
Computer Physics Communications 291 (2023) 108839

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Attosecond Chemistry

Very accurate time propagation of coupled Schrödinger equations for

femto- and attosecond physics and chemistry, with C++ source

code ✩,✩✩

Janek Kozicki a,b,∗
a Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
b Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2022
Received in revised form 22 May 2023
Accepted 21 June 2023
Available online 29 June 2023

Keywords:
Quantum dynamics
Time dependent Hamiltonian
Coupled Schrödinger equations
C++
High precision
High accuracy

In this article, I present a very fast and high-precision (up to 33 decimal places) C++ implementation
of the semi-global time propagation algorithm for a system of coupled Schrödinger equations with a
time-dependent Hamiltonian. It can be used to describe time-dependent processes in molecular systems
after excitation by femto- and attosecond laser pulses. It also works with an arbitrary user supplied
Hamiltonian and can be used for nonlinear problems. The semi-global algorithm is briefly presented, the
C++ implementation is described and five sample simulations are shown. The accompanying C++ source
code package is included. The high precision benchmark (long double and float128) shows the
estimated calculation costs. The presented method turns out to be faster and more accurate than the
global Chebyshev propagator.

Program summary
Program Title: SemiGlobalCpp
CPC Library link to program files: https://doi .org /10 .17632 /429rszyc65 .1
Developer’s repository link: http://gitlab .com /cosurgi /SemiGlobalCpp
Licensing provisions: GNU General Public License 2
Programming language: C++
Nature of problem: The femto- and attosecond chemistry requires fast and high precision computation
tools for quantum dynamics. Conventional software has problems with providing high precision
calculation results (up to 33 significant digits), especially when the computation has to be as fast as
possible.
Solution method: This software fills in the gap by providing the semi-global algorithm [1–3] for arbitrary
number of coupled electronic states for the time dependent Hamiltonian and nonlinear inhomogeneous
source term. It is implemented in a way that allows computation with precision of 15, 18 or 33 significant
digits, where the computation speed can be directly controlled by setting the required error tolerance.
The semi-global algorithm [1–3] is implemented in C++ providing a 10× speed boost compared to original
publication of semi-global algorithm implemented in Matlab/Octave [1–3].

© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
✩ The review of this paper was arranged by Prof. Jimena Gorfinkiel.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Correspondence to: Faculty of Applied Physics and Mathematics, Gdańsk Uni-
versity of Technology, 80-233 Gdańsk, Poland.

E-mail address: jkozicki@pg.edu.pl.
https://doi.org/10.1016/j.cpc.2023.108839
0010-4655/© 2023 The Author. Published by Elsevier B.V. This is an open access article
1. Introduction

The time-dependent Schrödinger equation (TDSE):

ih̄
∂ψ

∂t
= Ĥ(t)ψ, (1)

is essential to quantum dynamics and especially to femto- and at-
tosecond chemistry. The equation for a system of several coupled
time-dependent Schrödinger equations can be written down with
explicitly shown all n coupled terms inside ψ and Ĥ(t):
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108839
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108839&domain=pdf
https://doi.org/10.17632/429rszyc65.1
http://gitlab.com/cosurgi/SemiGlobalCpp
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:jkozicki@pg.edu.pl
https://doi.org/10.1016/j.cpc.2023.108839
http://creativecommons.org/licenses/by/4.0/

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

ih̄
∂

∂t

⎛⎜⎜⎜⎜⎝
ψ1

ψ2

...

ψn

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
Ĥ1(t) V̂1,2(t) . . . V̂1,n(t)

V̂2,1(t) Ĥ2(t) . . . V̂2,n(t)

...
...

. . .
...

V̂n,1(t) V̂n,2(t) . . . Ĥn(t)

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

ψ1

ψ2

...

ψn

⎞⎟⎟⎟⎟⎠ (2)

Each ψn corresponds to a particular wavefunction at n-th elec-
tronic potential, while V̂ j,k correspond to the coupling elements
between the corresponding levels and Ĥi(t) is the Hamiltonian at
a given level. The solution to such system provides us with an
understanding of fundamental quantum processes. For almost all
of these processes closed form solutions do not exist. Instead of
these the numerical algorithms are being developed to simulate
the quantum processes from first principles.

This paper describes a general semi-global algorithm for various
classes of problems including time-dependent Hamiltonian, non-
linear problems, non-hermitian problems and problems with an
inhomogeneous source term [1–3]. The novelty is both the C++
implementation (10× faster than Octave) of this algorithm as well
as the addition of the ability to calculate multiple coupled elec-
tronic levels in high precision (long double and float128
types having 18 and 33 decimal places respectively).

The main advantage of the presented algorithm is the ability
to significantly reduce the numerical error in time propagation up
to the level of the Unit in the Last Place (ULP) error1 of the float-
ing point numerical representation (see Sections 3 and 6, compare
also with [4]). This is made possible by iteratively applying the
Duhamel’s principle until the required convergence criterion is met
for Ĥ(t). Additionally, the error tolerance can be used to control
the calculation speed.

This ability to produce results with errors in the range of the
numerical ULP error1 of used precision, together with high pre-
cision types long double (18 decimal places) and float128
(33 decimal places) and a fast C++ implementation means that the
code presented in this work can be used to obtain reference results
in many difficult simulation cases.

This work is divided into the following sections. In the next sec-
tion the theoretical introduction to the semi-global method [1–3] is
presented. In Section 3 the high-precision calculations are briefly
substantiated and described. In Section 4 the technical details of
the C++ implementation are discussed. In Section 5 a validation of
the current implementation is performed. In Section 6 the com-
putation speed benchmarks are presented. In Section 7 the ac-
companying C++ source code package is described and finally, the
conclusions are in Section 8.

2. The semi-global method

The time-dependent Hamiltonian is useful for ultrafast spec-
troscopy, high harmonic generation or coherent control problems.
In some cases the Hamiltonian may become nonlinear depending
explicitly on the state ψ(t). Such case occurs in mean field approx-
imation, in the Gross-Pitaevskii approximation [5], time-dependent
Hartree [6–9] and time-dependent DFT [10–13]. Another compli-
cation may arise when adding a source term to the Schrödinger
equation, such as in scattering problems [14]. All these cases
will be possible to calculate with the semi-global [2,3,15] method
ported from Matlab/Octave [2,3] to C++ and described in this pa-
per.

1 ULP error for a given number x is the smallest distance ε towards the next,
larger, number: x + ε .
2

The global scheme2 described in [16,17] assumes the knowl-
edge of the eigenvalue range of the Hamiltonian (i.e. the Emin
and Emax). Usually, such knowledge is missing, especially for time-
dependent or non-Hermitian problems. To overcome this difficulty
the method below is implemented with the Arnoldi approach. The
main advantage of this approach is that the algorithm determines
the energy range while constructing the Krylov space. A variation
of semi-global method also allows the Chebyshev approach where
the energy range is required [2], this approach is available in the
attached C++ source code but is not discussed with detail in this
paper. For reference see [2,3].

Several following sections summarize the detailed derivations
presented in [2] and thus are not a novelty in this work, how-
ever, they are a crucial part to the final, novel, Section 2.7 where
the method discussed here is extended to several coupled time-
dependent Schrödinger equations (such as Eq. (2)). This final ex-
tension and its novel high precision (up to 33 decimal digits)
implementation in C++ allows to simulate complex multi-level di-
atomic molecular systems. Another novelty is that the presented
C++ code is 10× faster than the original Matlab/Octave code [2]
(see Section 6).

In other, less sophisticated, algorithms the method to over-
come the Hamiltonian time dependence is to use a small time-
step and assume constant Hamiltonian in the single step. This
becomes equivalent to the method being first order in time and
there occurs a loss of precision which was gained by using a higher
order method. More sophisticated methods such as Magnus expan-
sion [18] or high order splitting [19] do not assume stationary
Hamiltonian, but these methods are still local methods (they re-
quire relatively small �t) with a limited radius of convergence.

The method presented here is a semi-global method, because
it combines the elements of local propagation and global propa-
gation methods [15]. A fully global time-dependent method was
also developed, but it turned out to be too expensive computa-
tionally [20]. The semi-global algorithm described here is efficient
with respect to accuracy compared to the numerical effort.

2.1. Establishing notation

The time-dependent Schrödinger equation (1) is rewritten in a
discretized form:

∂ �̃ψ(t)

∂t
= − i

h̄
H̃(t) �̃ψ(t), (3)

the time derivative of a discrete state vector �̃ψ of finite size3 is
equal to a matrix (with time dependence) operating on the same
vector. Let us introduce a more general version of Eq. (3) by adding
a source term �̃s and by adding a dependence of H̃ on �̃ψ(t):

∂ �̃ψ(t)

∂t
= − i

h̄
H̃(�̃ψ(t), t) �̃ψ(t) + �̃s(t). (4)

This is in fact a general set of ordinary differential equations
(ODE). For convenience let us define:

G̃(�̃ψ(t), t)
def= − i

h̄
H̃(�̃ψ(t), t), (5)

by incorporating the imaginary unit and Planck’s constant into
G̃(�̃ψ(t), t). Thus we obtain the following set of ODEs to solve:

2 “Global” refers to the algorithm being independent to the size of the timestep,
contrary to typical Taylor based methods where the power n in �tn refers to the
order of the method. It treats “globally” the entire time span of the calculation.

3 In the notation of �̃ψ the tilde ̃• indicates that it is discretized, while vector �•
indicates that it is a state vector.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

∂ �̃ψ(t)

∂t
= G̃(�̃ψ(t), t) �̃ψ(t) + �̃s(t), (6)

and given the initial condition �̃ψ0
def= �̃ψ(t = 0) the method de-

scribed in this section will allow propagation of the discrete state
vector to the next timestep �̃ψ(t + �t).

2.2. Short summary for time-independent Hamiltonian

The short summary in this subsection only serves the purpose
of introducing simpler versions of formulas which are extended
to time-dependent Hamiltonian in the following subsections.4 The
topics discussed in Sections 2.2-2.4 are about solving the same
mathematical problem of approximating �u = f (A)�v. Both of them
can be solved by Polynomial expansion or Arnoldi, where the
Arnoldi algorithm is just a special case of the polynomial approxi-
mation.

We shall emphasize the main perk of all global time propaga-
tion methods: that the evolution operator is expressed as a func-
tion of a matrix Hamiltonian expanded over the energy spectrum
using a chosen polynomial basis, thus allowing arbitrarily large
timestep. Let us for a brief moment consider again a simpler case
without the time dependence and without the source term:

∂ �̃ψ(t)

∂t
= G̃0

�̃ψ(t), (7)

where G̃0
def= G̃(t = 0) loses time dependence. The evolution opera-

tor is then expressed as an expansion in a truncated (to K number
of terms, see Table 1 on page 5 for a summary of parameters in
this method) polynomial series. Hence the function f (x) = ex�t

(�t is a parameter) is approximated as:

f (x) ≈
K−1∑
n=0

an Pn(x), (8)

where Pn(x) is a polynomial of degree n (e.g. a Chebyshev poly-
nomial, like in [16], but other polynomials can also be used here)
and an is the expansion coefficient. Then applying this evolution
operator:

�̃ψ(t + �t) = e− i H̃�t
h̄ �̃ψ ≈

K−1∑
n=0

an Pn (̃G0)
�̃ψ(t), (9)

we obtain the solution5 at time t +�t . The emphasis here lying on
the “global” property of the method: the error does not depend on
the timestep �t . The solution is obtained directly at the final time
t + �t , which can be arbitrarily large. We shall note however that
the expansion Eq. (9) has to be accurate in the eigenvalue domain
of G̃0.

We might consider the following polynomials Pn:

(a) Use the Taylor polynomials Pn(x) = xn and expand the evolu-
tion operator in a Taylor series (a common approach in the
local time integration methods), but it is a poor choice: they

4 The content of this subsection is not implemented in the C++ code.
5 It should be clarified here, that the Eq. (9) (in which the operation of the

function of matrix on a vector uses a polynomial expansion approximation of the
stationary evolution operator) and the first term in RHS of Equations 20 and 26 (in
which the Arnoldi algorithm is used to approximate a different function of a ma-
trix which operates on a vector) are actually both a special case of the solution of
�u = f (A)�v which is a general problem in numerical analysis. The two problems can
be solved by the Arnoldi approach (see also Restarted Arnoldi [21]) or a polynomial
expansion. The Arnoldi algorithm is a subtype of the polynomial expansion, because
it is a polynomial interpolation at estimated eigenvalues.
3

are not orthogonal. To the contrary: as n increases they are
getting more and more parallel in the function space.

(b) Use the Chebyshev polynomials Pn(x) = Tn(x). The fact that
they are orthogonal to each other provides two useful proper-
ties: (1) the series converges fast and (2) the expansion coeffi-
cients an are given by a scalar product of the Pn(x) with f (x).
This approach is used in [16].

(c) Use the Arnoldi approach which works well when the spectral
range of the Hamiltonian is unknown. It uses the orthonor-
malized reduced Krylov basis representation. This method will
be summarized in Section 2.6 and it is used in the presented
here semi-global approach for time-dependent Hamiltonian.

We shall note that in Eq. (9), we obtain the solution only at the
chosen time t + �t . It is desirable to follow the evolution of the
physical process at a smaller timestep, so that the time depen-
dence of the Hamiltonian (which is introduced in the following
subsections) can be more accurately captured. It is possible to ob-
tain these intermediate time points �t j ∈ [0, �t) via negligible
additional cost: using the same matrix vector operations Pn (̃G0)

(Hamiltonian acting on the wavefunction) but with different pre-
computed scalar coefficients an, j (where j corresponds to an inter-
mediate time point in the evolution):

�̃ψ(t + �t j) = e− i H̃ �t j
h̄ �̃ψ0 ≈

K−1∑
n=0

an, j Pn (̃G0)
�̃ψ0 j = 1, . . . , M,

(10)

where M is the number of additional intermediate time points in
the solution. It is possible, with low computation cost, because ex-
pansion of function in the Pn basis has different coefficients an, j

but has the same Pn (̃G0)
�̃ψ0 evaluations.

The Eq. (10) is in fact an expression for the evolution opera-
tor acting on the wavefunction, which for the purpose of the next
section we will denote as:

Ũ0(�t j)
def= eG̃0�t j . (11)

Hence Eq. (10) can be also written as:

�̃ψ(t + �t j) = Ũ0(�t j)
�̃ψ(t). (12)

2.3. Source term with time dependence

On our way towards the full time dependence in Eq. (6), we
will now add the source term with time dependence to Eq. (7):

∂ �̃ψ(t)

∂t
= G̃0

�̃ψ(t) + �̃s(t). (13)

We can integrate this equation using the Duhamel principle,
which provides a way to go from the solution (Eq. (10)) of the ho-
mogeneous Eq. (7) to the solution of the inhomogeneous Eq. (13)
like this:

�̃ψ(t) = Ũ0(t)
�̃ψ0 +

t∫
0

Ũ0(t − τ)�̃s(τ)dτ

= eG̃0t �̃ψ0 +
t∫

0

eG̃0te−G̃0τ �̃s(τ)dτ

= eG̃0t �̃ψ0 + eG̃0t

t∫
e−G̃0τ �̃s(τ)dτ

(14)
0

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Above we took the advantage of being able to extract from the
Duhamel’s integral the Ũ0(t) part. So the only part which needs to
be solved explicitly is the remaining integral. To do this we will
assume that �̃s(τ) (after discretization: �̃s(�t j)) can be expressed as
a polynomial function of time. It is a bit of a simplification, but
later on we will be able to decide how many elements M (see
Table 1) in the series the algorithm will use, thus being able to
directly control the accuracy of the solution:

�̃s(t) =
M−1∑
m=0

tm

m!
�̃sm. (15)

It shall be noted here that a Chebyshev approximation of �̃s(t)
is used, which is next converted to a Taylor form as in Eq. (15).
By this way a much faster convergence is achieved, which is an
advantage of the local aspects of the semi-global method.

Together with the desired error tolerance (to be introduced
in Section 2.4) and the parameter K (to be introduced in Sec-
tion 2.6) we have all the parameters which govern the accuracy
of the solution. The meaning of these parameters is summarized
in Section 2.8.

Let us now go back to calculating the integral present in
Eq. (14). Plugging Eq. (15) into Eq. (14) yields:

�̃ψ(t) = eG̃0t �̃ψ0 + eG̃0t
M−1∑
m=0

1

m!
t∫

0

e−G̃0τ τmdτ �̃sm (16)

Which with the following definitions of fm (̃G0, t), �̃wm and �̃v j :

fm(z, t)
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

zm

⎛⎝ez t −
m−1∑
j=0

(z t) j

j!

⎞⎠ for z �= 0

tm

m! for z = 0

(17)

�̃wm
def=

{ �̃ψ0 for m = 0
�̃sm−1 for 0 < m ≤ M

(18)

�̃v j
def=

j∑
m=0

G̃
j−m
0

�̃wm (19)

following the derivation in [2] the solution can be written as:

�̃ψ(t) = f M (̃G0, t)�̃vM +
M−1∑
j=0

t j

j!
�̃v j, (20)

where the f M (̃G0, t) is acting on �̃vM and the calculations are ac-
tually performed in the discretized spectrum z ∈ σ (̃G0) (see Sec-
tion 2.6). Now, since �̃v j satisfy the recurrence relation:

�̃v j = G̃0 �̃v j−1 + �̃w j, (21)

the overall computational cost of Eq. (20) is reduced to M + K
matrix vector multiplications.6

2.4. Introducing time-dependent Hamiltonian

In the case of time-dependent Hamiltonian:

∂ �̃ψ(t)

∂t
= − i

h̄
H̃(t) �̃ψ(t) + �̃s(t) (22)

6 For a direct polynomial approximation it is M + K − 1, however in the imple-
mented C++ code the Arnoldi algorithm is used (see Section 2.6) for which an extra
Hamiltonian operation is necessary, hence it is M + K .
4

or rather:

∂ �̃ψ(t)

∂t
= G̃(t) �̃ψ(t) + �̃s(t), (23)

the Duhamel principle does not yield a closed form solution. In-
stead an iterative procedure can be used to obtain better and
better approximations of the solution. First let us move the time
dependence from G̃(t) to �̃s by defining an extended source term7

�̃se:

�̃se(
�̃ψ(t), t)

def= �̃s(t) + ¯̃G(t) �̃ψ(t), (24)

where ¯̃G(t) def= G̃(t) − G̃avg and G̃avg is average time-independent8

component of G̃. The equation to be solved now has the following
form:

∂ �̃ψ(t)

∂t
= G̃avg

�̃ψ(t) + �̃se(
�̃ψ(t), t). (25)

We can use the previous solution Eq. (20) to approximate the
time evolution of �̃ψ(t):

�̃ψ(t) ≈ f M (̃Gavg, t)�̃vM +
M−1∑
j=0

t j

j!
�̃v j, (26)

where this time the �̃v j is computed from �̃se . It means that �̃v j de-

pend on �̃ψ(t) which is still unknown, however the solution can
be obtained via iterations. Upon first evaluation, we either extrap-
olate from previous timestep �t (by putting t + �t into Eq. (26))
or when jump-starting the calculations we use �̃ψ0. Next, in each
successive evaluation, we use the approximation from the previ-
ous iteration within the timestep �t (which spans M time points).
We repeat the iterative procedure until the convergence criterion
at sub-step M is met:

|| �̃ψnew − �̃ψ prev ||
|| �̃ψ prev ||

< ε. (27)

It means that this method has a radius of convergence that di-
rectly depends on the timestep �t covered in the single iteration,
and contains M time points. Too large �t will cause the succes-
sive iterations to diverge, this is the reason why this method is not
a fully global method but a semi-global method. The useful result
of this situation is that one can directly control the computation
cost by setting an acceptable computation error ε. For reference
solutions it can be set to ULP numerical precision, for faster cal-
culations it can be a larger value. The novelty in this work is that
it works also for higher precision types such as long double or
float128 with 33 decimal places (Table 8), thus enabling very
accurate calculations.

Since we have put the dependence on �̃ψ(t) into �̃se(
�̃ψ(t), t) it

is also computationally inexpensive to put this dependence into
the Hamiltonian hence the method described above works also
for Eq. (4). So putting it all together, the solution to Eq. (4):

∂ �̃ψ(t)

∂t
= − i

h̄
H̃(�̃ψ(t), t) �̃ψ(t) + �̃s(t),

7 It is called an “extended source term” because it depends on the state vector
and is not a real source term in the strict sense.

8 The time averaging is done in a single timestep �t , by performing the evalu-
ation of the Hamiltonian in the middle time point of the timestep (�M/2	 which
corresponds to �t/2), there is no costly averaging operation of any kind. See Sec-
tion 2.5 for details about how M extra time points are added spanning the entire
timestep �t .

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

Table 1
Summary of parameters of semi-global time propagation algorithm.

Parameter Meaning Equation

K The number of expansion terms used for the computation of the function of matrix (evolution operator). f M (̃Gavg , t)�̃vM in Eq. (28)§

M The number of interior time points in each timestep, Fig. 1†. Eq. (15), Eq. (18)
ε Tolerance: the largest acceptable computation error. Eq. (27)
�t The length of the timestep interval (it contains M time points spanning �t). Eq. (29)

§ See footnotes5,9 for details. K is defined as in Section 2.2, but in the code the Arnoldi algorithm from Section 2.6 is used (with the same meaning of K).
† �̃se(

�̃ψ(t), t) is expanded over M time points hence it uses M polynomial terms in the expansion to cover all time points inside the timestep.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 1. Chebyshev time points spanning �t used for interpolation. They are equiva-
lent to the axis projection of points equally spaced on a unit semicircle.

is following:

�̃ψnew(t)
iterate= f M (̃Gavg, t)�̃vM(�̃ψ prev) +

M−1∑
j=0

t j

j!
�̃v j(

�̃ψ prev), (28)

where iterations are performed until the convergence condi-

tion Eq. (27) is met. Thanks to being able to extrapolate �̃ψ prev into
the next timestep �t by putting t + �t into the above equation
and with a good choice of M , K parameters usually one iteration
is enough to achieve desired convergence.

2.5. Chebyshev time points spanning �t and Newton interpolation

When interpolating a function (in this case it is a vector ap-
proximation of �̃se at the time points), an equidistant set of points
is not a good choice: the closer to the boundary of the interpo-
lation domain the less accurate is the interpolation. This effect is
known as the Runge phenomenon. A much better set of points is
with points becoming denser closer to the edges of the domain.
It is called the Chebyshev sampling and it is required to perform
the Chebyshev approximation of �̃se in time. Such a set of points is
chosen with the following formula:

�t j
def= 1

2

(
1 − cos

(
j π

M − 1

))
�t, (29)

see example for M=11 in Fig. 1. These points are used as the time
points �t j , to interpolate �̃se , spanning the whole single �t dis-
cussed in preceding sections. The Chebyshev approximation men-
tioned here is different from the one discussed in Section 2.2
which approximates the function of a matrix that operates on a
vector.

A Newton interpolation of function f (t) at points �t j is defined
as:

f (t) ≈
N∑

an Rn(t) (30)

n=0

5

where an are coefficients of the expansion and Rn are the Newton
basis polynomials defined as: R0(t) = 1 and Rn(t) = ∏n−1

j=0(t −�t j).
During the process of calculating the Newton interpolation of f (t)
the an coefficients of the expansion are calculated as the divided
differences of the interpolated function f (t) (see [22] sections
25.1.4 and 25.2.26 on pages 877 and 880; also see [2] appendix
A.1). It is used in Eq. (8).

2.6. Arnoldi approach

Calculation of the evolution operator in [16] method requires
the knowledge of a spectral range of this operator. That method
cannot be used when it is impossible to estimate the eigenvalue
domain. The difficulty with such estimation grows when the eigen-
values are distributed on the complex plane, which is the case
with absorbing boundary conditions (see Section 2.9). And almost
all interesting use cases of time propagation (e.g. a multi-level di-
atomic molecular system evolving under a laser impulse) require
absorbing boundary conditions. In such, quite common, situation
the Arnoldi approach comes to the rescue, because it works with-
out required prior knowledge of the eigenvalue domain.

The Arnoldi approach calculates the f M (̃Gavg , t)�̃vM in Eq. (28)
in the following manner:

(a) First construct an orthonormalized (via Gram-Schmidt process)
reduced Krylov subspace �̃v, A �̃v, A2 �̃v, . . . , AK−1 �̃v (the K pa-
rameter controls the accuracy, see Section 2.8 and A = G̃avg).9

(b) Construct the transformation matrix ϒ from the reduced
Krylov basis representation to the position representation of
�̃v j vectors.

(c) Rescale the eigenvalue domain during the process using
method [23] by dividing by the capacity of the domain to re-
duce numerical errors.

(d) Perform the calculation in the reduced Krylov basis represen-
tation then transform the result back to original positional
representation of �̃v j using the transformation matrix ϒ.

2.7. Extension to coupled time-dependent Schrödinger equations

The critical observation to extend this semi-global algorithm to
an arbitrary number of coupled Schrödinger equations (see Eq. (2))
is that this method is independent of the Hamiltonian used. There
is no requirement that this Hamiltonian is a single-level system
or several coupled levels. The method uses the iterative procedure
to obtain the solution. The iterations are performed via invoking
the Ĥ(t) acting on ψ until a convergence criterion is met: the
difference between the wavefunction from previous iteration and
current iteration is smaller than predetermined tolerance ε. This
iterative procedure is executed inside a single timestep �t over
the M time points.

9 The Arnoldi algorithm is a subtype of a polynomial expansion with the number
of terms being the size of the Krylov space, hence the parameter K of the Arnoldi
method has the same meaning as in Eq. (8).

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

During this calculation all the expansion coefficients, both with
respect to K (Eq. (8)) and with respect to M (Eq. (15)) are stored
inside a matrix of size N × K and N × M respectively, where N
is the number of grid points in the discretized wavefunction. The
usual matrix algebra is used in the C++ implementation, hence pre-
serving the original code of the implementation when moving to
several coupled Schrödinger equations is desirable. And it is pos-
sible because the algorithm itself is agnostic to the Hamiltonian:
it only invokes the H̃(t)ψ in the computation. The trick lies in
the memory layout of the storage: the coupled wavefunctions are
stored one after another inside a single-column vector. A system
of k coupled wavefunction uses k N grid points. The system sim-
ply becomes larger and the semi-global algorithm uses matrices
of sizes (k N) × K and (k N) × M respectively without being in-
formed how the information (stored in the column vector of size
k N) is used by the Hamiltonian. The technical implementation de-
tails are discussed in Section 4.1. Additionally, the same approach
can be used when adapting semi-global algorithm to solving higher
dimensional systems with more spatial directions, such as a sys-
tem of three atoms using Jacobi coordinates and with coupled
Schrödinger equations therein.

2.8. Summary of parameters used by the semi-global method

The semi-global time integration method uses following param-
eters: K introduced in Eq. (9) to compute the evolution operator,
M introduced in Eq. (15) to help with the convergence of the it-
erative process, ε – the error tolerance (Eq. (27)) and the “global”
timestep �t (Eq. (29)) over which the converging sub-iterations
are being computed. The short summary of these parameters is
listed in Table 1.

2.9. Absorbing boundary conditions with a complex potential

An optimized complex absorbing potential is used [2,24,25]. In
the damping band10 a sequence of square complex barriers are
placed, each of them having their own reflection and transmis-
sion amplitudes for a plane wave [25]. The parameters of each
barrier are optimized with respect to the cumulated plane wave
survival probability of all barriers. The typical characteristic of such
a barrier is that it damps momentum within a certain momentum
range and this range pertains to the current problem being calcu-
lated. After the optimization procedure is complete the complex
potential is added to the potential used in the time propagation.
The Arnoldi approach works correctly with complex potentials (see
Section 2.6) and this is why it is used by the semi-global time prop-
agation method.

3. Calculations in higher numerical precision

There is a need for higher precision computations in quan-
tum dynamics, especially for attosecond laser impulses where
the simulated time span is very short and the timestep is very
small [26]. A very high temporal resolution is necessary to de-
scribe such a system. It stems from the simple fact that with
small timesteps (which are necessary to describe a quickly chang-
ing electromagnetic field) there are a lot of small contributions
from each timestep. Upon adding these contributions many times,
the errors will accumulate11. And only higher precision calcula-
tions can make the errors significantly smaller.

10 The damping band is a region of space near the boundaries of the simulated
grid in which damping occurs. Usually, its width is several atomic units of length,
though it always has to be chosen carefully to fit the current simulation, because
too narrow band will result in the reflection of the wavefunction and too wide band
(requiring larger grid) will be a waste of computer resources.
6

High-precision computation is an attractive solution in such
situations, because even if a numerically better algorithm with
smaller error or faster convergence is known for a given problem
(e.g. Kahan summation [27] for avoiding accumulating errors11), it
is often easier and more efficient to increase the precision of an
existing algorithm rather than deriving and implementing a new
one [28,29]. However, switching to high-precision generally means
longer run times [30,31] as shown in the benchmarks in Section 6.

Nowadays, high-precision computing is used in various fie-
lds, such as quantum dynamics for physical and chemical pur-
poses [32–35], long-term stability analysis of the solar system [36,
37,28], supernova simulations [38], climate modeling [39], Coulomb
n-body atomic simulations [40,41], studies of the fine structure
constant [42,43], identification of constants in quantum field the-
ory [44,45], numerical integration in experimental mathemat-
ics [46,47], three-dimensional incompressible Euler flows [48],
fluid undergoing vortex sheet roll-up [45], integer relation detec-
tion [49], finding sinks in the Henon Map [50] and iterating the
Lorenz attractor [51]. There are many more yet unsolved high-
precision problems in electrodynamics [52]. In quantum mechan-
ics the extended Hylleraas three electron integrals are calculated
with 32 digits of precision in [34]. The long range asymptotics
of exchange energy in a hydrogen molecule is calculated with
230 digits of precision in [35]. In quantum field theory calcula-
tions of massive 3-loop Feynman diagrams are done with 10000
decimal digits of precision in [44]. Moreover the experiments
in CERN are being performed in higher and higher precision as
discussed in the “Welcome to the precision era” article [53]. It
brings focus to precision calculations and measurements which
are performed to test the Standard Model as thoroughly as pos-
sible, since any kind of deviation will indicate a sign of new
physics.

Consequently, I believe that in the future, high-precision cal-
culations will also become more popular and necessary for the
development of femto- and attosecond chemistry. Following two
use cases come to mind:

(a) In order to properly describe a rapidly changing electric field
of a laser impulse in a typical femtosecond and attosecond
chemistry problem a small timestep is necessary [54]. In such
situation the accumulation of machine errors can sometimes
be a problem which can be readily solved by high precision.

(b) High precision offers great resolution in the spectrum obtained
from the autocorrelation function which is commonly used
to numerically identify the oscillation energy levels [55]. In
case where there are many overlapping levels due to multi-
ple coupled potentials a such situation can occur in which
two very close oscillation energy levels can only be resolved
when there are more significant digits available than in the
typical double precision. The caveat being that a very small
timestep is necessary because it determines the resolution of
the Fourier transform used on the autocorrelation function.
A work exploring this possiblity is currently in preparations
to publish.

Therefore, I have implemented the algorithm presented here in
high-precision. In Section 6 I show the performance benchmarks
with additional details. See also my work [56] for high-precision
classical dynamics.

11 For n summands and ε Unit in Last Place (ULP) error, the error in regular
summation is nε, error in Kahan summation [27] is 2ε, while error with regular
summation in twice higher precision is nε2. See proof of Theorem 8 in [27].

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

4. Implementation of TDSE for time-dependent Hamiltonian

The C++ implementation of the iterative process in Equa-
tion 28 is shown in the Listing 1 of the function SemiGlobalODE
::propagateByDtSemiGlobal [57].

First the simulation parameters (see Table 1) are assigned to
local variables. A helper class LocalData in line 6 contains vari-
ables local to this function as well as methods operating on them.
It was introduced here in order to improve clarity of the rest of the
SemiGlobalODE::propagateByDtSemiGlobal by splitting
the calculation into several logical steps, described below. A ma-

trix Unew (variable �̃ψnew in Eq. (28)) in line 9 is created to store
M (M is Nt_ts in the code) wavefunctions,12 one for each time
point (Fig. 1). Additionally one extra M + 1th wavefunction is cre-
ated for the purposes of estimation of the interpolation in time.
The self convergent iteration process (Eq. (28)) spans whole �t
time period divided into M time points (Fig. 1). The guess wave-

function d.Ulast in line 12 (variable �̃ψ prev in Equation 28) takes
value from the extrapolated Uguess which was prepared at the
end of the previous timestep (line 60 or 63).13 In case when there
was no previous iteration the �̃ψ(t = 0) is used for all M time point
wavefunctions, this causes the main convergence while loop to
be executed about 2 times more. The value �̃ψnew(�t0) at first time
point is the final value from previous timestep (line 13). The �̃v j

vectors (Eq. (19)) are created in line 14, their first component is
just the wavefunction �̃ψ0 (Eq. (18)). In the main convergence loop
they are calculated in line 21. Remaining preparation lines concern
counting the number of iterations it took Eq. (28) to converge and
tracking and estimating the calculation error. The tol+1 in line
16 is to ensure that the first execution of the while loop always
takes place. In next executions of this loop the value from Eq. (27)
is used and compared against ε tolerance.

In the main while loop (line 19, Eq. (28)), first the extended
inhomogeneous source term �̃se(

�̃ψ(t), t) from Eq. (24) is calculated
in line 20 taking into account all of the time dependence of the
Hamiltonian. Next the �̃v j vectors are calculated for all M . The
Newton interpolation polynomial (Section 2.5) is used and the di-
vided differences calculations are performed in the process. This
is followed by a check for numerical divergence (line 22). Next a
lambda function for the G̃avg (line 24) is created to be used in the
calculation of the first term f M (̃Gavg) in Eq. (28). In line 27 code
branching occurs depending on the type of the calculation method.
The Arnoldi method is described in this paper (Section 2.6), the
Chebyshev method (line 41) is discussed in detail in [2] and is also
possible to use here although it is less useful because of the need
to provide the energy range of the Hamiltonian. In line 29 the rep-
resentation of G̃avg in the orthogonalized Krylov space is stored in
the Hessenberg matrix and its eigenvalues are found (line 30). This
is the place in the Arnoldi algorithm which finds the range of the
energy spectrum of the Hamiltonian and makes it possible to cal-
culate using complex potential and simplifies a lot the usage of this
algorithm. One additional point in the spectrum named avgp (line
31) is used in order to track the calculation error and compute the
energy spectrum capacity [23] (line 35). Next the expansion vec-

12 Using plural wavefunctions might be confusing, so here’s a clarification: on each
coupled electronic state there is a wavefunction evolving on the electronic poten-
tial assigned to it. All of them together sit inside a C++ std::vector container.
When there is no confusion in the context I am using wavefunction to refer to all
coupled wavefunctions, otherwise I emphasize in text whether I mean a single cou-
pled wavefunction or all wavefunctions. In here it’s list of wavefunctions one for
each time point in Fig. 1.
13 When jump starting the calculations Uguess equals the initial wavefunction

(see Eq. (18)). The assignment to Uguess is performed in the class constructor,
hence it is not shown in the Listing 1.
7

tors for the Newton approximation in the reduced Krylov space
are calculated (line 37) and then all M + 1 wavefunctions �̃ψnew
are calculated (Eq. (28), line 39). It is this line that the conversion
between Krylov space and position representation is performed us-
ing the transformation matrix ϒ (cf. point (d) in Section 2.6). This
follows by estimating current convergence (line 48) Eq. (27) and
assigning �̃ψ prev to �̃ψnew . As mentioned earlier the lines 41-47
perform the same calculation, but with Chebyshev approach [2],
notably the energy range min_ev and max_ev (used in line 44)
have to be provided.

When the iterative process is complete a check is performed
whether the used number of iterations was enough for conver-
gence (line 52) and maximum estimated errors are stored (line
53). Next, the total number of iterations is stored (line 55) in or-
der to track the computational cost. Next, the solution is stored in
a class variable fiSolution (line 56). Finally the wavefunction
is extrapolated for the next timestep �t (line 60 and 63) and the
estimated errors are checked and stored (line 67).

The time-dependent Hamiltonian H̃(t) is called in lines 20 and
25, when invoking the calcSExtended and Gop functions. It is
presented in Listing 2. The time dependence is encoded in line 13
of Listing 2, also it deals with coupled electronic states (Sec-
tion 4.1). The time-dependent potential is used in line 15 when
acting on the wavefunction in line 16. The time-dependent Hamil-
tonian uses function Ekin_single (Listing 4) in line 7 (Listing 2)
to calculate the kinetic energy operator although if necessary it
also could become time-dependent with only a small change in
the code.

It shall be noted here that the Listings 2, 3 and 4 are example
implementations of a complete Hamiltonian together with coupled
electronic levels and a custom kinetic energy operator, which uses
FFT. The semi-global algorithm in Listing 1 can be supplied by the
user with an entirely different set of these functions implementing
a different Hamiltonian and kinetic energy operator. The possi-
bilities include (1) curvilinear coordinates with more degrees of
freedom than the single degree of freedom used here, e.g. Jacobi
coordinates (2) a grid with varying distance between the points.
The only requirement being that the implemented Hamiltonian
correctly “understands” the wavefunction and deals with it. The
semi-global algorithm does not need to know the details how the
wavefunction is dealt with by the Hamiltonian as long as it is con-
verted to VectorXcr (“flattened”, see Sections 2.7, 4.1 and the
file README.pdf in the accompanying source code package).

In the presented numerical implementation the numerical
damping absorbing boundary conditions from Section 2.9 are en-
coded inside the complex potential (lines 15 and 19 in Listing 2)
during the calculations.

4.1. Coupled time-dependent Schrödinger equations

In Section 2.7 I explained how it is possible to adapt this algo-
rithm to arbitrary amount of coupled electronic states by storing
all levels inside a single table.

To deal with each kth level the Ekin_single loops over all
levels (Listing 2 line 6). Similarly when dealing with the off
diagonal elements of Eq. (2) the loop on levels is done in
lines 10 and 11. The function calc_Hpsi in Listing 2 as the
wavefunction argument takes the MultiVectorXcr which con-
tains all wavefunctions as separate elements of std::vector.14

But the semi-global algorithm deals with a single “flattened” Vec-

14 To be precise in C++ the following types are defined:
using VectorXcr = Eigen::Matrix<Complex, Eigen::Dynamic,
1>;
using MultiVectorXcr = std::vector<VectorXcr>;.

http://mostwiedzy.pl

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

J. Kozicki Computer Physics Communications 291 (2023) 108839

void SemiGlobalODE::propagateByDtSemiGlobal(const int& iteration)
{

const int& Nt_ts = cpar.M_Nt_ts; // number of interior Chebyshev points (M in article)
const int& Nfm = cpar.K_Nfm; // number of terms for function of matrix (K in article)
const Real& tol = cpar.tol; // tolerance parameter
LocalData d(*this, iteration); // data with local variables e.g. Eq.15 and Eq.19
// Unew is the calculated wavefunction. Uguess is prepared at the end of iteration
// and used later. The extra Nt_ts + 1 column is used for estimating errors.
Unew = MatrixXcr::Zero(cpar.Nu, Nt_ts + 1);
// The first guess for the iterative process, for the convergence of the u values.
// Each column represents an interior time point in the time step:
d.Ulast = Uguess; // first guess for Eq.28
Unew.col(0) = d.Ulast.col(0);
d.v_vecs.col(0) = d.Ulast.col(0); // Eq.18 and 19
niter = 0; // count iterations in Eq.28
currentErrors = EstimatedErrors(0, tol + 1); // error tracking

// main iteration loop in Eq.28
while (not d.converged(currentErrors, tol)) { // Eq.27

d.calcSExtended(); // calculate Eq. 24, inhomogeneos term
d.calcVVectors(); // calculate Eq. 18 and Eq. 19
d.checkAllFinite(currentErrors); // check for divergence
// The G_avg operator acting on v
auto G_avg = [=](const VectorXcr& v) -> VectorXcr {

return Gop(d.Ulast.col(cpar.tmidi), d.t(cpar.tmidi), v);
};
if (cpar.Arnoldi) { // use Arnoldi method

// Create the orthogonalized Krylov space by the Arnoldi iteration procedure, Sect. 2.6
const MatrixXcr Hessenberg = createKrop(G_avg, d.v_vecs.col(Nt_ts), Nfm, d.Upsilon);
const VectorXcr eigval = eigenValues(Hessenberg.block(0, 0, Nfm, Nfm));
const Complex avgp = eigval.sum() / Real(Nfm);
// sampled energy spectrum and extra point to estimate error
d.samplingp.resize(eigval.rows() + 1);
d.samplingp << eigval, avgp;
d.capacity = get_capacity(eigval, avgp);
// Obtain the expansion vectors for Newton approximation of f(G,t)v_vecs in Krylov space
d.RvKr = getRv(Nfm, d.v_vecs, Nt_ts, Hessenberg, d.samplingp, d.capacity);
// use Arnoldi to approximate new iteration of Eq.28
Unew.block(0, 1, Unew.rows(), Unew.cols() - 1)

= Ufrom_vArnoldi(cpar.timeMts, tol, Nfm, d, currentErrors);
} else { // Use a Chebyshev approximation for the function of matrix computation. Vcheb has:

// Tn(G(Ulast(:,tmidi), t(tmidi)))*v_vecs(: ,Nt_ts + 1), n = 0, 1, ..., Nfm-1
// where Tn(z) are the Chebyshev polynomials, n’th vector is the (n+1)’th col of Vcheb.
d.Vcheb = vchebMop(G_avg, d.v_vecs.col(Nt_ts), cheb->min_ev, cheb->max_ev, Nfm);
Unew.block(0, 1, Unew.rows(), Unew.cols() - 1)

= Ufrom_vCheb(cpar.timeMts, cheb->Ccheb_f_ts, maxErrors, d, currentErrors);
}
d.estimateErrors(currentErrors);
d.Ulast = Unew;
niter = niter + 1;

}
currentErrors.checkNiterIsEnough({ cpar, tol, iteration, niter, *this }); // Check if converged.
maxErrors.updateMaxErrors(currentErrors); // update estimated maximum errors
if (iteration == 0) niter0th = niter;
allniter = allniter + niter;
fiSolution = Unew.col(Nt_ts - 1); // Finally! store the result wavefunction.
// The new guess is an extrapolation of the solution within the previous time step:
Uguess.col(0) = Unew.col(Nt_ts - 1); // result at last timestep is the first one in next iter
if (cpar.Arnoldi) { // Arnoldi method

Uguess.block(0, 1, Uguess.rows(), Nt_ts) // extrapolate for the next timestep
= Ufrom_vArnoldi(cpar.timeMnext, tol, Nfm, d, boost::none);

} else { // Chebyshev method
Uguess.block(0, 1, Uguess.rows(), Nt_ts) // extrapolate for the next timestep

= Ufrom_vCheb(cpar.timeMnext, cheb->Ccheb_f_next, maxErrors, d, boost::none);
}
if (there_is_ih) { sNext = d.s.col(Nt_ts - 1); }
maxErrors.checkAll({ cpar, tol, iteration, -niter, *this }); // check esitmated errors

}

Code listing 1: The main time propagation loop for the time-dependent Hamiltonian.
8

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

1 MultiVectorXcr
2 State::calc_Hpsi(const MultiVectorXcr& psi_0, const Real& t)
3 {
4 MultiVectorXcr psi_ret = getZeroMultiVectorXcr(psi_0);
5 // The kinetic operator, acting only on the diagonal
6 for (int j = 0; j < levels; j++) {
7 psi_ret[j] = Ekin_single(psi_0[j]);
8 }
9 // The potential operator matrix acting on the wavefunction

10 for (int j = 0; j < levels; j++) {
11 for (int k = 0; k < levels; k++) {
12 // if present obtain the time dependent potential
13 if (hasTimeDependence(j, k)) {
14 psi_ret[j] = psi_ret[j].array()
15 + timeDependentPotential(j, k, t).array()
16 * psi_0[k].array();
17 } else {
18 psi_ret[j] = psi_ret[j].array()
19 + potentialMatrix[j][k].array()*psi_0[k].array();
20 }
21 }
22 }
23 return psi_ret;
24 }

Code listing 2: The time-dependent Hamiltonian operator for coupled electronic states in C++.

1 VectorXcr State::minus_i_Hpsi__MultiVectorFlattened(
2 const VectorXcr& /*u*/, // wf from this step, e.g. Bose-Einstein
3 const Real& t, // time
4 const VectorXcr& v // wavefunction wf to propagate
5)
6 {
7 MultiVectorXcr psi_work = zero(wf);
8 decompres(v, psi_work);
9 psi_work = calc_Hpsi(psi_work, t);

10 return -Mathr::I * flatten(psi_work);
11 };

Code listing 3: The C++ wrapper for handling arbitrary number of coupled electronic states.

1 VectorXcr State::Ekin_single(const VectorXcr& psi_0)
2 {
3 VectorXcr psi_1 = VectorXcr::Zero(points);
4 doFFT(psi_0, psi_1); // ψ1= F(ψ0)
5 psi_1 = (psi_1.array() * minusKSqared.array()); // ψ1= -k2F(ψ0)
6 doIFFT(psi_1, psi_1); // ψ1= F−1(-k2F(ψ0)) = ∇2ψ0

7 psi_1 *= (-PhysConst::hbarSqr / (2 * mass)); // ψ1= (-h̄ 2(∇2ψ0)/(2m))
8 return psi_1;
9 }

Code listing 4: The kinetic energy operator using FFT implemented in C++.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

torXcr. Hence a conversion discussed in Section 2.7 has to be
performed.

This conversion is shown in Listing 3. The minus_i_Hpsi_

_MultiVectorFlattened is the function which is provided to
the semi-global algorithm as the function G̃(�̃ψ(t), t) (Eq. (5), List-
ing 1 line 24). It is called with wavefunction stored inside a sin-
gle argument VectorXcr. This data is decompressed in line 8
(Listing 3), then the time-dependent Hamiltonian calc_Hpsi

is called on it (Listing 2) and then the data is flattened again
into a single VectorXcr and multiplied by negative imaginary
unit (Eq. (5), line 10 in Listing 3) (atomic units are used here).
The semi-global algorithm can also work when the wavefunc-
tion from present timestep is used (e.g. a Bose-Einstein conden-
sate trap) and provides this argument for the Hamiltonian in
line 2 of Listing 3. The wavefunction from present timestep is
the d.Ulast.col(cpar.tmidi) (line 25 in Listing 1) where
9

cpar.tmidi is the time coordinate of the averaged Hamiltonian
G̃avg .15

5. Validation of the C++ code for semi-global algorithm

To validate the implementation of the semi-global time propaga-
tor I have reproduced the results both from [2] and from [58,59].16

The following tests are provided in the accompanying C++ code:

(a) Atom in an intense laser field, Section 5.1 (accompanying file
test_atom_laser_ABC.cpp).

15 In Listing 3 the variable /*u*/ is commented out because here I am not deal-
ing with the Bose-Einstein condensate. It is confirmed to work by comparing with
examples provided in [2].
16 Additionally I have compared the simulations of a two level NaRb system with

the WavePacket software [60–62].

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

(b) Single avoided crossing, Section 5.2.1 (accompanying file
test_single_dual_crossing.cpp).

(c) Dual avoided crossing, Section 5.2.2 (accompanying file
test_single_dual_crossing.cpp).

(d) Gaussian packet in a forced harmonic oscillator, supple-
mentary materials of [2] (found in the accompanying file
test_source_term.cpp).

(e) Forced harmonic oscillator with an arbitrary inhomogeneous
source term, supplementary materials of [2] (accompanying
file test_source_term.cpp).

The tests with a Gaussian packet in a forced harmonic oscillator
and an oscillator with an inhomogeneous source term are example
simulations found in the supplementary materials of [2] and I in-
clude them in the C++ code, but do not discuss them here. Suffice
to say that I have reproduced them exactly.

5.1. Validation of time-dependent Hamiltonian using an atom in an
intense laser field

Here I present the reproduction of results of a model atom in
an intense laser field which was presented in [2]. I shall note that
these are not new results, since validation of an algorithm has to
be run on an example for which the results are already known and
verified. In this case I am comparing the electronic wavefunction
of an atom in a laser field after evolution for 1000 a.u. (a time of
about 24.2 fs), with the reference result found in the supplemen-
tary materials of [2]. In the calculations I have used the following
parameters (Table 1): K = 9, M = 9, ε = 2 × 10−16 (for double
precision17) and �t = 0.025 a.u.

In this test the central potential is represented by a simplified
Coulomb potential without the singularity (hence it is a model one
dimensional atom):

Vatom(x) = 1 − 1√
x2 + 1

. (31)

This simple model is for example used in the context of intense
laser atomic physics. The electric field of the laser impulse used is
following (Fig. 2):

ζ(t) = 0.1sech2
(

t − 500

170

)
cos(0.06(t − 500)). (32)

This laser impulse with ω = 0.06 a.u. is similar to the wave-
length of a Titanium-Sapphire laser which is λ = 760 nm. The
sech2 = 1/ cosh2 envelope is similar to the actual envelope found
in the laser pulses. The maximum amplitude ζmax = 0.1 a.u. rep-
resents the intensity of about Imax = 3.52 × 1014 W/cm2. This
term, together with the dipole approximation x ζ(t) is added to
the Hamiltonian which reads:

Ĥ(t) = −h̄2

2
∇2 + 1 − 1√

x2 + 1
− xζ(t). (33)

For the purposes of numerical simulation this Hamiltonian is
modified by adding complex absorbing boundary conditions (Sec-
tion 2.9). Their effect can be seen on the left and right edges of
Fig. 3 where the wavefunction is diminished. The initial wavefunc-
tion is the ground state of the model atom.

Fig. 3 shows the time evolution of the wavefunction over the
time of 1000 a.u. The maximum intensity of the laser impulse is
centered on 500 a.u. (Fig. 2) and it can be seen on Fig. 3 that this
is when the wavefunction starts to undergo a rapid change and

17 For long double ε = 1 × 10−19 and for float128 ε = 2 × 10−34.
10
Fig. 2. The electric field of the laser impulse [2].

some parts of the wavefunction start the process of dissociation.
When the calculations reach the 1000 a.u. point in time I compare
the results with the reference solution found in the supplementary
materials in [2] and the maximum difference at a grid point is
smaller than 8 × 10−15, well within the range of the numerical
ULP error.18 It means that my implementation of the semi-global
algorithm completely reproduces the reference results.

5.2. Validation of coupled Schrödinger equations using standard
benchmarks

To validate the present implementation, in this section, I will
reproduce the solution of two problems for a system of coupled
Schrödinger equations featuring nonadiabatic quantum dynamics.
They were originally introduced in [58] and afterward carefully an-
alyzed in [59]. They are considered to be the standard benchmark
for coupled systems. In these problems the diagonal of the diabatic
potential energy surfaces V 11(R) and V 22(R) undergoes:

(a) a single crossing as in Fig. 4a and
(b) a dual crossing as in Fig. 7a.

In the crossing region there is a strong coupling V 12(R) between
the two levels. In adiabatic representation the potential energy sur-
faces E1(R) and E2(R) undergo respectively a single (Section 5.2.1
and Fig. 4b) and dual (Section 5.2.2 and Fig. 7b) avoided crossing.
The nonadiabatic coupling matrix elements D12(R) between the
two levels are relatively large (Fig. 4b and Fig. 7b).

The calculations are performed diabatically because the cou-
pling elements are smaller and the Hamiltonian assumes a simpler
form [63,54].19 To gain more insight from the wave packet dy-
namics on each of these levels the results are presented here in
adiabatic representation. The two levels E1(R) and E2(R) do not
cross and the evolution of wavefunction probability distributions
(Figs. 5 and 8) on the lower and the higher electronic surface is
easier to interpret. The transmission and reflection probabilities
(Figs. 6 and 9) on E1(R) and E2(R) are calculated as integrals (on
a discrete grid) of the single coupled wavefunction in the nuclear
coordinate range satisfying R > 0 and R < 0 respectively. To ob-
tain these results the wavefunctions are converted from diabatic
representation to adiabatic representation by first performing the
diagonalization of the potential matrix V (R) for each value of R .

18 See footnote1 on page 2 for details.
19 See Eqs. 2.12 and 2.100 in [63] for adiabatic TDSE: ih̄ ∂ψ

∂t = − h̄2

2m (∇ + τ)2ψ

(where τ is the nonadiabatic coupling matrix) and Eqs. 2.22 and 2.115 for dia-

batic TDSE: ih̄ ∂χ
∂t =

(
− h̄2

2m ∇2 + V
)
χ ; it can be seen that the position of τ is rather

unfortunate in the adiabatic representation.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

Fig. 3. Model atom in an intense laser field, the time evolution of |ψ(R)|2 during 1000 a.u. The wavefunction at 1000 a.u. agrees with reference solution in [2] with error <
8 × 10−15.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

The obtained eigenvalues are the adiabatic potential energy sur-
faces E1(R) and E2(R) [59]. Next, the matrix of two eigenvectors
φ1(R) and φ2(R) (following the method presented in [59]):

P (R) =
[

P11(R) P12(R)

P21(R) P22(R)

]
= [φ1(R) φ2(R)] , (34)

is used to compute the nonadiabatic coupling matrix elements
D12(R) with:

D12(R) = φ∗
1 · ∂

∂ R
φ2 = P∗

11
dP12

dR
+ P∗

21
dP22

dR
. (35)

Above the electronic integrals become a dot product or a sum
in a two state basis. Finally to obtain the adiabatic wavefunction
ψ(R, t) from the diabatic one, χ(R, t), the following transforma-
tion is used:

ψ(R, t) = P (R)χ(R, t) (36)

or more specifically, since in these two examples we are dealing
with a two level system20:[
ψ1(R, t)
ψ2(R, t)

]
=

[
P11(R) P12(R)

P21(R) P22(R)

][
χ1(R, t)
χ2(R, t)

]
. (37)

The simulations begin with the single wavefunction placed on
the lower energy surface E1(R) assuming shape of a Gaussian
wavepacket21:

χGauss(R) = π− 1
4 a− 1

2 e
− (R−R0)2

2a2 −ik0(R−R0)

. (38)

The initial values of parameters assumed in each simulation are
listed in Table 2. They were chosen so as to best represent the
undergoing evolution of the coupled system dynamics and to com-
pletely reproduce the results in [58,59].

20 Alternative method of obtaining the transformation matrix P (R) is to use the
Eq. 3.45 from [63]: β(R) = − 1

2 tan−1
(

V 12(R)
V 11(R)

)
and then use the rotation matrix

from in Eq. 3.44 [63].
21 To be precise in the code the following formula is used: χGauss(R) =
exp

(
− m(R−R0)2+ia2k0 (k0 h̄(t−t0)−2m(R−R0))

2a2m+2ih̄(t−t0)

)
√√

π
(

a+ ih̄(t−t0)

am

) , as it is the solution of a free propagating Gaus-

sian wave packet, in Eq. (38) it was assumed that t0 = 0.
11
5.2.1. Single avoided crossing
In the first standard benchmark [58,59] the potential matrix

elements in diabatic representation V ij(R) are defined as follows
(Fig. 4a):

V 11(R) =
{

A
(
1 − e−B R

)
for R ≥ 0

−A
(
1 − eB R

)
for R < 0

V 22(R) = −V 11(R)

V 12(R) = V 21(R) = Ce−D R2

(39)

with the parameters assuming values: A = 0.01, B = 1.6, C =
0.005 and D = 1.0. In this example the diabatic surfaces cross at
nuclear coordinate R = 0 and a Gaussian off-diagonal potential is
assumed to be centered at this point. The adiabatic surfaces E1(R)

and E2(R) (Fig. 4b) repel each other in the strong-coupling region
and a large nonadiabatic coupling element D12 (Eq. (35)) appears
at the avoided crossing.

Fig. 5 shows the time evolution of the probability distributions
(squared amplitude of the wavefunction |ψ(R, t)|2) on each of the
adiabatic electronic surfaces. And Fig. 6 shows the transmission
and reflection probabilities (integrals for R > 0 and R < 0) evolving
over time.

In the high momentum case (Fig. 5a) the packet has enough
energy to put about 32% of the population on the upper energy
surface. Entering higher level E2(R) caused the wave packet to
lose energy, it has smaller momentum and is propagating slower
as can be seen by the time labels put beneath the center of each
packet in the Fig. 5a. Fig. 6a shows the transmission and reflection
probabilities for high momentum case. It can be seen that whole
packet passes through the crossing point and reflection vanishes
over time. The final population is about twice higher on the lower
electronic surface than on the upper one.

In the low momentum case (Fig. 5b) the packet doesn’t have
enough energy to populate the higher energy surface. Note the
vertical scale on the upper level ρ2 in Fig. 5b. After going up, the
packet almost does not move forward and instead it is leaking back
to the lower level in both directions. It can be seen in Fig. 6b that
the reflection weakly increases over time while transmission on
both electronic surfaces slowly decreases. Most (91%) of the final
population resides on the lower surface.

The obtained results are in very good agreement with [58,59].
Please note that I obtained these results using a different, ar-

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

Table 2
Gauss wavepacket parameters used to reproduce the standard benchmark [58,59].

Parameter [a.u.] Single crossing Dual crossing

high k0 low k0 high k0 low k0

mass m 2000 2000 2000 2000
wavenumber k0 15 8.5 52 30
packet width a 0.75 0.8 0.7 0.7
start position R0 -4 -4.15 -8 -8
simulation time T 1200 4000 900 1500

Table 3
The parameters used in precision and performance tests of semi-global method (see Table 1).

Precision K M ε (equal to ULP size of given precision) �t

double 15 3 2.220446049250313 × 10−16 1 a.u.
long double 18 3 1.084202172485504434 × 10−19 1 a.u.
boost float128 31 3 1.925929944387235853055977942584927 × 10−34 1 a.u.

Table 4
Precision test of results from global Chebyshev propagator [16] compared against itself, but with higher computation precision. Error is given in terms of ULP (see footnote1),
where the size of ULP for each row is given in the last column (its precise value is in Table 3). There is no row for boost float128 because there is no result with higher
precision against which it can be compared, hence it is used only as reference against which lower precision results are compared.

Benchmark type Precision long double boost float128 ULP size

single crossing double 143 141 2.2 × 10−16

high k0 long double — 3824 1.1 × 10−19

single crossing double 127 127 2.2 × 10−16

low k0 long double — 1026 1.1 × 10−19

dual crossing double 132 124 2.2 × 10−16

high k0 long double — 15671 1.1 × 10−19

dual crossing double 733 743 2.2 × 10−16

low k0 long double — 20242 1.1 × 10−19

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

guably more precise, time integration algorithm than the one used
in [58,59]. Also see Section 5.2.3 for precision and performance
comparison of these calculations against the global Chebyshev
propagator [16,17].

5.2.2. Dual avoided crossing
In the second standard benchmark [58,59] the potential matrix

elements in diabatic representation V ij(R) are defined as follows
(Fig. 7a):

V 11(R) = 0

V 22(R) = −Ae−B R2 + E0

V 12(R) = V 21(R) = Ce−D R2

(40)

with the parameters assuming values: A = 0.1, B = 0.28, C =
0.015, D = 0.06 and E0 = 0.05. In this example the diabatic po-
tentials cross each other twice and a wide Gaussian off-diagonal
potential is assumed. The adiabatic surfaces exhibit two avoided
crossings (Fig. 7b) and the nonadiabatic coupling element D12
(Eq. (35)) has two pronounced peaks.

The time evolution of probability distributions is shown on
Fig. 8 and respective transmission and reflection probabilities are
on Fig. 9.

The high momentum case in Fig. 8a demonstrates the effect
of destructive interference between the first and second crossing.
The wave packet populates the higher level around t = 150 (ρ2 in
Fig. 8a) then peaks at around t = 350 (transmission 2 in Fig. 9a)
and arrives to second crossing at about the same phase at which
it entered the higher level, but this time the nonadiabatic cou-
pling element D12(R) (Fig. 7b) has negative sign. Same phase of
packet in conjunction with negative sign of D12(R) causes the
wave packet to leave the higher electronic surface almost com-
pletely, despite having high momentum. This effect can be seen in
12
Fig. 9a, where in the end about 98% of population resides on the
lower energy surface.

The low momentum case (Fig. 8b) shows constructive interfer-
ence. First at around t = 500 about 32% of the population enters
the higher energy surface (ρ2 in Fig. 8b), then at second crossing
additional 32% enters ρ2. At t = 900 there is a significant popula-
tion increase. Fig. 9b shows that about 64% of the population was
transmitted to the higher energy surface. This phenomenon is also
known as Stükelberg oscillations and occurs when the time spent
by the wave packet between two coupling regions is an integer or
half integer multiple of mean wavepacket oscillations.

Again, the obtained results are in very good agreement with
[58,59].

5.2.3. Precision and speed tests
The calculations from two previous sections (single and dual

avoided crossings) are used in this section to compare the preci-
sion and performance with the global Chebyshev propagator [16,
17]. This section will also demonstrate the speed gain obtained by
using the semi-global propagator.

The parameters of semi-global method used in this comparison
are shown in Table 3. The M parameter can be very low because
there is no time-dependence in the Hamiltonian, the K parame-
ter was adjusted to be the minimal value of K where the warning
about too small K is not printed (see Listing 1, line 48). Namely
the estimated error of the function of the matrix is smaller than ε.
The ε parameter is set to the ULP error22 because maximum pos-
sible precision in the calculations is used here. And the timestep
used is �t = 1 a.u.

22 See footnote1.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

Table 5
Precision test of results from semi-global propagator compared against itself, but with higher computation precision. Error is given in terms of ULP (see footnote1), where the
size of ULP for each row is given in the last column (its precise value is in Table 3). There is no row for boost float128 because there is no result with higher precision
against which it can be compared, hence it is used only as reference against which lower precision results are compared.

Benchmark type Precision long double boost float128 ULP size

single crossing double 6 6 2.2 × 10−16

high k0 long double — 10 1.1 × 10−19

single crossing double 14 14 2.2 × 10−16

low k0 long double — 23 1.1 × 10−19

dual crossing double 14 14 2.2 × 10−16

high k0 long double — 126 1.1 × 10−19

dual crossing double 7 7 2.2 × 10−16

low k0 long double — 110 1.1 × 10−19

Table 6
Precision test of results from semi-global propagator (rows in the table) compared against results from global Chebyshev propagator [16] (columns in the table). Error is given
in terms of ULP1. The size of ULP for each row is given in the last column (its precise value is in Table 3).

Benchmark type semi-global global Chebyshev propagator [16] ULP size

Precision double long double boost float128

single crossing double 142 5 6 2.2 × 10−16

high k0 long double — 3822 10 1.1 × 10−19

boost float128 — — 548 / 2164‡ 1.9 × 10−34

single crossing double 133 13 14 2.2 × 10−16

low k0 long double — 1023 23 1.1 × 10−19

boost float128 — — 2433 / 7494‡ 1.9 × 10−34

dual crossing double 136 9 14 2.2 × 10−16

high k0 long double — 15700 126 1.1 × 10−19

boost float128 — — 1922 1.9 × 10−34

dual crossing double 745 17 7 2.2 × 10−16

low k0 long double — 20237 110 1.1 × 10−19

boost float128 — — 3416 1.9 × 10−34

‡ Smaller ULP error value is with the number of elements in the series of the global Chebyshev propagator [16,17] equal to 10 R , larger ULP error is with 1.3 R , see footnote23

for details. Interestingly 1.3 R was enough for float128 in dual crossing calculations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

The global Chebyshev propagator [16,17] has only one param-
eter, namely how many elements in the series are calculated,
and its value is actually fixed by the design of the algorithm
to be 1.3 R (this recommendation is given in [17]), where R =
�t
2h̄ (Emax − Emin). This value was found to provide full precision in
nearly all of the calculations, even for higher precision types.23

To compare the two algorithms I am performing the same cal-
culation of transmission and reflection probabilities for all four
cases (Table 2 and Figs. 6 and 9) using both semi-global method
and the global Chebyshev propagator [16,17]. The results of trans-
mission and reflection probabilities are stored in a text file with
all significant digits (column 2 in Table 8). Since the timestep
�t = 1 a.u. and because the transmission and reflection probabili-
ties are stored for each timestep the text files contain the number
of lines equal to the total simulation duration (“simulation time” in
Table 2) for each of the four cases. These numbers are then com-
pared against the reference result and the maximum error in terms
of the units of ULP found for each case is given in Tables 4–6.

The Table 4 shows the results of comparison of the global
Chebyshev propagator [16,17] with itself but with higher numeri-
cal precision. The largest error found is for dual crossing, low mo-
mentum when comparing long double with float128 preci-
sion and equals to 20242 ULP units (where each ULP in this case
equals to 1.1 × 10−19). All ULP errors where a comparison is done
between long double and float128 are unusually high and
they can be explained by the following phenomenon: several of

23 To validate this I performed the same calculation using 10 R and found that the
results are the same, except for two cases which are marked with ‡ in Table 6.
13
the last elements in the series of the Chebyshev propagator are
very small since the Bessel function values are decaying exponen-
tially, this results in addition of very small values to an otherwise
large values resulting from the previous elements in the series.
Hence the contribution of the last elements in the series vanishes
and produces a slightly less accurate result than would be possi-
ble if higher precision was used. Very similar ULP error values will
appear again in Table 6.

The Table 5 shows the results of comparison of semi-global
method against itself, but with higher precision. The largest error is
126 ULP units (where each ULP in this case equals to 1.1 × 10−19)
and is significantly smaller than in Table 4 which means that the
semi-global algorithm overall has higher accuracy than the global
Chebyshev propagator.

Finally the Table 6 shows the comparison of semi-global algo-
rithm against the global Chebyshev propagator. In this case it is
also possible to compare results for float128 precision between
the two algorithms. The largest ULP error is 20237 for the com-
parison between long double semi-global and long double
global Chebyshev propagator. This value is almost equal to the
largest ULP error found in Table 4 and indicates that indeed the
global Chebyshev propagator has lower accuracy.24 The compari-
son between float128 types of both methods is more favorable

24 Because a more accurate semi-global result is compared with less accurate global
Chebyshev propagator. Why not the other way around? The answer lies in Ta-
ble 5 which shows maximum possible errors of the semi-global method to be much
smaller and also because in Table 6 the largest ULP error between long double
semi-global and float128 global Chebyshev propagator is 126 ULP units, which
indicates that long double in semi-global indeed are accurate.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l
 Fig. 4. Model surfaces potential matrix of the simple avoided crossing example;
(a) diabatic representation; (b) adiabatic representation, D12 is the nonadiabatic
coupling element (it is drawn as divided by 50 because the coupling is large).

with largest ULP error equal to 3416 or 7494 if 1.3 R elements in
the series are used in the global Chebyshev propagator.

All the calculations discussed in previous paragraphs took a cer-
tain amount of time which was measured to test the computation
speed of both algorithms. These results are summarized in Table 7
separately for each precision, averaged over the four simulation
cases. The semi-global method turns out to be 1.9× faster than
the global Chebyshev propagator for double precision and even
faster for higher precisions.

I would like to point out that the global Chebyshev propaga-
tor [16,17] is commonly used to validate accuracy of other time
propagation methods [64], while in my precision and speed test
it turned out to perform worse than semi-global method in both
precision and the calculation speed.

The tests discussed in this section are available in the folder
Section_5.2.3_PrecisionTest in the supplementary mate-
rials.

6. Benchmarks of high precision quantum dynamics

As mentioned in Section 3, I would like to emphasize that this
algorithm is implemented in C++ for arbitrary floating point preci-
sion types, specified during compilation. It works just as well for
types with 15, 18 or 33 decimal places. This is the reason why
14
Fig. 5. Time evolution of probability distributions on adiabatic energy surfaces, sim-
ple avoided crossing; (a) high momentum Gaussian wavepacket k = 15 a.u.; (b) low
momentum Gaussian wavepacket k = 8.5 a.u.

Real type instead of double is used e.g. in line 5 in Listing 1.
The Real type is set during compilation to one of the following
types: double, long double or float128. The list of all high
precision types, the number of decimal places and their speed rela-
tive to double is given in Table 8. It follows my work on high pre-
cision in YADE, a software for classical dynamics calculations [56].
However the arbitrary precision types boost mpfr and boost
cpp_bin_float are currently not available in the quantum dy-
namics code because the Fast Fourier Transform (FFT) routines25

for them are currently unavailable in the Boost libraries [65]. To
resolve this problem I took part in the Google Summer of Code
2021 [66] as a mentor and now the high precision FFT code is in
preparations to be included in the Boost libraries. The report from
high precision FFT implementation in Boost is available here [67].
After that work is complete all types listed in Table 8 will be avail-
able for quantum dynamics calculations.

Table 8 shows the speed comparison between different high-
precision types, relative to double, separately for classical dy-
namics and quantum dynamics.26 The classical dynamics are re-

25 Used in Listing 4 on page 9.
26 It should be noted that the two types of problems used in the bench-

mark: quantum vs. classical dynamics have entirely different characteristics and

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 6. Transmission and reflection probabilities as function of time in simple
avoided crossing; (a) high momentum Gaussian wavepacket k = 15 a.u.; (b) low
momentum Gaussian wavepacket k = 8.5 a.u.

Table 7
Performance comparison of semi-global propagator against global Chebyshev prop-
agator [16]. Values are averaged over all four benchmark types. The semi-global
propagator is significantly faster than global Chebyshev propagator.

Precision Computation speed of semi-global propagator
compared to global Chebyshev propagator [16]

double 1.9× faster
long double 21.9× faster
boost float128 8.1× faster

produced from YADE benchmark [56] to serve as a reference. I have
done the quantum dynamics benchmark using the example of
atom in an intense laser field from previous Section 5.1. I used
the same parameters with the exception of changing ε (Eq. (27))
to match the ULP error27 of selected precision as provided in table.

The long double precision in quantum dynamics is about
3.5× slower and in exchange provides about 2000 times greater
precision. This might be useful in some situations for quick verifi-
cation of results.

should not be compared per se. The only meaningful conclusion by comparing the
two columns in Table 8 is that the excessive times are different. This conclusion
cannot be generalized.
27 See footnote1 on page 2 for details.
15
Fig. 7. Model surfaces potential matrix of the dual avoided crossing example; (a) di-
abatic representation; (b) adiabatic representation, D12 is the nonadiabatic coupling
element (it is drawn as divided by 12 because the coupling is large).

For the float128 type I did the benchmark twice, first for
the ε same as for double type, then for the significantly smaller
ε matching the float128 type. We can see that using ε =
2 × 10−16 from double for the float128 makes it about 50×
slower.28 When using full float128 precision then the decreased
error tolerance ε forces more iterations in Eq. (28) consequently
making it 170× slower. If one wished to calculate with larger tol-
erance, say ε = 1 ×10−25, then still float128 has to be used, and
it will have speed somewhere between the two values in Table 8.

I would like to mention that from my experience [57], it is bet-
ter to increase �t and allow more sub-iterations in Equation 28
as it speeds up calculation more than changing the K and M
parameters. For example, this atom in the laser field calculation
took 30 seconds with double and �t = 0.1 a.u. and 10 min-
utes with double and �t = 0.0041(6) a.u. both having the same
ε = 2 × 10−16 error tolerance.

Moreover, the original code [2], which deals with a single
Schrödinger equation, was written in Matlab [68] and the same
simulation which took me 30 seconds in C++, took about 5 min-

28 The semi-global algorithm using float128 with ε = 2 × 10−16 is performing
the same amount of mathematical operations as if the double type was used.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

Table 8
The high-precision benchmark: comparison between classical dynamics [56] and quantum dynamics. The speed
is shown as relative to speed at double precision.

Precision Decimal
places

Classical dynamics
speed w.r.t double [56]

Quantum dynamics
speed w.r.t double

float 6 1.01× faster
double 15 — —, ε = 2.2 × 10−16

long double 18 1.4× slower 3.5× slower, ε = 1.1 × 10−19

boost float128 33 4.7× slower 50× slower, ε = 2.2 × 10−16

boost float128 33 170× slower, ε = 1.9 × 10−34

boost mpfr† 62 13.5× slower
boost mpfr 150 19.1× slower
boost cpp_bin_float 62 24.2× slower

† for future comparison with libqd-dev library.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 8. Time evolution of probability distributions on adiabatic energy surfaces, dual
avoided crossing; (a) high momentum Gaussian wavepacket k = 52 a.u.; (b) low
momentum Gaussian wavepacket k = 30 a.u.

utes in Octave.29 So the 10× speed gain due to migrating from
Octave to C++ can now be wisely spent on higher precision calcu-
lations or on simulating larger systems.

29 Octave is an open-source version of Matlab [68]. The speed gain might be
smaller in comparison to Matlab, since it is known to be faster than Octave. How-
ever I have no access to commercial Matlab software to quantify the difference.
Single core was used in both cases, C++ and Octave.
16
Fig. 9. Transmission and reflection probabilities as function of time in dual avoided
crossing; (a) high momentum Gaussian wavepacket k = 52 a.u.; (b) low momentum
Gaussian wavepacket k = 30 a.u.

7. Accompanying C++ source code package

The C++ source code has been run and tested on Linux Ubuntu,
Debian and Devuan,30 and it should run without significant tweaks
on any modern GNU/Linux operating system. Some tweaks might

30 The tests were run on: Devuan Chimaera, Debian Bullseye, Debian Bookworm,
Ubuntu 20.04 and Ubuntu 22.04. Older linux distributions couldn’t work due to too
old version of the libeigen library.

http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

be needed for other operating systems such as MacOS or Win-
dows. In general the source code is very minimal in the sense
that there is only the implemented semi-global algorithm in
files SemiGlobal.hpp and SemiGlobal.cpp together with
the tests listed in Section 5 which can be invoked by various
makefile calls (see makefile for full list), such as make
plot_Coker or make plot_Atom.

All available make targets can be readily found by reading
the comments inside the makefile. One notable target is make
testAllFast which does almost all the tests and takes about 20
minutes. The full test make testAll takes about 7 hours, due to
float128 precision being significantly slower. From all imple-
mented tests, the file test_single_dual_crossing.cpp is
the most interesting because it contains code for working with
multiple electronic levels as well as the placeholder code for
time dependence in the potential (although it is not used31).
It is this source code with a generic Hamiltonian calc_Hpsi
(Listing 2) which is discussed in Section 4. Other test files
test_source_term.cpp and test_atom_laser_ABC.cpp
are the direct translations of Matlab/Octave code from [2].

The library dependencies are following: libfftw3-dev [70]
(version ≥ 3.3.8), libboost-all-dev [65] (version ≥ 1.71.0)
and libeigen3-dev [71] (version ≥ 3.3.7-2).

See file README.pdf in the accompanying source code pack-
age for additional details about how to use the semi-global algo-
rithm with custom Hamiltonian in custom coordinate represen-
tation, such as curvilinear coordinates. The section Usage in the
README.pdf will be maintained and improved as questions arise
from users.

The SemiGlobal.hpp and SemiGlobal.cpp files are writ-
ten to be self contained in a generic way adhering to C++ coding
standards. This means that these files are readily available to use
in other C++ projects with only minimal changes at the interface
to “glue” the code to a different codebase. Depending on whether
high precision calculations are required in the other software pack-
age the file Real.hpp might be used as well.

8. Conclusions

In this paper, I present an implementation of the semi-global
algorithm for coupled Schrödinger equations with the time-dep-
endent Hamiltonian and nonlinear inhomogeneous source term as
a means to describe the time-dependent processes in femto- and
attosecond chemistry. The code works for multiple coupled elec-
tronic states and supports high precision computations with types
long double (18 decimal places) and float128 (33 decimal
places). Higher arbitrary precision types will become available in
the future once FFT algorithm for them becomes ready to use in
the C++ boost library.

The semi-global algorithm is verified to work correctly by com-
paring its results with five reference solutions: (1) atom in an
intense laser field (2) single avoided crossing (3) dual avoided
crossing (4) Gaussian packet in a forced harmonic oscillator and
(5) forced harmonic oscillator with an inhomogeneous source
term. All of them are available in the accompanying source code
package.

The precision and performance test revealed that the semi-
global algorithm is more accurate than the global Chebyshev prop-
agator, while being about two times faster for double precision
and even faster for higher precisions.

31 The time dependent potential is used in test_atom_laser_ABC.cpp and
test_source_term.cpp. A calculation of a full multi-level system with time
dependent potential is in preparations to be published in a separate paper, where
we investigate the dynamics of a three level NaRb system subject to a laser excita-
tion [69].
17
This C++ code, which is 10× faster than the original Matlab/Oc-
tave code upon which it was based, can be used to produce refer-
ence high accuracy solutions of various problems such as: nonlin-
ear problems, problems with inhomogeneous source term, mean
field approximation, Gross-Pitaevskii approximation or scattering
problems.

The attached C++ source code is self contained which makes it
possible to reuse the algorithm in different software packages.

CRediT authorship contribution statement

Janek Kozicki: Conceptualization, Data curation, Formal analy-
sis, Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The author declares that he has no known competing financial
interests or personal relationships that could have appeared to in-
fluence the work reported in this paper.

Data availability

The full C++ program source code has been attached with the
submitted manuscript.

Acknowledgements

This publication is based upon work from COST Action At-
toChem, CA18222 supported by COST (European Cooperation in
Science and Technology). I would like to thank Józef E. Sienkiewicz,
Patryk Jasik and Tymon Kilich for fruitful discussions on this work.
Additionally, I would like to thank Ido Schaefer, Hillel Tal-Ezer and
Ronnie Kosloff for their original idea of semi-global algorithm and
its implementation in Matlab. Also, I would like to thank the two
anonymous reviewers for their insight and suggestions.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2023 .108839.

References

[1] M. Ndong, H. Tal-Ezer, R. Kosloff, C.P. Koch, J. Chem. Phys. 132 (6) (2010)
064105, https://doi .org /10 .1063 /1.3312531.

[2] I. Schaefer, H. Tal-Ezer, R. Kosloff, J. Comput. Phys. 343 (2017) 368–413, https://
doi .org /10 .1016 /j .jcp .2017.04 .017.

[3] I. Schaefer, H. Tal-Ezer, R. Kosloff, Aug 2022, https://doi .org /10 .1016 /j .jcp .2022 .
111300.

[4] W. Kahan, How futile are mindless assessments of roundoff in floating-point
computation?, https://people .eecs .berkeley.edu /~wkahan /Mindless .pdf, 2006.

[5] W. Bao, D. Jaksch, P.A. Markowich, J. Comput. Phys. 187 (1) (2003)
318–342, https://doi .org /10 .1016 /S0021 -9991(03)00102 -5, https://www.
sciencedirect .com /science /article /pii /S0021999103001025.

[6] N. Balakrishnan, C. Kalyanaraman, N. Sathyamurthy, Phys. Rep. 280 (1997)
79–144.

[7] M. Beck, Phys. Rep. 324 (1) (2000) 1–105, https://doi .org /10 .1016 /s0370 -
1573(99)00047 -2.

[8] K.C. Kulander, Phys. Rev. A 36 (6) (1987) 2726–2738, https://doi .org /10 .1103 /
physreva .36 .2726.

[9] U. Manthe, J. Chem. Phys. 142 (24) (2015) 244109, https://doi .org /10 .1063 /1.
4922889.

[10] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (12) (1984) 997–1000, https://doi .org /
10 .1103 /physrevlett .52 .997.

[11] A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Mar-
ques, E.K.U. Gross, A. Rubio, Phys. Status Solidi B 243 (11) (2006) 2465–2488,
https://doi .org /10 .1002 /pssb .200642067.

[12] A.D. Becke, J. Chem. Phys. 140 (18) (2014) 18A301, https://doi .org /10 .1063 /1.
4869598.

https://doi.org/10.1016/j.cpc.2023.108839
https://doi.org/10.1063/1.3312531
https://doi.org/10.1016/j.jcp.2017.04.017
https://doi.org/10.1016/j.jcp.2017.04.017
https://doi.org/10.1016/j.jcp.2022.111300
https://doi.org/10.1016/j.jcp.2022.111300
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://doi.org/10.1016/S0021-9991(03)00102-5
https://www.sciencedirect.com/science/article/pii/S0021999103001025
https://www.sciencedirect.com/science/article/pii/S0021999103001025
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib5BA6E6E5DCC174529725DAFBD60E41C9s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib5BA6E6E5DCC174529725DAFBD60E41C9s1
https://doi.org/10.1016/s0370-1573(99)00047-2
https://doi.org/10.1016/s0370-1573(99)00047-2
https://doi.org/10.1103/physreva.36.2726
https://doi.org/10.1103/physreva.36.2726
https://doi.org/10.1063/1.4922889
https://doi.org/10.1063/1.4922889
https://doi.org/10.1103/physrevlett.52.997
https://doi.org/10.1103/physrevlett.52.997
https://doi.org/10.1002/pssb.200642067
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
http://mostwiedzy.pl

J. Kozicki Computer Physics Communications 291 (2023) 108839

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

[13] E. Gross, W. Kohn, Adv. Quantum Chem. (1990) 255–291, https://doi .org /10 .
1016 /s0065 -3276(08)60600 -0.

[14] D. Neuhauser, M. Baer, J. Chem. Phys. 91 (8) (1989) 4651–4657.
[15] H. Tal-Ezer, R. Kosloff, I. Schaefer, J. Sci. Comput. 53 (1) (2012) 211–221.
[16] H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81 (9) (1984) 3967–3971, https://doi .org /

10 .1063 /1.448136.
[17] R. Kosloff, Quantum Molecular Dynamics on Grids, Department of Physical

Chemistry and the Fritz Haber Research Center, 1997.
[18] W. Magnus, Commun. Pure Appl. Math. 7 (4) (1954) 649–673, https://doi .org /

10 .1002 /cpa .3160070404.
[19] Z. Sun, W. Yang, D.H. Zhang, Phys. Chem. Chem. Phys. 14 (6) (2012) 1827–1845.
[20] U. Peskin, R. Kosloff, N. Moiseyev, J. Chem. Phys. 100 (12) (1994) 8849–8855.
[21] H. Tal-Ezer, SIAM J. Sci. Comput. 29 (6) (2007) 2426–2441, https://doi .org /10 .

1137 /040617868.
[22] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publi-

cations, Inc., New York, 2013 (reprint).
[23] H. Tal-Ezer, Polynomial approximation of functions of matrices and applica-

tions, https://doi .org /10 .1007 /bf01061265, 1989.
[24] J. Muga, J. Palao, B. Navarro, I. Egusquiza, Phys. Rep. 395 (6) (2004) 357–426,

https://doi .org /10 .1016 /j .physrep .2004 .03 .002.
[25] J. Palao, J. Muga, Chem. Phys. Lett. 292 (1–2) (1998) 1–6, https://doi .org /10 .

1016 /s0009 -2614(98)00635 -6.
[26] A. Palacios, F. Martín, WIREs Comput. Mol. Sci. 10 (1) (2019), https://doi .org /

10 .1002 /wcms .1430.
[27] D. Goldberg, ACM Comput. Surv. 23 (1) (1991) 5–48, https://doi .org /10 .1145 /

103162 .103163.
[28] D. Bailey, R. Barrio, J. Borwein, Appl. Math. Comput. 218 (20)

(2012) 10106–10121, https://doi .org /10 .1016 /j .amc .2012 .03 .087, http://
www.sciencedirect .com /science /article /pii /S0096300312003505.

[29] W. Kahan, On the cost of floating-point computation without extra-precise
arithmetic, https://people .eecs .berkeley.edu /~wkahan /Qdrtcs .pdf, 2004.

[30] K. Isupov, Data Brief 30 (2020) 105506, https://doi .org /10 .1016 /j .dib .2020 .
105506.

[31] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann Mpfr, ACM Trans.
Math. Softw. 33 (2) (2007) 13, https://doi .org /10 .1145 /1236463 .1236468.

[32] W.S. Warren, H. Rabitz, M. Dahleh, Science 259 (5101) (1993) 1581–1589,
https://doi .org /10 .1126 /science .259 .5101.1581.

[33] K. Sakmann, Exact quantum dynamics of a bosonic Josephson junction, https://
doi .org /10 .1007 /978 -3 -642 -22866 -7 _6, 2011.

[34] K. Pachucki, M. Puchalski, Phys. Rev. A 71 (3) (2005), https://doi .org /10 .1103 /
physreva .71.032514.

[35] M. Siłkowski, K. Pachucki, J. Chem. Phys. 152 (17) (2020) 174308, https://doi .
org /10 .1063 /5 .0008086.

[36] J. Laskar, M. Gastineau, Nature 459 (7248) (2009) 817–819, https://doi .org /10 .
1038 /nature08096.

[37] G.J. Sussman, J. Wisdom, Science 257 (5066) (1992) 56–62, https://doi .org /10 .
1126 /science .257.5066 .56.

[38] P.H. Hauschildt, E. Baron, J. Comput. Appl. Math. 109 (1–2) (1999) 41–63,
https://doi .org /10 .1016 /s0377 -0427(99)00153 -3.

[39] Y. He, C.H.Q. Ding, J. Supercomput. 18 (3) (2001) 259–277, https://doi .org /10 .
1023 /a :1008153532043.

[40] D.H. Bailey, A.M. Frolov, J. Phys. B, At. Mol. Opt. Phys. 35 (20) (2002)
4287–4298, https://doi .org /10 .1088 /0953 -4075 /35 /20 /314.

[41] A.M. Frolov, D.H. Bailey, J. Phys. B, At. Mol. Opt. Phys. 37 (4) (2004) 1857–1867,
https://doi .org /10 .1088 /0953 -4075 /37 /4 /c02.

[42] Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett. 91 (11) (2003), https://doi .org /10 .1103 /
physrevlett .91.113004.

[43] T. Zhang, Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett. 77 (9) (1996) 1715–1718,
https://doi .org /10 .1103 /physrevlett .77.1715.

[44] D. Broadhurst, Eur. Phys. J. C 8 (2) (1999) 311–333, https://doi .org /10 .1007 /
s100529900935.

[45] D.H. Bailey, Comput. Sci. Eng. 7 (3) (2005) 54–61.
[46] D.H. Bailey, K. Jeyabalan, X.S. Li, Exp. Math. 14 (3) (2005) 317–329, https://

doi .org /10 .1080 /10586458 .2005 .10128931.
[47] M. Lu, B. He, Q. Luo, Assoc. Comput. Mach. (2010) 19–26, https://doi .org /10 .

1145 /1869389 .1869392.
[48] R.E. Caflisch, Phys. D, Nonlinear Phenom. 67 (1–3) (1993) 1–18, https://doi .org /

10 .1016 /0167 -2789(93)90195 -7.
[49] D. Bailey, Comput. Sci. Eng. 2 (1) (2000) 24–28, https://doi .org /10 .1109 /5992 .

814653.
[50] M. Joldes, V. Popescu, W. Tucker, ACM SIGARCH Comput. Archit. News 42 (4)

(2014) 63–68, https://doi .org /10 .1145 /2693714 .2693726.
[51] A. Abad, R. Barrio, A. Dena, Phys. Rev. E 84 (1) (2011), https://doi .org /10 .1103 /

physreve .84 .016701.
[52] T.P. Stefański, IEEE Antennas Propag. Mag. 55 (2) (2013) 344–353.
[53] C. Pralavorio, Welcome to the precision era, https://home .cern /news /series /lhc -

physics -ten /welcome -precision -era, 2020.
[54] D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspec-

tive, University Science Books, Sausalito, 2007.
[55] R. Schinke, Photodissociation dynamics, Cambridge monographs on atomic,

molecular and chemical physics, 1995.
[56] J. Kozicki, A. Gladky, K. Thoeni, Comput. Phys. Commun. 270 (2022) 108167,

https://doi .org /10 .1016 /j .cpc .2021.108167.
[57] J. Kozicki, Numerical modeling of quantum dynamical processes, PhD Thesis,

2022.
[58] J.C. Tully, J. Chem. Phys. 93 (2) (1990) 1061–1071, https://doi .org /10 .1063 /1.

459170.
[59] D.F. Coker, Comput. Simul. Chem. Phys. (1993) 315–377, https://doi .org /10 .

1007 /978 -94 -011 -1679 -4 _9.
[60] B. Schmidt, U. Lorenz, Comput. Phys. Commun. 213 (2017) 223–234, https://

doi .org /10 .1016 /j .cpc .2016 .12 .007.
[61] B. Schmidt, C. Hartmann, Comput. Phys. Commun. 228 (2018) 229–244, https://

doi .org /10 .1016 /j .cpc .2018 .02 .022.
[62] B. Schmidt, R. Klein, L. Cancissu Araujo, J. Comput. Chem. 40 (30) (2019)

2677–2688, https://doi .org /10 .1002 /jcc .26045.
[63] M. Baer, Beyond Born-Oppenheimer, Electronic Nonadiabatic Coupling Terms

and Conical Intersections, John Wiley & Sons, 2006.
[64] C. Leforestier, R. Bisseling, C. Cerjan, M. Feit, R. Friesner, A. Guldberg, A. Ham-

merich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff,
J. Comput. Phys. 94 (1) (1991) 59–80, https://doi .org /10 .1016 /0021 -9991(91)
90137 -a.

[65] B. Dawes, D. Abrahams, C. Kormanyos, J. Maddock, P. Bristow, M. Borland,
N. Thompson, N. Agrawal, A. Bikineev, M. Guazzone, H. Holin, B. Lalande, E.
Miller, J. Murphy, M. Pulver, J. Råde, G. Sewani, B. Sobotta, T. van den Berg, D.
Walker, X. Zhang, H. Hinnant, V.B. Escriba, et al., Boost C++ Libraries, https://
www.boost .org/, 2020.

[66] E.Q. Miranda, C. Kormanyos, J. Kozicki, Boost Google summer of code
2021, https://summerofcode .withgoogle .com /archive /2021 /organizations /
5123901926932480, 2021.

[67] E.Q. Miranda, C. Kormanyos, J. Kozicki, Fast Fourier transform in boost li-
braries, GSoC Report, https://github .com /BoostGSoC21 /math -fft -report /releases /
download /v1.1 /gsoc -report .pdf, 2021.

[68] A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Oc-
tave, Springer, Berlin Heidelberg, 2014.

[69] J. Kozicki, P. Jasik, T. Kilich, J.E. Sienkiewicz, J. Quant. Spectrosc. Radiat. Transf.
306 (2023) 108644, https://doi .org /10 .1016 /j .jqsrt .2023 .108644.

[70] M. Frigo, S.G. Johnson, Proc. IEEE 93 (2) (2005) 216–231, special issue on “Pro-
gram Generation, Optimization, and Platform Adaptation”.

[71] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen .tuxfamily.org, 2010.
18

https://doi.org/10.1016/s0065-3276(08)60600-0
https://doi.org/10.1016/s0065-3276(08)60600-0
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib0193E2541FFE9CCD1ADCBC604359BAB0s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bibB517FFFC57347E77E2D0908BD1E92F51s1
https://doi.org/10.1063/1.448136
https://doi.org/10.1063/1.448136
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib2CCC7EA174D422A868F342A354E4152Ds1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib2CCC7EA174D422A868F342A354E4152Ds1
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib621006FCB076DA0C0F5FB7AB4D544639s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib17854E0A5A39B8EE90083A35DE316E05s1
https://doi.org/10.1137/040617868
https://doi.org/10.1137/040617868
http://refhub.elsevier.com/S0010-4655(23)00184-4/bibBC8CAE99C4D8FFD8365F01FC773CC722s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bibBC8CAE99C4D8FFD8365F01FC773CC722s1
https://doi.org/10.1007/bf01061265
https://doi.org/10.1016/j.physrep.2004.03.002
https://doi.org/10.1016/s0009-2614(98)00635-6
https://doi.org/10.1016/s0009-2614(98)00635-6
https://doi.org/10.1002/wcms.1430
https://doi.org/10.1002/wcms.1430
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1016/j.amc.2012.03.087
http://www.sciencedirect.com/science/article/pii/S0096300312003505
http://www.sciencedirect.com/science/article/pii/S0096300312003505
https://people.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf
https://doi.org/10.1016/j.dib.2020.105506
https://doi.org/10.1016/j.dib.2020.105506
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1126/science.259.5101.1581
https://doi.org/10.1007/978-3-642-22866-7_6
https://doi.org/10.1007/978-3-642-22866-7_6
https://doi.org/10.1103/physreva.71.032514
https://doi.org/10.1103/physreva.71.032514
https://doi.org/10.1063/5.0008086
https://doi.org/10.1063/5.0008086
https://doi.org/10.1038/nature08096
https://doi.org/10.1038/nature08096
https://doi.org/10.1126/science.257.5066.56
https://doi.org/10.1126/science.257.5066.56
https://doi.org/10.1016/s0377-0427(99)00153-3
https://doi.org/10.1023/a:1008153532043
https://doi.org/10.1023/a:1008153532043
https://doi.org/10.1088/0953-4075/35/20/314
https://doi.org/10.1088/0953-4075/37/4/c02
https://doi.org/10.1103/physrevlett.91.113004
https://doi.org/10.1103/physrevlett.91.113004
https://doi.org/10.1103/physrevlett.77.1715
https://doi.org/10.1007/s100529900935
https://doi.org/10.1007/s100529900935
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib3E77A094DCD7B65ED0A403D6B86E6C52s1
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1080/10586458.2005.10128931
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1145/1869389.1869392
https://doi.org/10.1016/0167-2789(93)90195-7
https://doi.org/10.1016/0167-2789(93)90195-7
https://doi.org/10.1109/5992.814653
https://doi.org/10.1109/5992.814653
https://doi.org/10.1145/2693714.2693726
https://doi.org/10.1103/physreve.84.016701
https://doi.org/10.1103/physreve.84.016701
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib6F5AC0F07A05CF9AD624948EB8913406s1
https://home.cern/news/series/lhc-physics-ten/welcome-precision-era
https://home.cern/news/series/lhc-physics-ten/welcome-precision-era
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib9067C08B118256DD99C3D3DAF1E93B05s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib9067C08B118256DD99C3D3DAF1E93B05s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bibEFA3CBB9C002120B82369B2188D36BC1s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bibEFA3CBB9C002120B82369B2188D36BC1s1
https://doi.org/10.1016/j.cpc.2021.108167
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib9830C6C97D825BD0341C6BA0EB3420E0s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib9830C6C97D825BD0341C6BA0EB3420E0s1
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.459170
https://doi.org/10.1007/978-94-011-1679-4_9
https://doi.org/10.1007/978-94-011-1679-4_9
https://doi.org/10.1016/j.cpc.2016.12.007
https://doi.org/10.1016/j.cpc.2016.12.007
https://doi.org/10.1016/j.cpc.2018.02.022
https://doi.org/10.1016/j.cpc.2018.02.022
https://doi.org/10.1002/jcc.26045
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib1A0861E3BEB2D5C1574E1E5D6A1C6DF6s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib1A0861E3BEB2D5C1574E1E5D6A1C6DF6s1
https://doi.org/10.1016/0021-9991(91)90137-a
https://doi.org/10.1016/0021-9991(91)90137-a
https://www.boost.org/
https://www.boost.org/
https://summerofcode.withgoogle.com/archive/2021/organizations/5123901926932480
https://summerofcode.withgoogle.com/archive/2021/organizations/5123901926932480
https://github.com/BoostGSoC21/math-fft-report/releases/download/v1.1/gsoc-report.pdf
https://github.com/BoostGSoC21/math-fft-report/releases/download/v1.1/gsoc-report.pdf
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib619F846CA32A535B943B6CDB57D5DCCCs1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib619F846CA32A535B943B6CDB57D5DCCCs1
https://doi.org/10.1016/j.jqsrt.2023.108644
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib0ECB97A75B3FC703512C29CE4654C229s1
http://refhub.elsevier.com/S0010-4655(23)00184-4/bib0ECB97A75B3FC703512C29CE4654C229s1
http://eigen.tuxfamily.org
http://mostwiedzy.pl

	Very accurate time propagation of coupled Schrödinger equations for femto- and attosecond physics and chemistry, with C++ s...
	1 Introduction
	2 The semi-global method
	2.1 Establishing notation
	2.2 Short summary for time-independent Hamiltonian
	2.3 Source term with time dependence
	2.4 Introducing time-dependent Hamiltonian
	2.5 Chebyshev time points spanning ∆t and Newton interpolation
	2.6 Arnoldi approach
	2.7 Extension to coupled time-dependent Schrödinger equations
	2.8 Summary of parameters used by the semi-global method
	2.9 Absorbing boundary conditions with a complex potential

	3 Calculations in higher numerical precision
	4 Implementation of TDSE for time-dependent Hamiltonian
	4.1 Coupled time-dependent Schrödinger equations

	5 Validation of the C++ code for semi-global algorithm
	5.1 Validation of time-dependent Hamiltonian using an atom in an intense laser field
	5.2 Validation of coupled Schrödinger equations using standard benchmarks
	5.2.1 Single avoided crossing
	5.2.2 Dual avoided crossing
	5.2.3 Precision and speed tests

	6 Benchmarks of high precision quantum dynamics
	7 Accompanying C++ source code package
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

