithm control parameters:

• Substrate: FR-4 (εr = 4.4, h = 1.0 mm);
• Model complexity: NP = 5, NG = 3;
• Fixed substrate size: W = 30 mm, L = 20 mm;
• Antenna topology development: control parameters as discussed in Sect. 2.3.2; computational budget 2000 

EM simulations (100 iterations; population size N = 20);
• Local tuning: control parameters as discussed in Sect. 2.3.3.

Recall that topology development is carried out using a low-fidelity EM model (~ 60,000 mesh cells, typical 
evaluation time 20  s), whereas local tuning employs the high-fidelity model (~ 200,000 mesh cells, typical 
evaluation time one minute).

An identical setup is applied to all test cases of Sect. 3.2 through 3.10 to demonstrate that there is no need 
to adjust the control parameters to specific performance requirements (here, target operating bands). The only 
exception is a UWB antenna designed in Sect. 3.4, where the antenna size has been reduced to W = 25 mm, and 
L = 15 mm to show the capability of our framework to design more compact structures as well.

Fig. 4. The evolutionary algorithm used to carry out the evolution of antenna topology.
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Case I
The initial test case is a single-band antenna to operate in the 5.0 GHz to 6.0 GHz band. Figure 7 illustrates the 
final antenna geometry obtained with our technique and the reflection response. For an additional illustration, 
Fig. 8 shows several snapshots from the first design stage (topology evolution). Figure 9 shows the convergence 
plot for local tuning, a history of the minimax objective function, and a comparison of the initial (after a global 
search) and final |S11| characteristics. It can be noted that the global search stage already produces a good-
quality antenna, whereas local tuning improves impedance matching by almost 1 dB within several iterations. 
Design specifications are fulfilled for the final structure. One should reiterate that the design process is entirely 
specification-driven, and no human expert is involved.

Case II
The second example is an ultra-wideband (UWB) structure working in the 3.1 GHz to 10.6 GHz band. The final 
geometry produced by the proposed framework and the corresponding reflection response are shown in Fig. 10. 
Figures 11 and 12 illustrate the topology evolution and the details of local tuning.

Case III
The third test scenario is also a UWB antenna. However, this antenna is implemented on a smaller substrate 
(15 mm × 20 mm in contrast to 20 mm × 30 mm for Case II). Nonetheless, design specifications have also been 
fulfilled in this case, as shown in Fig. 13. The snapshots of global search and local parameter adjustment can be 
found in Figs. 14 and 15, respectively.

Fig. 6. Unsupervised antenna design framework: the flow diagram.

 

Fig. 5. The outline of the TR algorithm.
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Fig. 9. Case I: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 8. Case I: topology evolution at selected iterations of the global search procedure. The thick line 
corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.

 

Fig. 7. Case I: a single-band antenna working in the 5.0 GHz to 6.0 GHz range. Final geometry (ground plane 
marked using the dotted line) and the reflection response.
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Fig. 12. Case II: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 11. Case II: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.

 

Fig. 10. Case II: a UWB antenna working in the 3.1 GHz to 10.6 GHz range. Final geometry (ground plane 
marked using the dotted line) and the reflection response.
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Case IV
The next case involves a dual-band antenna operating from 2.4 GHz to 2.5 GHz and 5.2 GHz to 5.4 GHz. It can 
be noted that the design specifications are fulfilled with a good margin (cf. Fig. 16), and the global search already 
yields a solution of a good quality, requiring only a slight improvement through local tuning, see Figs. 17 and 18.

Case V
The following test scenario is a dual-band antenna operating from 2.4 GHz to 2.5 GHz and 7.0 GHz to 8.0 GHz. 
Also, in this case, the global search stage yields a good-quality design, so the local tuning only leads to minor 
dimension changes. The final geometry is shown in Fig. 19, whereas Figs. 20 and 21 illustrate antenna topology 
evolution and gradient-based tuning, accordingly.

Case VI
The next example is a broadband dual-band antenna operating from 3.1 GHz to 5.5 GHz and 7.5 GHz to 8.0 GHz. 
As indicated in Fig. 22, the final design fulfills the specifications, although it is a considerably more complex 
scenario due to broadband requirements in the lower band. Here, the global search results (Fig. 23) need to be 
adjusted (cf. Fig. 24) to meet the requirements eventually.

Fig. 14. Case III: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.

 

Fig. 13. Case III: a compact UWB antenna working in the 3.1 GHz to 10.6 GHz range (size 15 × 25 mm). Final 
geometry (ground plane marked using the dotted line) and the reflection response.
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Fig. 17. Case IV: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.

 

Fig. 16. Case IV: a dual-band antenna working in the 2.4 GHz to 2.5 GHz and 5.2 GHz to 5.4 GHz range. Final 
geometry (ground plane marked using the dotted line) and the reflection response.

 

Fig. 15. Case III: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.
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Fig. 20. Case V: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.

 

Fig. 19. Case V: a dual-band antenna working in the 2.4 GHz to 2.5 GHz and 7.0 GHz to 8.0 GHz range. Final 
geometry (ground plane marked using the dotted line) and the reflection response.

 

Fig. 18. Case IV: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.
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Case VII
The seventh test case is a dual-band antenna operating from 5.1 GHz to 5.9 GHz and 7.6 GHz to 7.9 GHz. The 
design produced by our technique almost fulfills the specifications (maximum in-band |S11| of around − 9.5 dB), 
cf. Figure 25. Figures 26 and 27 illustrate the global and local search stages. The latter improves the design by 
around 1 dB within a few iterations.

Case VIII
The eighth example involves a triple-band antenna operating in the ranges 2.4 GHz to 2.5, GHz, 5.2 GHz to 
5.4 GHz, and 7.5 GHz to 8.0 GHz. As indicated in Figs. 28 and 29, and 30, for this case, the specifications are met 
in the first two operating bands and slightly violated in the upper band (7.5 GHz to 8.0 GHz). Notwithstanding, 
the antenna has been generated using the same algorithmic setup as for the previous test cases, and a triple-band 
operation was achieved using low-complexity architecture.

Case IX
The final example is again a triple-band antenna. The target operating frequency bands are 3.6 GHz to 3.7 GHz, 
5.4 GHz to 5.5 GHz, and 9.8 GHz to 10.2 GHz.

As indicated in Figs. 31 and 32, and 33, for this case, the specifications are met in the first two operating bands 
and slightly violated in the upper band (7.5 GHz to 8.0 GHz). Notwithstanding, the antenna has been generated 
using the same algorithmic setup as for the previous test cases, and a triple-band operation was achieved using 
low-complexity architecture.

Summary of findings
The results encapsulated in Sect. 3.2 through 3.10 conclusively demonstrate the efficacy and versatility of the 
proposed unsupervised antenna design strategy. Using a few elementary building blocks in conjunction with 
computational intelligence and rigorous optimization methods enables the automated design of a large variety 
of structures. These include single-band, dual-band, and triple-band devices, broadband antennas, and UWB 
radiators.

Figure 34 shows surface current distributions at various frequencies, scattered across the UWB band for Case 
III, and allocated at the centers of the respective operating bands for Cases IV and VIII. These pictures indicate 
the utilization of the various parts of the antenna geometry at different parts of the spectrum, demonstrating 
how particular building blocks have been allocated in the topology evolution process to ensure adequate antenna 
operation at the mentioned frequencies.

The design process of these diverse structures is purely specification-driven, and it does not require any 
adjustment of the algorithm setup. One of the critical components of the presented methodology is a combination 
of flexible parameterization, global search (for antenna architecture evolution), and local tuning for improving 
antenna performance, here, impedance matching. Furthermore, the antenna development process is realized 
using moderate expenses, amounting to 2000 low-fidelity EM analyses and between 100 and 300 high-fidelity 
EM simulations. This corresponds to the total CPU time of only around fifteen hours, which is very practical.

Fig. 22. Case VI: a dual-band antenna working in the 3.1 GHz to 5.5 GHz and 7.5 GHz to 8.0 GHz range. 
Final geometry (ground plane marked using the dotted line) and the reflection response.

 

Fig. 21. Case V: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Scientific Reports |        (2024) 14:29753 14| https://doi.org/10.1038/s41598-024-80319-z

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


Fig. 25. Case VII: a dual-band antenna working in the 5.1 GHz to 5.9 GHz and 7.6 GHz to 7.9 GHz range. 
Final geometry (ground plane marked using the dotted line) and the reflection response.

 

Fig. 24. Case VI: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 23. Case VI: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.
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Fig. 28. Case VIII: a triple-band antenna working in the 2.4 GHz to 2.5 GHz, 5.2 GHz to 5.4 GHz, and 
7.5 GHz to 8.0 GHz range. Final geometry (ground plane marked using the dotted line) and the reflection 
response.

 

Fig. 27. Case VII: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 26. Case VII: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.
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Fig. 31. Case IX: a triple-band antenna working in the 3.6 GHz to 3.7 GHz, 5.4 GHz to 5.5 GHz, and 9.8 GHz 
to 10.2 GHz range. Final geometry (ground plane marked using the dotted line) and the reflection response.

 

Fig. 30. Case VIII: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 29. Case VIII: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.
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As elucidated earlier, the antenna performance is judged based on the value of the objective function, which, 
in this work, is a minimax function established for the reflection response. Consequently, the algorithm (its 
global and local parts) works towards improving U(x). If the value of the objective function falls below − 10 
dB, the maximum in-band reflection level does not exceed the acceptance threshold of − 10 dB. Due to the 
stochastic nature of the evolutionary algorithm and ample parameter space (a few dozen decision variables), 
the procedure generally yields a different design each time it is executed. Consequently, there is no guarantee 
that any particular outcome is globally optimal. At this point, it should be emphasized that all antenna designs 
presented in the literature are always sub-optimal, not only due to the lack of appropriate optimization but—
most importantly—due to considering a dramatically restricted number of topological options (often just one). 
The advantage of the presented approach is that it allows for considering a much more comprehensive range of 
antenna architectures while simultaneously optimizing the specific geometry dimensions.

 Experimental validation
The designs produced in Sect. 3 have been prototyped and experimentally validated. For the sake of brevity, the 
experimental data for five selected designs is included here, specifically Cases I, III, IV, VI, and VIII. Figure 35 
illustrates the measurement setup in the anechoic chamber for Case VI (the same setup was used for all antennas). 
Figures  36, 37, 38 and 39, and 40 show the photographs of antenna prototypes for the respective cases and 

Fig. 33. Case IX: local parameter tuning using the TR algorithm: (a) convergence plot, (b) objective function 
evolution, (c) initial and final |S11| versus frequency.

 

Fig. 32. Case IX: topology evolution at selected iterations of the global search procedure. The thick 
line corresponds to the best candidate architecture identified thus far. The gray lines mark the antenna 
characteristics at the current algorithm population.
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the comparison between EM-evaluated and measured |S11| characteristics. As observed, these are well-aligned. 
Minor discrepancies stem from fabrication and assembly imperfections and the effects of the SMA connector 
not included in the EM model. Figures 41 and 42 show EM-evaluated and measured radiation patterns and 
realized gain for selected designs, specifically, Cases III, IV, and VIII.

Fig. 35. Experimental setup in the anechoic chamber (Case VI).

 

Fig. 34. Surface current distributions for selected designs: (a) Case III, (b) Case IV, (c) Case VIII. The 
pictures underscore the utilization of the various parts of the antenna geometry at various frequencies. This 
corroborates the relevance of allocating the antenna’s building blocks during the topology evolution process.
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 Conclusion
This research proposed an novel technique for automated development of planar antennas. The presented 
methodology combines a flexible parameterization consisting of a resizable ground plane, relocatable discrete 
port, and elliptical-shaped patches and gaps, with the antenna topology being a Boolean transformation of its 
elementary building blocks. The complexity of the device’s architecture is controlled by the number of active 
patches/gaps, the position and dimensions of which are treated as continuous design variables. During the 
evolution stage, antenna topology is adjusted using computational intelligence methods, and it is further tuned 
using a gradient-based algorithm oriented toward improving the impedance matching over the frequency 
ranges of interest. The entire development procedure is unsupervised and exclusively driven by specifications. 
No human expert involvement is required whatsoever.

Our approach was extensively demonstrated by designing several antennas of different functionalities 
(narrow-band, broadband, dual-band, triple-band), all generated using identical algorithmic setups. The obtained 
geometries are highly unconventional. Numerical results were accompanied by prototyping and measurements 
of selected structures. Our framework may be considered a step towards antenna design automation. It offers 
a viable alternative to methods based on pixel antennas (due to improved flexibility of the antenna geometry) 

Fig. 38. Case IV: (a) antenna prototype (cf. Fig. 16), (b) EM-simulated and measured |S11|.

 

Fig. 37. Case III: (a) antenna prototype (cf. Fig. 13), (b) EM-simulated and measured |S11|.

 

Fig. 36. Case I: (a) antenna prototype (cf. Fig. 10), (b) EM-simulated and measured |S11|.
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and free-form topology optimization (due to the global search capabilities). It can be used to develop antennas 
for demanding applications such as wearable or virtual reality devices and whenever a specific (small) physical 
space is allocated for the antenna.

The presented methodology can, in principle, be applied to other antennas (e.g., patch or horn). However, 
this would require the establishment of an antenna-type-specific parameterization without changing the 
underlying search engines. The parameterization must incorporate building blocks typical for the antenna 
type to be designed. In the case of patch antennas, most of the existing parameterization might be reused. For 
horn antennas, the building blocks should be of the 3-D type (various types of apertures and horn sections 
parameterized using splines, etc.). This will be considered as a part of future work.

Fig. 40. Case VII: (a) antenna prototype (cf. Fig. 28), (b) EM-simulated and measured |S11|.

 

Fig. 39. Case VI: (a) antenna prototype (cf. Fig. 22), (b) EM-simulated and measured |S11|.
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Fig. 42. Realized gain for selected designs: (a) Case III, (b) Case IV, (c) Case VIII. EM simulations and 
measurements shown using gray and black lines, respectively.

 

Fig. 41. H-plane patterns for selected test cases: (a) Case III, (b) Case IV, (c) Case VIII. EM simulations and 
measurements shown using gray and black lines, respectively.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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