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Abstract: The presented paper investigates the problem of endoscopic bleeding detection in endoscopic
videos in the form of a binary image classification task. A set of definitions of high-level visual features of
endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level
features are coupled with respective feature descriptors, enabling automatic capture of the features using
image processing methods. Each of the proposed feature descriptors outputs a feature activation map
in the form of a grayscale image. Acquired feature maps can be appended in a straightforward way
to the original color channels of the input image and passed to the input of a convolutional neural
network during the training and inference steps. An experimental evaluation is conducted to compare
the classification ROC AUC of feature-extended convolutional neural network models with baseline
models using regular color image inputs. The advantage of feature-extended models is demonstrated for
the Resnet and VGG convolutional neural network architectures.

Keywords: machine learning; artificial intelligence; computer vision algorithms; convolutional neural
networks; medical image analysis

1. Introduction

Medical imaging is one of the key achievements of modern medicine, enabling count-
less lives to be saved every year [1]. Imaging devices can not only provide an accurate
early diagnosis of severe illnesses, and is often the only way of getting one, but can also
help to choose appropriate treatment paths, verify treatment efficacy, and guide surgical
interventions. Along with advances in imaging techniques, computer vision algorithms are
being researched to support radiologists and other physicians in the task of reading and in-
terpreting medical images. Automatic image analysis can also provide a potential solution
to essential challenges that medicine faces: interpretation errors that occur during image
reading and the growing shortage of medical professionals capable of reading the images.

An important medical imaging field that attracts the attention of many researchers is
endoscopy of the human gastrointestinal tract. In modern medicine, endoscopy is still the
gold standard in the diagnosis of many diseases of the digestive system, including lethal
cancer diseases. It enables the physician to examine the interior of organs and diagnose
the early stages of a disease, providing a high chance of successful treatment. Further
motivation for research in this field appeared with the introduction of wireless capsule
endoscopy (WCE) in 2001, which is less invasive than traditional endoscopy and can
potentially acquire images from any part of the gastrointestinal tract.

For both wireless and traditional endoscopy, an important part of the examination
is the detection of any occurrence of blood in the gastrointestinal tract, resulting from
both active and nonactive bleeding. The diagnostic process requires the cause of any
bleeding discovered during the endoscopic examination to be established. Computer
vision algorithms are being developed to offer assistance to doctors by providing methods
for the automatic detection of bleeding. The task, however, is definitely challenging.
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Bleeding occurrences are not always clear, and many cannot be recognized by an observer
without medical training. Moreover, multiple forms of noise tend to occur in endoscopic
images, from natural findings, such as digestive fluid, food debris, other fluids, or bubbles,
to technical difficulties that result in blurry images or light-related distortions.

Although many successful algorithms have already been presented for endoscopic bleed-
ing detection, the task remains challenging, and research is constantly being conducted to
further improve the accuracy of automatic bleeding detection methods. Current approaches
to endoscopic bleeding detection include computer vision methods involving rich feature
descriptors, classical machine learning methods that use well-established classifiers, and deep
learning methods, based entirely on neural network training in terms of both feature extraction
and the classification process. Both approaches have clear benefits and limitations.

This paper introduces a novel method that combines modern convolutional neural
network architectures with dedicated high-level features to enhance accuracy in bleeding
detection in a scenario of a limited training dataset size, by leveraging insights from the
analysis of the blood identification task.

The paper is structured as follows. In Section 2, a review of the literature is presented.
The next sections include a detailed description of the proposed method, the theoretical
definition of the identified high-level features, the process of implementing the feature de-
scriptors capturing the features in the form of computer vision algorithms, and the scheme
for combining the features with deep neural network models (Section 3), and the CNN (con-
volutional neural network) model training procedure (Section 4). Subsequently, in Section 5,
an experimental verification of the proposed approach is presented by evaluating the im-
pact of extending the models with the proposed high-level features. Finally, a discussion
and final remarks are presented in Section 6.

2. Existing Work

The literature analysis highlights that current bleeding detection methods fall primarily
into three categories:

• Classical computer vision techniques that rely on image processing and statistical
features extracted from images.

• Classical machine learning approaches employing well-established algorithms such
as SVM, Random Forest, k-NN, PCA, etc.

• Deep learning approaches that apply existing convolutional neural network models
to endoscopic data.

All three approaches tend to be generic, often employing commonly used image process-
ing techniques that have been successful in various computer vision tasks. However, most
of these methods lack interpretability and explainability, which applies both to intermediate
results of low-level statistical features and to the operation of deep neural networks.

A comprehensive review of algorithms dedicated to the detection of various pathologies
in endoscopic videos, including bleeding, was presented by Liedlgruber and Uhl [2]. Another
review of methods for WCE images taking into account the occurrence of hemorrhages and
blood was authored by Musha et al. [3]. A comprehensive overview of advances regarding
upper gastrointestinal tract lesions was also recently presented by Vania et al. [4]. Several sys-
tematic reviews have also been published in the area of deep learning approaches: Du et al. [5],
Soffer et al. [6], Piccirelli et al. [7], and Trasolini and Byrne [8].

2.1. Classical Computer Vision Approach

A wide range of approaches for the detection of bleeding, as well as for other endo-
scopic findings and diseases, have been developed on the basis of classic computer vision
methods. Approaches of this kind utilize feature descriptors based on image processing
and statistical measures, designed to capture specific features of the objects to be detected
and represent them in the form of a feature vector, which is then classified using simple
machine learning methods, e.g., SVM classifiers or shallow neural networks.
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Maroulis [9] examined colorectal lesions by first applying a 2D discrete wavelet trans-
form to grayscale images. Co-occurrence matrices were then derived from the resulting
LH, HL, and HH components, and various statistical measures were computed, includ-
ing energy, angular second moment, correlation, inverse difference moment, and entropy.
The classification was accomplished by employing a neural network. Magoulas [10] ex-
amined tumors using the same algorithm but applied it to 16 × 16 pixel blocks instead of
the entire image. Kodogiannis [11] detected abnormalities by processing RGB and HSV
color planes with the NTU transform. For each plane, nine statistics were computed,
including standard deviation, variance, skewness, kurtosis, entropy, energy, inverse differ-
ence moment, contrast, and covariance. Classification was performed using an adaptive
fuzzy logic system. In [12], Li investigated tumors by processing RGB planes with a 2D
discrete wavelet transform. A Local Binary Pattern (LBP) transformation was applied to
each of the resulting LH, HL, and HH components, and 10-bin histograms were generated.
Classification was performed using support vector machines (SVMs) with an RBF kernel.
Yuan and Meng [13] achieved a bleeding detection accuracy of 95% with a sensitivity of 98%
and a specificity of 93% using a saliency map in conjunction with an SVM on images of size
256× 256. Zhao [14] analyzed polyps using several types of features. For color features, the im-
age was converted into a proposed opponent color space, and a normalized 2D histogram was
computed, followed by proposed color moment invariants, which were claimed to be robust
against illumination, affine transformations, and blur. The texture features were extracted
using the contourlet transform, LBP, and LLE algorithm. Classification was accomplished
using an SVM classifier. Kumar [15] examined Crohn’s disease and extracted features using
MPEG-7 descriptors. Edge histogram descriptors were used for edge features (in 16 image
blocks), dominant color descriptors for color features, and homogeneous texture descriptors
for texture features. Classification was performed using an SVM classifier.

In the classical computer vision approaches, most attention is paid to the feature de-
scriptors. In the context of endoscopic bleeding detection, most methods address the color
features of the images, which is strongly justified by the nature of the typical appearance
of blood. Other types of features, including texture, contours, or the use of segmentation
techniques are utilized less often. Feature descriptors often take the form of complex math-
ematical transforms that capture specific statistics of the image, which can be considered as
low-level image features.

Classical approaches delivered fairly successful results in the area of endoscopic
bleeding detection, especially at a time when only small datasets of endoscopic images
were available. The big advantage of the classic approach was, in fact, the possibility of
developing algorithms even on the basis of small collections of images. However, classic
approaches face several difficulties. The development of hand-crafted feature descriptors is
typically a hard and time-consuming process. The adequacy of the low-level features with
the characteristic visual properties of the detected object is a challenging problem and has
to be solved for every new detected object. The high complexity of the computation in the
evaluation of the features, as well as the nature of common classifiers, make it difficult for a
human to verify the intermediate results and the entire process. This often eliminates the
possibility of identifying the reasons for the wrong predictions generated by the system.
Therefore, it is difficult to include new features to improve the accuracy of an algorithm.

2.2. Classical Machine Learning Approach

A variety of methods for endoscopic image analysis were developed based on classical
machine learning algorithms, where more emphasis is placed on employing classification
methods and techniques to facilitate their training. Popular classifiers include shallow artificial
neural networks, support vector machines, decision trees, and k-nearest neighbor classifiers.

Giritharan et al. [16] employed a set of support vector machine classifiers together
with training data balancing based on oversampling and preprocessing using an averaging
filter to remove random noise. Khun et al. [17] combined an artificial neural network with a
support vector machine for color features by dividing the image into nine non-overlapping
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blocks. Poh et al. [18] employed an artificial neural network classifier for each cell and
each block, merging the results using rule-based decision making and dividing the im-
age into 4 × 4 cells. Yeh et al. [19] combined a C4.5 decision tree, multilayer perceptron
(NLP), and a support vector machine, with feature selection using SVM feature elimination,
OneR, and RELIEF algorithms. Szczypinski et al. [20] used a support vector machine
classifier with an RBF kernel and reduced an extensive feature set using analysis of variance
(ANOVA), sequential floating forward selection (SFFS), and the vector-supported convex
hull method (VSCH). The image was divided into overlapping, circular regions. Wang
and Yang [21] proposed a Bayesian classifier in which feature vectors are classified by
estimating their probability of belonging to each class using the Bayesian formula and se-
lecting the maximum score. The formula incorporates posterior probabilities for each class,
derived by estimating the training dataset through the multivariate Gaussian probability
density function.

2.3. Deep Learning Approach

Deep learning is a modern area of machine learning focused on training deep neural
network models using large collections of data. Neural networks are inspired by the
structure and function of the human brain, where interconnected layers of artificial neurons,
organized into networks, learn to recognize patterns and make decisions. Commonly used
neural network architectures are convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and Transformers.

The introduction of deep learning models, especially in the form of convolutional neu-
ral networks, offered a completely different approach to computer vision tasks. The feature
extraction step is taken over by neural networks, which have the ability to learn features
directly from images, eliminating the need for manual design and implementation. This
leads to a very simple and elegant approach, where all of the processing steps, from the
feature extraction to the classification step, are conducted by a single mechanism in the
form of a neural network.

The rapidly growing popularity of convolutional neural networks led to the develop-
ment of a variety of neural network architectures that consequently improved the accuracy
for multiple computer vision tasks. For the field of endoscopic bleeding detection, a series
of methods based on deep learning models was also proposed.

The majority of deep-learning-based approaches, including the work of Li et al. [22,23],
Tsuboi et al. [24], Aoki et al. [25], Caroppo [26], Ghosh [27], Saraiva et al. [28], and
Garbaz et al. [29], rely on existing CNN architectures including VGG [30], Resnet [31],
Inception [32], and SSD networks [33] and their direct utilization for training on an en-
doscopic dataset of annotated blood images. Some of the approaches acknowledge the
problem of a limited training data size, which is addressed by applying a transfer learning
technique, typically using models trained on the Imagenet dataset [34].

A notable approach to endoscopic bleeding detection was presented by Kim et al. [35].
Although the authors only utilized an existing CNN architecture as their classification
method (InceptionResnetV2 architecture), the presented approach used an outstandingly
large dataset including 656,591 endoscopic images (out of which 164,713 were blood
images), which enabled them to achieve high classification accuracy for multiple endoscopic
findings, including bleeding. Moreover, 256,591 of the images were treated as unseen
images and used by the authors in order to perform external validation of the acquired
model. The localization capabilities of the model were also presented by applying class
activation maps [36].

In the context of this paper, an interesting approach was proposed by Jia and Meng [37].
The authors proposed a method of combining CNN networks with hand-crafted features of
blood regions. However, the hand-crafted features proposed by Jia and Meng are relatively
simple low-level features that include only a histogram obtained from k-means-clustered
CIE Lab color space. The features are represented as a feature vector of 50 values and are
eventually concatenated with CNN activation before the classification layer. In contrast,
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the approach proposed in this paper uses high-level features that produce a more expressive
output in the form of spatial feature activation maps. Furthermore, by passing the feature
maps to the input of a CNN network (see Section 3.3), the proposed approach allows the
neural network to utilize the content of the feature maps during training and prediction,
while in [37], only the last classification layer can access the information contained in the
features. Moreover, Jia and Meng utilized only a very small, eight-layer CNN network.

Analysis of the literature therefore shows that multiple, yet relatively simple, bleeding
detection algorithms based on deep learning models have been proposed. Some of them
also focus on addressing the problem of low training dataset size. Importantly, however,
none of the approaches presented utilize a method equivalent to the method proposed
in this work, which involves a set of high-level features dedicated for bleeding detection
based on domain knowledge.

The availability of deep learning models enabled a great improvement in terms of the
accuracy of computer vision algorithms. However, they also introduced a major difficulty
related to the requirement of a very large training dataset size. Meanwhile, the size of
available endoscopic image datasets is still not sufficient, and even though techniques
including transfer learning are utilized, the application of deep learning models remains
limited in the area of endoscopic bleeding detection.

3. The Proposed Approach

In order to partially address the challenges presented in the previous section, a new
approach is proposed, including a combination of deep learning models and a set of
proposed hand-crafted high-level visual features. The proposed features have the form of
2D feature maps, which enables them to be appended to the regular color channels of the
input image as additional image channels, and therefore, for them to be passed to a regular
convolutional neural network to perform the actual classification. An illustration of the
proposed approach is presented in Figure 1.

Feature map 
extraction using the
feature descriptors

Set of feature maps
720x576x9

RGB channels
720x576x3

Extended set of image
channels (RGB color

channels + feature maps)
720x576x12

Output class:
Blood /

Non-blood

Resizing

Input image
720x576

Channel
extraction

Concatenation

Prediction
by CNN

Resized input
224x224x12

Figure 1. Illustration of the proposed approach including combining feature channels with a convolu-
tional neural network. RGB color input image of 720 × 576 resolution is expected (images of different
resolutions are resized, respectively). The input image is processed separately by the 9 proposed
feature descriptors, each producing a 2D single-channel feature activation map (720 × 576 resolution).
All feature maps combined form a tensor of 720 × 576 × 9 size, which is concatenated with original
RGB channels (720 × 576 × 3), resulting in a combined output of a size of 720 × 576 × 12. The spatial
resolution of the resulting tensor is finally rescaled to a size of 224 × 224 × 12 to match the typical
input size of CNNs and passed as input to the model to perform the prediction (or a training step).

The purpose of the proposed features is to provide initial clues regarding the visual
characteristics of the blood to the neural network, which is expected to simplify the task of
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recognizing blood using the deep learning model, especially in a scenario with a limited
training dataset.

The proposed approach is an extension for deep learning models that can potentially be
applied in combination with other techniques to improve model accuracy, such as transfer
learning or image augmentation. Therefore, it can be incorporated into deep learning
approaches as another improvement to achieve greater classification performance gain.

3.1. Visual Features’ Definitions

The proposed high-level features were designed based on domain knowledge, as well
as on the analysis of the literature in the field. The identification of the features was an
iterative process including multiple proposals of candidate feature sets, assessments of
their quality, and adding improvements. The design of the features was discussed with an
experienced gastroenterologist in terms of the validity of the visual properties of blood that
are assumed to be captured by the proposed features.

As a result of the design process, nine high-level features (denoted F1–F9) were defined.
The features are proposed with simple definitions that also include exemplary images,
presented in Table 1. For each image, a blue annotation is presented, illustrating the image
regions where the feature is hypothetically present.

Table 1. Definitions of the nine proposed visual features of endoscopic bleeding. For each image, a blue
annotation is presented, which illustrates the area of the image where the feature is hypothetically present.

Id Image Feature Area Definition

F1

Blood color region—Most of the bleeding cases appear as regions of characteristic
shades of red color typical of intensive bleeding or fresh blood. Therefore, color
information is the strongest clue to detect bleeding. Blood color can be defined as a
narrow range in a certain color space that is often present in bleeding regions and, at the
same time, rarely occurs in non-blood images. The detected area must be of significant
size, exceeding approximately 1% of the clearly visible part of the image.

F2

Blood color region with a smooth surface—In the case where the blood region is
present, the occurrence of a significant amount of blood is probable. In that case, blood
can fully cover the surface of the organ. This results in the appearance of a compact,
smooth blood surface. The feature is considered present if at least one of the regions
detected by the blood region feature has a smooth surface.

F3

The blood region has a clear boundary—A fairly common characteristic of blood
regions is a clear and sharp boundary separating the blood area from the normal tissue.
The feature is considered present if at least a certain part of the blood region’s boundary
has a clear edge separating it from the adjacent area.

F4

The red color region—Some of the bleeding cases appear as regions of a shade of red,
which is less typical for blood and also appears commonly in non-blood images.
To capture these cases, the feature is supposed to identify red regions similarly to the
blood region feature, but with a wider range of shades of red being accepted.

F5

Red color region with a smooth surface—The feature is related to the previous feature
and has a similar motivation as the smooth blood region feature (F2). The parameters of
the expected descriptor might, however, be changed as a result of tuning towards
specificity of red regions.

F6
The red region has a clear boundary—The feature is the equivalent of a clear boundary
feature (F3) for the red color region feature. Similarly to the previous feature, some
descriptor parameters may differ due to adjustments made to the red regions.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2023, 23, 9717 7 of 23

Table 1. Cont.

Id Image Feature Area Definition

F7

Dispersed blood color—Small amounts of blood can appear as small, spread areas,
spots, or thin blood streams. In contrast to the blood region feature, large regions are
ignored here, and the color is validated on a pixel level. However, some larger areas of
blood contaminated by other fluids or bubbles can also be detected because they do not
form continuous areas of blood color. Again, a narrow range of red color needs to be
defined to describe blood.

F8

Red color domination—An additional clue for analyzing the image is provided by the
assessment of a dominant color in the image. The feature is considered present if the
dominant color of the image is red; that is, the red color covers more than 50% of the
image, excluding unclear parts of the image resulting from highlights or darkness.
The red color domination is considered to be an excess of the red component in the RGB
color space, allowing a wide range of shades of red.

F9

Image is blurred—Blurriness significantly affects image analysis, hindering the
identification of bleeding areas. It also affects the evaluation of the remaining features.
Therefore, the blurriness of the image is also evaluated as a feature. Blurriness can be
evaluated by detecting edges in the image and measuring the variance in the colors in
the image. High variance with a low number of edges is an indication of
possible blurriness.

3.2. Feature Descriptors’ Implementation

For each of the proposed features, a feature descriptor was implemented with the
objective of matching definitions of the particular feature as closely as possible. Each
feature descriptor was implemented in the form of a simple computer vision algorithm
that transforms the input color image into a feature activation map in the form of a single-
channel 2D image matching the size of the original image, where pixel intensities of the
activation map reflect the strength of a given feature’s appearance in the respective part of
the image. The feature descriptors were designed with an assumption of using fairly simple
implementations and with a focus on vectorized image processing operations (enabling
efficient execution on multicore systems). The implementations were designed using array
processing methods dedicated for image processing in Python, using OpenCV and Numpy
libraries. The algorithms were also tuned in terms of the choice of image processing
operations and their parameters (such as kernel sizes, normalization ranges, etc.) using a
novel computer-vision-oriented support tool, CVLab https://github.com/cvlab-ai/cvlab
(accessed on 7 December 2023). An example of a pseudocode for the implementation
of a feature descriptor (descriptor F1) is presented in Algorithm 1. The source code for
the implementation of the feature descriptors is available on Github https://github.com/
ambrzeski/endoblood-features (accessed on 7 December 2023). An example of a feature
activation map generated by the F1 descriptor is presented in Figure 2.

(a) Input image (b) Region of interest (c) Feature 1 activation map

Figure 2. Example of a feature activation map generated by the F1 feature descriptor, along with the
automatically generated ROI (region of interest) mask.

3.3. Combining the Features with CNNs

The implemented feature descriptors generate nine single-channel feature activation
maps for a given input image. An example of a set of generated feature maps is presented
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in Figure 3. The feature maps are subsequently appended to the regular R, G, B channels
of the original image, forming a 12-channel image in place of the typical 3-channel input
image. The outline of the process of appending feature maps to the input of the neural
network is presented in Figure 1. The resulting 12-channel image is passed as input to a
regular convolutional neural network (CNN). The only modification required in the CNN
architecture is the change in input size. This results only in a change in the depth dimension
of the convolutional filters of the first layer of the neural network, which is modified from
3 to 12. All the remaining layers of the network remain unmodified.

The process of appending feature activation maps is identical for both model training
and inference. During training of the model, for each training image, the feature maps
are generated and appended to the image before passing to the network as a training data
point. Similarly, in the model inference process, the feature maps need to be generated and
appended to each input image.

(a) Input image (b) F1 (c) F2 (d) F3 (e) F4

(f) F5 (g) F6 (h) F7 (i) F8 (j) F9

Figure 3. Feature activation maps generated for a sample image.

Algorithm 1 Pseudocode for the blood color region feature descriptor (F1). RGB color
channels are first extracted as r, g, and b arrays. Next, two coefficients are introduced
to reflect color values typical for bleeding. The first coefficient (c1) measures the excess of
red component intensities over the blue and green components by measuring the minimum
value of the r/b and r/g ratios, which is similar to the approach presented by Fu et al. [38,39].
The second coefficient (c2) measures the proximity of the blue and green components, which
also appears to be typical for blood regions. The two coefficients are combined by pixel-wise
multiplication with weights applied (power of 5 applied to c2). Finally, pixels with a low
red component are cleared from the activation, as well as the area outside the detected
region of interest. All parameters of the algorithm, including the c1 and f eature_map norm
arguments, c2 factor (power of 5), were manually tuned using the CVLab tool.

1: function DESCRIPTOR_F1(Array img, Array roi)
2: Array r, g, b← extract_channels_bytes(img)
3: Array g←max(g, 1)
4: Array b←max(b, 1)
5:
6: Array c1 ←min( r

b − 1, r
g − 1)/255

7: c1 ←max(c1, 0)
8: c1 ← norm(c1, min=0.003, max=0.01)
9:

10: Array c2 ← 1 - abs(b - g)/255
11:
12: Array f eature_map← c1 · (c2)

5

13: f eature_map← norm( f eature_map, min=0.02, max=1.1)
14: f eature_map[r < 30]← 0
15: f eature_map[roi == 0]← 0
16:
17: return f eature_map
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4. CNN Model Training

Model training was conducted on a set of four neural network architectures:

• VGG19 [30]—uses a simple structure consisting of only 3 × 3 convolutions, pooling,
and fully connected layers.

• Resnet50 [31]—uses the concepts of residual connections and bottlenecks.
• Resnet152 [31]—a larger variant of Resnet50 architecture.
• Inception-v3 [32]—uses the concepts of grouped and factorized convolutions.

The choice of architectures was based on their high accuracy achieved in various
computer vision tasks, which has also resulted in their high popularity in both research and
commercial projects [40], as well as bleeding detection algorithms (see Section 2.1). The four
architectures originally gained widespread recognition after their successful application
in notable ILSVRC [41] challenges. The architectures are still widely used, although they
tend to be extended with additional improvements, such as the squeeze and excitation
module [42], especially in the case of Resnet networks. Mixtures of these architectures
are also presented in the literature, e.g., Inception-Resnet [43]. The selected convolutional
neural network architectures also differ significantly from each other, not only in their size,
but also as they utilize different conceptions of layers to form the architecture (except the
Resnet50 and Resnet152 pair, which differ mostly in the number of layers).

For each of the architectures, a collection of models was trained in a feature-extended
variant and a baseline variant that does not utilize the proposed features, to enable compar-
ison between the variants and assessment of the impact of the proposed features.

4.1. Training Procedure

Training of the baseline and feature-extended models was performed using five-fold
cross-validation on the training part of the dataset (details in Section 4.2). For each of
the folds, a series of models was trained along with the hyperparameters’ optimization
process. The optimization process was designed to find optimal values for a set of important
training parameters, including learning rate, momentum, learning rate decay, batch size,
and balancing the proportion of positive and negative samples, to acquire the highest
possible accuracy of the model.

Separate optimizations were performed for the baseline and feature-extended models,
following identical protocols and for an identical number of iterations. For both types of
models, the process was conducted in two stages. The first stage included a broad hyper-
parameter search, in which 30 separate models per fold were trained for 5 epochs using
random values of hyperparameters drawn from specified parameter ranges. In the second
stage, the top six models per fold from stage one were selected and used as starting points
for a set of 18 final models per fold trained in stage two training, where the training was
continued until the stop condition, set to 20 epochs, without validation loss improvement.

Training was performed using the SGD (Stochastic Gradient Descent) with a mo-
mentum optimizer [44]. The learning rate was reduced in the validation loss plateau.
The training batches were populated with positive and negative samples in a balanced
manner following the ratio set by a hyperparameter. The experiments were carried out
using Keras framework with TensorFlow backend. The training was conducted on 4 Nvidia
Titan Xp GPUs.

4.2. Dataset

The dataset used in the experiments was collected and annotated by physicians at the
Medical University of Gdańsk within the ERS project [45]. The images had been acquired
with several types of analog endoscopes, digitized with a video capture device, and stored
in a PAL resolution of 720 × 576 with interlacing. The recordings were captured during
both gastroscopy and colonoscopy examinations. During the annotation process, a medical
doctor reviewed the examinations and annotated samples in the form of short video clips.
Multiple types of lesions were annotated in the project, including bleeding. In the context
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of blood, each sample was assigned to one of two possible classes: blood (presenting blood),
considered as positive, or non-blood (no blood presence), considered as negative. More
than one sample could be annotated in each examination.

The overall dataset size is 54,130 images, with 29,457 blood images and 24,673 non-blood
images presenting an organ without a blood presence. Video frames were extracted from
517 different samples annotated over 372 endoscopic examinations. The dataset was split into
training and test subsets using a 3/1 ratio. The statistics of the subsets are presented in Table 2.
The training set was later split into five random folds to perform the cross-validation procedure,
ensuring that all images from any given examination were assigned to the same fold.

Table 2. Statistics of the ERS dataset used in the experiments, including number of endoscopic
examinations videos, number of samples extracted from the videos, and total images available in all
the extracted samples.

Set Class Endoscopic Examinations Endoscopic Samples Endoscopic Images

Training
blood 56 58 22,545

non-blood 226 331 17,212

Test
blood 19 19 6912

non-blood 76 113 7461

Total
blood 75 77 29,457

non-blood 302 444 24,673

4.2.1. Dataset Balancing

It is a desired feature of the dataset to contain approximately balanced positive samples
(presenting blood) in terms of the number of images. This would make samples similarly
important during the training process. Imbalanced samples, in turn, where some blood
cases include significantly more images than other cases, will have a significantly greater
impact on the training and validation of the model, resulting in a strong bias towards
positive samples of a large size. Unfortunately, the presented dataset suffers from a strong
imbalance in the number of images per sample: almost 30% of the samples are represented
just by a single image, while more than 10% of samples include more than thousand images.
A slightly lower imbalance can be observed in non-blood images.

To address this issue, balancing of the samples in the blood class was applied by
duplicating images in the small samples so that each sample contained at least 100 images.
In this way, the disproportion in significance between the samples was reduced. Balancing
was not performed, however, for the non-blood class samples.

4.2.2. Data Augmentation

For the purpose of the training of the model, the images were also subjected to a set
of augmentation transformations, including rotation, flip, skew, and perspective transfor-
mations, and blur, noise, and color variance transformations: hue distortion, saturation
distortion, and PCA color augmentation. Following the common practice used in the field
of machine learning, the magnitude of each transformation was randomly selected from
predefined value ranges during each execution of the augmentation process.

5. Evaluation

Models trained for VGG19, Resnet50, Resnet152, and Inception v3 architectures were
evaluated in order to compare the classification performance of the standard baseline neural
network architecture operating on the standard RGB (red, green, blue) channels with the
same network operating on the proposed feature channels appended to the RGB channels.

The evaluation was carried out in four scenarios designed to measure different aspects
of model accuracy, the capability of localizing blood areas, and computation performance,
and is presented in detail in Sections 5.1–5.4. The accuracies of models using different
architectures and variants (baseline or feature-extended) are compared in a set of predefined
model configurations including ensembles of groups of models. Model ensembling is
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performed by averaging the outputs of the models included in the ensemble. The four
evaluation scenarios are presented below.

1. Best single ensemble comparison—the best models for both baseline and feature-extended
variants are selected and compared. The best single ensemble (denoted as #1) is an
ensemble of best-performing models from the five-fold cross-validation training; one
(top) model per each cross-validation fold is used. The results are presented in Section 5.1.

2. Statistical analysis of results for multiple single ensembles—for each variant a set of
15 single ensembles (denoted as #1-15) is included and a statistical analysis is per-
formed comparing the mean accuracy metrics values achieved by the ensembles.
The results are presented in Section 5.2.

3. Blood area localization results—the abilities of both the baseline and feature-extended
models to indicate of the location of the actual blood area are evaluated against
reference bounding boxes that are available for part of the test set. The results are
presented in Section 5.3.

4. Processing performance—an evaluation and comparison of processing performance is
conducted for the baseline and feature-extended models, including the computational
overheads of the features. The results are presented in Section 5.4.

5.1. Best Single Ensemble Evaluation

In the first evaluation scenario, the best single ensembles (denoted as #1) acquired for
each variant are evaluated and compared. The best single ensemble for a given variant is an
ensemble of the five best-performing single models acquired for five folds of the five-fold
cross-validation training, with one (top) model for each fold. The performances of the best
baseline ensembles and the best feature-extended ensembles were evaluated using a set of
metrics presented in Table 3; additional definitions are presented in Table 4.

Table 3. Classification accuracy metrics used in the evaluation.

Metric hlDefinition

ROC AUC area under the receiver operating characteristic curve

F1 2 · precision·recall
precision+recall

F2 5 · precision·recall
4·precision+recall

sensitivity TP
TP+FN

speci f icity TN
TN+FP

precision TP
TP+FP

accuracy TP+TN
TP+FP+TN+FN

sens@0.01 sensitivity calculated for the classification threshold resulting in f alse positive rate value equal to 0.01

sens@0.001 sensitivity for f alse positive rate equal to 0.001

sens@0.0001 sensitivity for f alse positive rate equal to 0.0001

spec@0.95 speci f icity for sensitivity equal to 0.95

sens@0.99 speci f icity for sensitivity equal to 0.99

sens@0.999 speci f icity for sensitivity equal to 0.999

Table 4. Additional terms used in the evaluation metrics.

Metric Definition

TP number of correctly classified blood cases, calculated at 0.5 classification threshold

FP number of incorrectly classified blood cases at the 0.5 threshold

TN number of correctly classified normal cases at the 0.5 threshold

FN number of incorrectly classified normal cases at the 0.5 threshold

recall equivalent to sensitivity
true positive rate equivalent to sensitivity
f alse positive rate 1− speci f icity
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The best single ensemble results for each of the evaluated architectures are presented
in Table 5. ROC curves are presented in Figure 4. In the case of the Resnet and VGG19
networks, feature-extended ensembles (denoted as “+F” ensembles) achieved higher ROC
AUC values than the baseline ensembles. For the Inception v3 architecture, in turn, the base-
line ensemble reached a slightly higher ROC AUC. The overall accuracy considering the
remaining metrics appears to be similar for the baseline and feature-extended ensembles in
the case of the VGG19, Resnet152, and Inception-v3 architectures. However, in the case of
Resnet50, a clear advantage of the feature-extended ensemble was observed. It was also
the feature-extended Resnet50 that achieved the highest ROC AUC score of all of the best
ensembles, reaching a value of 0.963.
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Figure 4. ROC curves of the best single ensembles (ensembles of 5 models—one per cross-validation
fold) for each of the evaluated architectures.

High-sensitivity and high-specificity operating points are interesting modes for the
potential production application of the models. In particular, two application scenarios of
bleeding detection models can be considered. The first scenario is video summarization,
where the task is to detect and filter out normal frames while preserving frames containing
blood occurrences, therefore resulting in a short summary of an endoscopic video. This
scenario requires the model to operate in a strictly high-sensitivity mode. The second
potential scenario is a concise (but not necessarily complete) indication of the pathologies
detected in the video. Such concise detection results can be appended to a preview of a
video in the user interface of the imaging software. Even when not all of the lesions are
presented in the detection, some of them could be cases that would be unintentionally
missed during the review of the video, so presentation of the lesions decreases the chance
of overlooking them. The concise form takes up little space and uses little time to be
read by the physician, provided that they do not include irrelevant images that do not
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include any lesions. Therefore, this scenario prefers high-specificity (low false positive rate)
operating points.

Table 5. The best single ensemble (denoted as #1—ensembles of 5 folds in each case) results for
baseline (base) and feature-extended variants (+F). For the VGG19 and Resnet152 architectures,
the feature-extended ensembles reached a higher ROC AUC. Overall accuracy was also better, al-
though the advantage is not clear. For Resnet50, the feature-extended ensemble reached a significantly
higher ROC AUC and also had a clearly higher overall accuracy. In the case of the Inception architec-
ture, the baseline ensemble achieved a higher ROC AUC than the feature-extended ensemble, and the
overall accuracy was higher for the baseline ensemble.

Metric
VGG19 Resnet50 Resnet152 Inception

×5 Folds #1 ×5 Folds #1 ×5 Folds #1 ×5 Folds #1
Base +F Base +F Base +F Base +F

ROCAUC 0.891 0.959 0.918 0.963 0.929 0.936 0.954 0.942

F1 0.762 0.755 0.684 0.865 0.758 0.720 0.797 0.776

F2 0.785 0.854 0.713 0.888 0.751 0.801 0.863 0.786

sensitivity 0.801 0.936 0.734 0.904 0.746 0.867 0.914 0.794

speci f icity 0.923 0.862 0.895 0.953 0.943 0.862 0.903 0.936
precision 0.726 0.633 0.640 0.829 0.770 0.615 0.707 0.759
accuracy 0.898 0.877 0.862 0.943 0.903 0.863 0.906 0.907

sens@0.01 0.561 0.622 0.513 0.667 0.591 0.522 0.583 0.606
sens@0.001 0.341 0.226 0.138 0.251 0.131 0.171 0.184 0.198
sens@0.0001 0.068 0.010 0.025 0.122 0.005 0.094 0.020 0.004

spec@0.95 0.286 0.772 0.649 0.855 0.568 0.775 0.764 0.743

spec@0.99 0.088 0.295 0.254 0.215 0.331 0.155 0.191 0.327
spec@0.999 0.008 0.028 0.007 0.003 0.012 0.017 0.034 0.063

The high-sensitivity (spec@0.95, spec@0.99, spec@0.999) and high-specificity operat-
ing points’ (sens@0.01, sens@0.001, sens@0.0001) (see Table 3) results have already been
presented in Table 5. For the sensitivity = 0.95 operating point, the Resnet50+F model
ensemble achieved 0.855 specificity, which means that for the application in the first sce-
nario described above, the model could potentially remove 85.5% non-bleeding frames
while preserving 95% of frames containing bleeding. For the f alse positive rate = 0.0001
operating point, the Resnet50+F ensemble achieved 0.122 sensitivity, meaning that in the
second application scenario, the model could potentially spot 12.2% of blood-containing
frames while misdetecting blood in only 0.01% of the non-blood frames. As expected, based
on the ROC curves and AUC results of the models, feature-extended models achieved
higher results for most of the operating points presented.

5.2. Statistical Evaluation of Multiple Model Training Runs

The next experiment included a process of using multiple models for the statisti-
cal evaluation of the impact of the designed feature descriptors. For each architecture
and variant (baseline and feature-extended), a set of 18 single ensembles (in a form of
×5 fold ensembles) were considered. The three ensembles that performed the worst for
each variant were excluded (the exclusion rule was formulated before evaluating the mod-
els). For the 15 included single ensembles per variant (denoted as #1–15), a statistical
analysis was performed by calculating the mean and standard deviation values. The analy-
sis is presented in Tables 6–9. In this experiment, the mean values of the ROC AUC were
higher for the feature-extended models for each of the four architectures.
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Table 6. Mean metric values calculated for 15 base VGG19 and 15 feature-extended single ensembles.

Metric
VGG19 ×5 Folds #1–15 VGG19+F ×5 Folds #1–15

Mean STD Mean STD

ROC AUC 0.923 0.018 0.962 0.004

F1 0.778 0.014 0.801 0.022

F2 0.783 0.014 0.870 0.009

sensitivity 0.787 0.018 0.924 0.006

speci f icity 0.940 0.008 0.902 0.018

precision 0.769 0.024 0.708 0.035

accuracy 0.909 0.007 0.906 0.013

sens@0.01 0.579 0.039 0.627 0.027

sens@0.001 0.315 0.038 0.271 0.053

sens@0.0001 0.079 0.041 0.038 0.073

spec@0.95 0.566 0.171 0.815 0.037

spec@0.99 0.146 0.050 0.323 0.053

spec@0.999 0.027 0.022 0.053 0.039

Table 7. Mean metric values calculated for 15 base Resnet50 and 15 feature-extended single ensembles.

Metric
Resnet50 ×5 Folds #1–15 Resnet50+F ×5 Folds #1–15

Mean STD Mean STD

ROC AUC 0.913 0.012 0.953 0.007

F1 0.705 0.033 0.813 0.030

F2 0.751 0.021 0.824 0.032

sensitivity 0.786 0.031 0.833 0.049

speci f icity 0.886 0.032 0.944 0.028

precision 0.643 0.061 0.800 0.063

accuracy 0.865 0.023 0.922 0.017

sens@0.01 0.422 0.040 0.582 0.069

sens@0.001 0.141 0.066 0.195 0.062

sens@0.0001 0.026 0.032 0.062 0.039

spec@0.95 0.588 0.078 0.796 0.048

spec@0.99 0.211 0.088 0.182 0.085

spec@0.999 0.013 0.012 0.009 0.012

Table 8. Mean metric values calculated for 15 base Resnet152 and 15 feature-extended single ensembles.

Metric
Resnet152 ×5 Folds #1–15 Resnet152+F ×5 Folds #1–15

Mean STD Mean STD

ROC AUC 0.935 0.013 0.946 0.007

F1 0.760 0.027 0.787 0.029

F2 0.785 0.026 0.813 0.034

sensitivity 0.803 0.038 0.833 0.055

speci f icity 0.920 0.024 0.927 0.029

precision 0.724 0.051 0.753 0.064

accuracy 0.896 0.016 0.908 0.017

sens@0.01 0.508 0.052 0.616 0.058

sens@0.001 0.156 0.071 0.193 0.078

sens@0.0001 0.044 0.043 0.049 0.059

spec@0.95 0.641 0.142 0.747 0.062

spec@0.99 0.257 0.076 0.147 0.041

spec@0.999 0.014 0.015 0.008 0.014
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Table 9. Mean metric values calculated for 15 base Inception-v3 and 15 feature-extended single ensembles.

Metric
Inception ×5 Folds #1–15 Inception+F ×5 Folds #1–15

Mean STD Mean STD
ROC AUC 0.947 0.007 0.956 0.010

F1 0.782 0.025 0.806 0.028

F2 0.784 0.042 0.817 0.033

sensitivity 0.788 0.064 0.825 0.043

speci f icity 0.942 0.027 0.943 0.015

precision 0.785 0.067 0.789 0.044

accuracy 0.910 0.014 0.919 0.012

sens@0.01 0.540 0.054 0.618 0.057

sens@0.001 0.185 0.074 0.226 0.076

sens@0.0001 0.048 0.049 0.059 0.041

spec@0.95 0.734 0.066 0.809 0.084

spec@0.99 0.294 0.055 0.312 0.064

spec@0.999 0.032 0.034 0.043 0.039

5.3. Bleeding Area Localization

The baseline models and the proposed feature-extended models were also evaluated
in terms of providing potential explanations for classification predictions. In this case,
the expected form of an explanation is the location of the bleeding areas detected by the
classifier. To evaluate the quality of the localizations, a subset of the test set was used,
consisting of all images for which blood area masks were available in the dataset. The subset
consists of 25 test images with segmentation masks. A sample image with the associated
blood area mask is presented in Figure 5. For each of the 25 test images, localizations were
generated for all the evaluated models using a set of approaches and compared against the
reference segmentation masks.

Figure 5. Sample test set image and the associated blood area mask.

5.3.1. Localization Accuracy Metric

The localization accuracy evaluation was performed by comparing the bounding boxes
calculated over predicted locations and reference masks measured as the mean intersection
over union (IoU), calculated using the standard formula:

IoU =
area(predicted location ∩ mask)
area(predicted location ∪ mask)

(1)

where:

predicted location is a set of pixels covered by the predicted bounding box region;
mask is a set of pixels covered by the bounding box of the reference location mask;
area is a function that calculates the pixel-wise area of a given region.

The choice to use bounding boxes for calculating the IoU instead of pixel-wise IoU
calculation is motivated by the fact that some of the localization methods applied for the
models result only in rough location areas with a fairly small resolution (e.g., 13 × 13);
hence, pixel-wise evaluation would not be reliable. Bounding boxes are less vulnerable to
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the low resolution of the localization; therefore, they enable unified evaluation of all of the
presented localization methods. An example of bounding boxes for a reference mask and
location prediction is presented in Figure 6.

(a) Input image (b) Mask (c) Prediction

Figure 6. Sample prediction of blood area location acquired from the proposed feature descriptors
(Fmap): (a) input image; (b) reference mask with its bounding box (green); (c) location prediction with
its bounding box (yellow) and reference mask bounding box (green). Resulting IoU is 0.327.

For each variant evaluated, the mean IoU was calculated on all images in the test
set and for three × five models of the given variant, which were the three models that
performed the best in each of the five cross-validation folds. For each of the variants,
15 models were evaluated in terms of localization accuracy.

5.3.2. Tested Approaches

The following methods for generating location maps from the base and feature-
extended models were used and evaluated against reference masks and respective bound-
ing boxes. Sample results for the methods are presented in Figures 7 and 8.

(a) (b) (c) (d) (e) (f)

Figure 7. Sample predictions of the evaluated localization methods. First row—VGG19 #1 (single
fold) model results, second row—VGG19+F #1 (single fold) results. Columns: (a) non-postprocessed
GC output; (b) non-postprocessed GC output visualized over original image, with yellow rectangle
presenting the bounding box of final GC result (postprocessed) and green rectangle presenting the
bounding box of the reference mask; (c) non-postprocessed GP output; (d) non-postprocessed GP
output visualized over original image with bounding boxes; (e) non-postprocessed GGC output;
(f) non-postprocessed GGC output visualized over original image with bounding boxes.
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(a) (b) (c) (d) (e) (f)

Figure 8. Sample predictions of the localization methods utilizing the Fmap for the VGG19+F
#1 model (single fold). Columns: (a) non-postprocessed GC + Fmap output; (b) non-postprocessed
GC + Fmap output visualized on original image with bounding boxes; (c) non-postprocessed GP + Fmap

output; (d) non-postprocessed GP + Fmap output visualized on original image with bounding boxes;
(e) non-postprocessed GGC + Fmap output; (f) non-postprocessed GGC + Fmap output visualized over
original image with bounding boxes.

1. GC—Grad-Cam method [46], postprocessed using function p that performs normal-
ization of the activation map to 0–1 range and thresholding at 0.5 value.

2. GP—Guided Backpropagation method [47], postprocessed with p.
3. GGC—Guided Grad-Cam method [48], postprocessed with p.
4. Fmap—location map generated using the proposed features, created by averaging

activations of features F1 to F7, postprocessed with p. This method of localization
is entirely based on the designed feature descriptors and, in contrast to the GC, GP,
and GGC methods, it does not involve inference of the neural network.

5. GC + Fmap—proposed combination of the GC and Fmap methods by averaging the 0-1
normalized results of both methods, with the final result postprocessed with p.

6. GP + Fmap—proposed combination of the GP and Fmap methods by averaging the 0-1
normalized results of both methods, with the final result postprocessed with p.

7. GGC + Fmap—proposed combination of the GGC and Fmap methods by averaging the
0-1 normalized results of both methods, with the final result postprocessed with p.

5.3.3. Localization Results

The presented localization methods were evaluated for the VGG19, Resnet50, and Incep-
tion neural network architectures for both the base and feature-extended model variants. The
Resnet152 architecture was excluded due to its incompatibility with the available software
libraries for the GC, GP, and GCC methods. In contrast to the evaluations presented in the
previous sections, where various configurations of model ensembles were used, in this section,
single models (each single model is a single convolutional neural network trained for one of
the folds of the five-fold cross-validation) are evaluated separately, and the results are averaged
over all single models. An evaluation is conducted for the top three single models for each of
the five folds of the cross-validation training, resulting in a total of 15 models per architecture
and per variant (baseline or feature-extended). The results are presented in Table 10.

Table 10. Mean IoU values acquired for bleeding area localization for each architecture, variant
(baseline—“base”; feature-extended—“+F”) and localization method, averaged over all 25 images
from the test set and 15 (top 3 × 5 folds) models. “-” indicates that the given method was not
evaluated. Mean IoU value of Fmap localization map itself achieved the value of 0.517.

Method
VGG19 Resnet50 Inception

Base +F Base +F Base +F

GC 0.423 0.396 0.369 0.369 0.381 0.334

GC + Fmap - 0.529 - 0.497 - 0.485

GP 0.203 0.266 0.223 0.231 0.176 0.249
GP + Fmap - 0.387 - 0.394 - 0.398

GGC 0.154 0.148 0.182 0.179 0.156 0.217

GGC + Fmap - 0.298 - 0.340 - 0.374
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Feature-extended models achieved higher results for GP localizations, while for GC
and GGC localization, baseline models performed better. However, combining location
predictions with Fmap improved the results for the three methods. Additionally, the Fmap
localization itself achieved a mean IoU = 0.517, which is significantly higher than the GC,
GP, and GCC methods for any of the models evaluated. Finally, the highest mean IoU
value, equal to 0.529, was acquired for the GC + Fmap method using the VGG19+F models.

5.4. Processing Performance

In the final part of the experiments, the processing performance of the models was
evaluated in terms of model inference time. Baseline and feature-extended model variants
were evaluated for the four architectures tested. The performance was evaluated for single
models by calculating the mean processing time of a single image on all images from the
test set (9361 images with a resolution of 720 × 576). To enable performance measurements,
a dedicated mechanism was implemented that allowed measurements of the processing
time of consecutive stages of the prediction process. Several processing stages, described in
Table 11, were identified and considered in the measurements.

Table 11. Processing stages of the complete algorithm evaluated in the performance tests.

Stage Definition

preprocess Preparation of the input image for the actual processing, including deinterlacing and resizing
using cubic interpolation.

roi
Additional preprocessing step required by the proposed feature descriptors, including detection
of the region o f interest area of the image presenting the actual organ (that is, excluding black
border and overlay information printed in the image by the endoscopic device).

F1–F9 Calculation of each of the F1–F9 feature planes using the corresponding feature descriptor.

f eatures total Total processing time of all feature descriptors (excluding roi detection).

predict Inference process of the neural network model.

total time Total processing time of a single endoscopic image.

Performance tests were conducted on a system equipped with a Ryzen Threadripper
1920X CPU (12-core/24-thread) 4.0 GHz, 64 GB RAM, Titan Xp GPU. Tests were executed
separately for two variants: (1) using the CPU only, and (2) using the GPU for model
prediction and the CPU for the remaining part of the processing. The results are presented
in Table 12 (CPU-only variant) and Table 13 (CPU+GPU variant).

Table 12. Single model inference mean processing time in milliseconds for a CPU-only system. “-”
denotes stages that are not present in the baseline (“base”) variants.

Stage
VGG19 Resnet50 Resnet152 Inception

Base +F Base +F Base +F Base +F

preprocess 1.14 1.42 1.18 1.43 1.17 1.43 1.28 1.45

roi - 13.75 - 14.18 - 14.15 - 14.29

F1 - 3.95 - 4.04 - 4.36 - 4.26

F2 - 1.74 - 1.78 - 1.82 - 1.80

F3 - 1.83 - 1.84 - 1.89 - 1.86

F4 - 3.82 - 3.83 - 3.91 - 4.01

F5 - 1.71 - 1.72 - 1.78 - 1.72

F6 - 1.82 - 1.81 - 1.87 - 1.84

F7 - 0.13 - 0.14 - 0.15 - 0.14

F8 - 0.77 - 0.78 - 0.80 - 0.78

F9 - 1.34 - 1.34 - 1.39 - 1.34

f eatures total - 31.30 - 31.90 - 32.56 - 32.46

predict 181.84 183.18 87.82 89.52 231.13 233.41 57.82 57.94

total time 183.25 217.71 89.31 124.90 232.60 269.29 59.41 93.86
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Table 13. Single model inference mean processing time in miliseconds for a CPU+GPU system, where
predict stage is performed using GPU, while the remaining stages are performed on CPU. “-” denotes
stages that are not present in the baseline (“base”) variants.

Stage
VGG19 Resnet50 Resnet152 Inception

Base +F Base +F Base +F Base +F

preprocess 1.35 1.44 1.30 1.45 1.22 1.48 1.30 1.58

roi - 13.52 - 13.90 - 13.83 - 14.11

f eatures total - 30.68 - 31.47 - 31.53 - 31.73

predict 9.03 11.34 19.13 20.75 51.30 55.30 29.74 31.34

total time 10.67 45.16 20.73 55.47 52.82 90.07 31.34 66.52

Performance Results

The necessity of extracting additional features obviously increases the processing time
and therefore reduces the processing performance of the bleeding classification models
using the feature-extended variant. The additional time is an approximately fixed-size
overhead that needs to be applied once for a given input image. Hence, when more neural
network models are included in a considered algorithm (e.g., 5 models of a single 5-fold
cross-validation training, or 15 models of the 3× ensemble of the 5-fold models), the relative
impact of the overhead on the total processing time drops. The relative impact is also clearly
lower for a CPU-only system. The evaluation of the relative impact of the proposed features
on the processing time for different model and system variants is presented in Table 14. It
can be concluded that accuracy gains achieved using the feature-extended models justify
the introduced computational overhead, especially for ensembled models.

Table 14. Relative overhead in inference time of feature-extended models in comparison to baseline
models for different model and system variants.

Model Variant System Variant VGG19 Resnet50 Resnet152 Inception

single model
cpu

+18.8% +39.9% +15.8% +58.0%

×5 fold +5.7% +12.5% +5.0% +16.4%

ensemble ×3 +2.4% +5.4% +2.3% +5.6%

single model
cpu+gpu

+323.1% +167.6% +70.5% +112.3%

×5 fold +120.0% +55.3% +25.5% +36.1%

ensemble ×3 +57.6% +24.2% +13.7% +15.7%

The presented results reflect only the inference time of the algorithms. The model
training time is also affected by the fixed overhead introduced by the features. However,
the relative overhead is smaller during training since model prediction has to be extended
with a time-consuming backward step of the backpropagation algorithm, which is ob-
viously necessary for both the baseline and feature-extended models. Moreover, since
model training is performed on long sequences of training data, feature calculation and
model training steps can be easily and effectively parallelized by pipelining when using a
CPU+GPU system.

Finally, the overhead presented by the proposed features is, however, not inherent.
Although optimization of feature computation algorithms was not investigated in this work,
the actual processing performance of the feature descriptors can be significantly improved
in several aspects. For example, some of the image processing operations could be reused
between the descriptors. In addition, the feature descriptors can be reimplemented using
GPU programming frameworks (e.g., OpenCL, Nvidia CUDA), especially for the image
processing operations used in the descriptors, for which efficient GPU implementations
are available (e.g., Sobel operator, morphological operations, blur, image normalization,
and other matrix operations). Therefore, the extension of CNNs in the form of the proposed
feature descriptors offers great potential for improving processing performance.
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6. Discussion

The presented work investigated the possibility of extending convolutional neural net-
works with a set of proposed visual features to improve accuracy for the task of endoscopic
bleeding detection in color images. A methodical approach was used to theoretically define
appropriate visual features and implement computer-vision-based descriptors to capture
the respective features. This led to the development of valuable, high-level visual features
of endoscopic bleeding. In addition, a simple scheme for combining the features with
convolutional neural networks was presented; hence, the proposed features can potentially
be applied along with other modifications and improvements of neural network architec-
tures or training algorithms to achieve additional classification accuracy gains. Finally,
experiments were conducted to evaluate the actual performance of the feature-extended
neural networks on a representative dataset of endoscopic images.

As a result of the study, an efficient and accurate endoscopic bleeding detection algorithm
was developed, achieving an ROC AUC of 0.965 in an ensembled configuration. A set of
experiments confirmed the positive impact of the proposed features on the ROC AUC results
for three evaluated architectures: VGG19, Resnet50, and Resnet152, and in the case of a larger
sample of trained models, also for Inception v3. As well as achieving an improvement in model
accuracy in terms of the ROC AUC, advantages in other accuracy metrics were also presented,
including F-score metrics and the performance in high-sensitivity and high-specificity operating
points. The study also evaluated the ability of the models to localize the blood area in a weakly
supervised setting. A potential improvement from the feature extension was demonstrated for
one of the localization methods. Furthermore, the proposed visual feature descriptors were
found to be accurate predictors of bleeding localization themselves.

The accuracy results acquired in the presented study, even though it was not ori-
ented toward optimizing accuracy but instead focused on evaluating the impact of the
proposed features, are competitive in regard to the methods presented in the literature.
Although several studies reported significantly higher ROC AUC values, as presented in
Table 15, the direct comparison of methods is, however, difficult due to differences in the
datasets used, the images sources (WC or traditional endoscopy), or the actual pathology
detected (bleeding, active bleeding, angioectasia). Moreover, all of the listed approaches use
private datasets, which are therefore not possible to review. The descriptions of the datasets
often lack essential information, e.g., the number of included unique bleeding cases for
which the positive images were extracted. A large, high-quality dataset was utilized by
Kim et al. [35], which justifies the high accuracy of the method. For other studies, in turn,
the size of the dataset is very low. High-accuracy results reported on small datasets are
often not validated reliably enough.

Table 15. Comparison of the presented study results of ROC AUC values reported in the literature.

Method Year Dataset Total Positive (Blood) Images Image Source Lesion Type ROC AUC

Li et al. [23] 2017 Private dataset 185 WCE Bleeding 0.991

Tsuboi et al. [24] 2019 Private dataset 2725 WCE Angioectasia 0.998

Aoki et al. [25] 2021 Private dataset 2237 + 29 videos WCE Angioectasia 0.871

Kim et al. [35] 2021 Private dataset 164,713 WCE Bleeding 0.922–0.998

This study 2023 ERS [45] 29,457 Traditional endoscopy Bleeding 0.965

The proposed method of extending deep learning models with additional visual features
can be facilitated to create new or improve the accuracy of existing bleeding detection algo-
rithms. Such methods have important clinical applications, as they can be used to develop
real-time assistant applications that would support physicians in traditional endoscopy by
observing the image displayed by the device as a second reader, notifying them about detected
occurrences of blood and therefore reducing the risk of overlooking such lesions. In the area of
wireless capsule endoscopy, where long video recordings are reviewed by the physician after
examination in a time-consuming and labor-intensive process, accurate automatic detection of
blood occurrences is also highly demanded. The approach proposed in the study can also be
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used to shorten capsule endoscopy videos and therefore reduce the physician’s time required
to review examinations, although the best results would be obtained when combined with
algorithms dedicated to detecting other pathologies of the gastrointestinal tract.
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