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Visual Content Learning in a Cognitive Vision Platform for 

Hazard Control (CVP-HC) 

This work is part of an effort for the development of a Cognitive Vision Platform 

for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable 

to a wide range of environments. The paper focuses on hazards resulted from the 

non-use of personal protective equipment (PPE).  Given the results of previous 

analysis of supervised techniques for the problem of classification of a few PPE 

(boots, hard hats and gloves extracted from frames of low resolution videos), which 

found the Deep Learning (DL) methods as the most suitable ones to integrate our 

platform, the objective of this paper is to test two DL algorithms: Single Shot 

Detector (SSD) and Faster Region-based Convolutional Network (Faster R-CNN). 

The testing uses pre-trained models on a second version of our PPE dataset 

(containing 11 classes of objects) and evaluates which of examined algorithms is 

more appropriate to compose our system reasoning.   

Introduction and Background 

Hazards are present in all workplaces environments and can result in injuries, illnesses, 

or death and their control is essential to ensure the safety of workers and occupational 

health (Safetycare Australia, 2015). In this context, monitoring of labourers daily 

activities and to identify any exposure to risks emerged as a need. The use of sensors data 

and computer vision technologies can give support to a fast and automated detection of 

potentially dangerous situations. This information might be utilized, for instance, to 

provide feedback and real time recommendations to avoid accidents, or to evaluate how 

programs and interventions are impacting particular safety problems and outcomes and 

help managing employees’ behaviour to perform the work in a safe manner (Han & Lee, 
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2013). However, as indicated by Little et al. (2013), currently there is no such flexible 

system capable of performing well in different industrial environments and situations 

without the necessity of rewriting most of existing application code each time the 

circumstances or settings change. In terms of accuracy, the performance of available 

systems designed to attend a more comprehensive diversity of scenarios and applications 

when operating in real life is still limited (Chen, et al 2012). For this reason, building an 

automatic system capable to support safety management of a variety of scenarios subject 

to different settings and conditions at the same time as being specific and meaningful still 

remains a challenge. 

This work is part of an effort for the development of a flexible Cognitive Vision 

Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, 

attending a wide range of industrial environments (de Oliveira et al 2017). In this system, 

visual content, sensorial data and any context information, is collected through the 

platform and represented explicitly using the Set of Experience Knowledge Structure 

(SOEKS or SOE for short), grouped and stored as Decisional DNA (DDNA) (Sanín & 

Szczerbicki, 2005; Sanín & Szczerbicki, 2007, Shafiq et al 2014). The collected 

knowledge is used for reasoning and also to retrain the system from time to time, 

customizing the service according to each scenario and application, and improving its 

specificity.  

This paper focuses on hazards resulted from the non-use of personal protective 

equipment (PPE).  Given the results of previous analysis (de Oliveira et al.  2017) of 

supervised techniques for the problem of classification of a few PPE (boots, hard hats and 

gloves extracted from frames of low resolution videos), which found the Deep Learning 

(DL) methods as the most suitable ones to integrate our platform, the objective of this 

paper is to test two DL architectures Single Shot Detector (SSD) and Faster Region-based 
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Convolutional Network (Faster R-CNN) from pre-trained models on an second version 

of  PPE dataset (containing more classes of objects), and evaluate which of these 

architectures is more appropriate to compose our reasoning system.    

The rest of the paper is organized as follows: in the “Cognitive Vision Approach” 

section, a background about cognitive vision systems is introduced together with the 

overall architecture of the proposed system and the knowledge representation 

methodology implemented to facilitate the management of knowledge in the system.  The 

section “Deep Learning” presents the concept of Deep Neural Networks, including the 

SSD and Faster R-CNN algorithms. The “Methodology” section explains the steps for 

creating the PPE Dataset, and describes the model training and evaluation stages.  The 

section “Experimental Results” presents the performance for the SSD and Faster R-CNN 

algorithms. In the last section conclusions and future work are presented.  

Cognitive Vision Approach 

Computer vision techniques can be used to support automatic detection and tracking of 

workers indicating potential dangerous situations. Visual sensing facilities, such as video 

cameras, can monitor labourers’ behaviour and conditions of the environment and the 

generated data (such as video sequences or digitized visual data) can be processed in 

powerful computers to generate inferences and predictions (Chen et al 2012). However, 

the accuracy of current computer vision systems when operating in real time, subject to 

change in illumination, backgrounds variations, occlusions and low camera resolutions 

still remains a challenge (Mosberger et al 2013). Furthermore, these technologies are 

commonly not scalable and lack adaptability to the wide industrial environments and 

situations existing. Consequently, they create case-based applications that work only for 

specific circumstances and any change in conditions or setting would result in rewriting 
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most of the application code (Zambrano et al 2015). 

In this context, methods incorporating prior knowledge to mimic the human-like 

capabilities are gaining attention from the research community. One of the latest trends 

to achieve this goal is the joining of cognition and computer vision into cognitive 

computer vision. In cognitive vision systems knowledge and learning are central elements 

to reason about events and for the decision making process. The gathered knowledge 

(visual and contextual) can be used to retrain the system from time to time to customize 

the service for each workplace and application. Moreover, with explicit contextual 

information gathered from the existing settings it is possible to enhance the speed and 

accuracy of the detection algorithm and reduce scalability issues (Davis et al 1993). 

Cognitive Vision Platform for Hazard Control (CVP-HC) 

The overall architecture of the proposed CVP-HC is presented in Figure 1. The platform 

is composed by six layers: System Configuration, Central Reasoning, Experience 

Creation, Experience Validation, System Monitoring and Output Layer. 
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Figure 1. Overall architecture of the Cognitive Vision Platform for Hazard Control (CVP-HC). 

The System Configuration layer consist of the selection (or creation) of the attributes 

according to requirements of the organization, and configuration of extra functionalities 

such as frame, experience creation and learning rate. In the Experience Creation layer 

attributes are synchronized according to their timestamp and used to create experiences. 

During Experience Validation experiences are created and compared among each other 

and the most redundant ones are pruned. Some of the remaining experiences are used to 

query the user and check if given solution is satisfactory. Once validated the SOE is stored 

in the decisional DNA repository for reuse and sharing. The Central Reasoning layer is 

the intelligence of the whole system. It is composed by a Deep Neural Network arranged 

in a hierarchical structure to support detection of attributes, location and relationship 

among them and its interpretation inside the given context. The Deep Neural Network 
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enhances the gained experience from formal decision events and transforms it into new 

knowledge. In summary, it uses SOEs as input and produces enhanced knowledge in 

SOEs format to compose the DDNA. This DDNA is a base for predictions according to 

experienced knowledge and learnt knowledge (due to DDNA and CNN respectively). The 

Monitoring layer represents the monitoring of workers’ activities and feeds the reasoning 

with visual and contextual information to be structured, explicitly represented and 

processed. Finally, in the Output layer, when a hazard or risky situation is identified by 

the system, an alert message is shown with details and recommendations of action to be 

taken. 

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) 

SOEKS is a knowledge representation structure designed to gather and store formal 

decision events in an explicit form. SOEKS or in short SOE is based on four fundamental 

elements of decision-making actions: variables, functions, constraints and rules. The most 

basic element of SOEKS is the variable, which is usually used to represent knowledge in 

an attribute-value form, following the traditional approach for knowledge representation. 

Functions, constraints, the rules are different ways of establishing relationships among 

variables. Functions define relations between dependent variables and a set of input 

variables; consequently, functions are used to build multi-objective goals. Similarly, 

constraints are functions, but they act as a way to limit possibilities, restricting the set of 

possible solutions and controlling the performance of the system in relation to its goals. 

Lastly, rules are associations that work in the universe of variables, expressing condition-

consequence connections as “if-then-else” and are used to represent inferences and 

conditions under which the system should be implemented (Sanín & Szczerbicki, 2005). 
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In our platform, the experiences are grouped according to the areas of decision 

categories – the Decisional DNA (DDNA). A SOEKS works as a gene that guides 

decision-making and is a portion of an organization’s DDNA. This gene belongs to a 

decisional chromosome from a certain category or type. A group of chromosomes from 

different categories (e.g. safety decisions, human resources decisions and product 

development decisions) comprise the DDNA of the given organization. DDNA is used in 

out Cognitive Platform to solve the scalability issues found in current vision-based 

approaches by introducing an experience-based approximation to recognize events 

defined by the user using production rules, adaptable to different work environment 

conditions, clients and situations (Sanín & Szczerbicki, 2007). 

Deep Learning 

Neural networks have been proved to be a very powerful Machine Learning technology 

and applied both in binary and multi-class problems. The first functional networks with 

many layers (Deep Neural Network DNN) was proposed in late 19ths. Nevertheless, at 

that time the computers didn't have enough processing power to successfully handle the 

work required by large neural networks (Ivakhnenko et al 1967). The main trigger for the 

renewed interest in neural networks and their learning capabilities was the 

backpropagation algorithm that accelerated the training of multi-layer networks (Werbos, 

1974). Another method known as Dropout used to reduce overfitting (a very common 

issue in deep neural networks) contributed to major improvements over other 

regularization methods (Srivastava et al 2014). 

To learn a wide range of possible hazards that workers may be exposed to in 

industrial environments such as when accessing controlled zones without authorization, 

crossing yellow lines, not respecting safe distances from machines and areas, not wearing 
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the required personal protective equipment (PPE), among others, a model with a large 

learning capacity is needed. Deep Neural Networks constitute one such class of models. 

Such supervised method was the first artificial pattern recognizer to achieve human-

competitive performance on certain tasks (Ciresan et al 2011). 

Recently, Deep Convolutional Neural Networks (CNN, or ConvNets) have 

significantly improved image classification and object detection to a wide range of 

domains improving the accuracy and speed of early Deep Neural Networks (Girshick et 

al 2015; Krizhevsky et al 2012; Sermanet et al 2014).  

Faster Region-based Convolutional Network (Faster R-CNN)  

Fast R-CNN is a ConvNets method that has been proposed to reduce the 

complexity of multi-stage algorithms. It is single-stage training algorithm that combined 

learns to classification of object and refine their spatial locations. This method employs 

several innovations to improve training and testing speed at the same time it increases 

detection accuracy. Comparing the results of Fast R-CNN to other algorithms, it achieves 

state-of-the-art mAP (Mean Average Precision) on PASCAL VOC2007 (VOC - Visual 

Object Classes), VOC2010, and VOC2012 datasets and faster training and testing 

compared to R-CNN, SPPnet (Spatial Pyramid Pooling) (Girshick, 2015).  

Faster R-CNN is a combination of Region Proposal Network (RPN) that shares 

full-image convolutional features with the detection network, thus enabling nearly cost-

free region proposals and Fast-R-CNN detector that uses these proposed regions (Ren et 

al 2017). 

Single Shot Detector (SSD) 

The Single Shot Detector (SSD) method has been proposed recently to detect objects in 
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images using a single deep neural network. Experimental results on the PASCAL VOC, 

COCO (Common Objects in Context - large scale object detection, segmentation, and 

captioning), and ILSVRC (ImageNet Large Scale Visual Recognition Competition) 

datasets confirm that SSD has competitive accuracy to state-of-art methods and is much 

faster, while providing a unified framework for both training and inference. It makes the 

monolithic and relatively simple SSD model a useful building block for larger systems 

that employ an object detection component (Liu et al 2016). 

Methodology 

In this section, (i) the process of creating the dataset is explained; and (ii) the training and 

evaluation process is described.  

Dataset 

For the creation of the dataset 30 videos of surveillance cameras of industries have been 

downloaded from the internet. Frames were extracted from these videos, totalizing 19,303 

images codified in JPG format. These images were filtered and the ones not containing 

any worker wearing a personal protective equipment manually removed. After filtering, 

the remaining 9,029 have been used for annotation of gloves, safety boots, hard hats, 

earmuffs, eye protector (such as goggles and glasses), face masks, headlamp, high 

visibility clothes, respirators, safety harness and welder masks. These objects result in a 

total of 11 different classes. The process of creation of the dataset is illustrated in Figure 

2. 
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Figure 2: Image processing flow. 

 

The annotation is at this stage still an ongoing work and for the tests of examined methods 

a total of 1878 annotations have been used. For the annotation process, LabelImg, a 

graphical image annotation tool is being used. An example of an annotated image 

(selected regions and labels) is shown if Figure 3. 

 

Figure 3: Example of annotated image. 

Training and Evaluation 

The experiment is performed through Tensorflow Object Detection API (Application 

Programming Interface) (Huang et al 2017). To accelerate the process, we performed 

training and evaluation on Google Cloud ML Engine.  

To be able to train a model using TensorFlow API, a few steps must followed. 

Firstly, the training and evaluation annotations in XML files in PASCAL VOC format 

and images of the dataset is used to create TFRecords, the Tensorflow standard data 

Download of 
videos

Frame 
Extraction

Frame 
selection Annotation
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format. In addition a label map containing all classes must is created in .pbtxt format. 

Finally, the object detection pipeline is configured.  

The Google Cloud ML (Machine Learning) Engine has been configured with a 

cluster with five training jobs and three parameters servers. The analysis of the results 

and comparison among the algorithms presented in next section is based, essentially, on 

Detection quality (map) and learning rate along the time visualized over a Tensorflow 

board.  

Experimental  Results 

Training a state of the art object detector from scratch can take days, even when using 

multiple GPUs (Graphics Processing Unit). So, in order to speed training process, 

parameters from object detectors trained on a different datasets for Faster R-CNN 

(faster_rcnn_resnet101_coco_11_06_ 2017) and SSD 

(ssd_mobilenet_v1_coco_11_06_2017) is reused to initialize our new model. This is a 

common process known as transfer learning. The Figure 4 shows the loss decreased 

very fast due to the pre-trained models for SSD and for R-CNN. 

 
(a) 

         
(b) 

Figure 4: Total loss curve for (a) SSD and (b) Faster R-CNN when using pre-trained models. 
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The detection quality map is presented in Figure 5 for both methods. As can be observed 

they present good accuracy given the limited number samples and characteristics of them 

(low resolution of the objects, noise, occlusions etc.). Faster R-CNN has been proven to 

give better overall accuracy when compared to SSD, but at costs of much higher training 

time. The same is applied to our analysis. The total training time for SSD was 5h 32m 

52s whilst for Faster R-CNN was 13h 22m 36s. SSD converges after 90K steps (84.51% 

accuracy), which is equivalent to 3h 56m 50s and Faster R-CNN after around 4h of 

training is still at step 5K and accuracy at lower than 77%. 

 

 
(a) 

 
         (b) 

Figure 5: Detection quality (map) for (a) SSD and (b) Faster R-CNN. 

Finally, detection examples resulting from the trained model applied to the test dataset is 

shown in Figure 6. 
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Figure 6: Detection examples on PPE dataset, each colour corresponding to an object class. 

Conclusion and Future Work 

This study demonstrated the power of Convolutional Neural Networks to solve 

classification problems, and the comparison of two algorithms (SSD and Faster R-CNN) 

for the detection of 11 classes of personal protective equipment (PPE) extracted from 

frame-videos of low resolution cameras, which were taken in real life industrial 

environments (subject to noise, occlusion, change in illumination etc.). From the 

preliminary results obtained for small portion of annotated images, a good accuracy has 

been achieved using both SSD and Faster R-CNN. In spite of being faster, SSD usually 

performs worse for small objects comparing to others methods. However, for our dataset, 

the accuracy gap between SSD and Faster R-CNN is very small whilst the training time 

is 3 times longer for Faster R-CNN. For this reason SSD is shown as a good option to be 

used for learning purposes in our platform.  

 In future work, the annotation process of the entire dataset will be completed to 

enrich the system with more experiences, reduce overfitting and improving accuracy 

when tested in real time settings. Additionally, other objects that might represent risks 
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will be considered as well as activities (or interactions of the workers with these objects) 

and their representation in the universe of SOEKS. Finally, the reuse of these experiences 

will be examined when reasoning about existing risks while the system is running in real 

time, as well as for retraining process (and improvement of specificity) for a given 

number of different scenarios. 
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