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a b s t r a c t 

The paper presents a method of incorporating decision maker preferences into multi-objective meta-heuristics. It 
is based on tradeoff coefficients and extends their applicability from bi-objective to multi-objective. The method 
assumes that a decision maker specifies a priori each objective’s importance as a weight interval. Based on this, 
w-dominance relation is introduced, which extends Pareto dominance. By replacing reference points with weight 
intervals the method eliminates the need for any knowledge concerning expected solutions. Instead, decision 
maker reflects his context-independent policy regarding objectives. The proposed w-dominance was incorpo- 
rated into selected multi-objective metaheuristics. Following this, three new metrics were designed. The metrics 
include prescreening true Pareto Front and final population according to w-dominance relation. Based on pre- 
liminary tests, Vector Angle Evolutionary Algorithm (VaEA) was selected as the best match for w-dominance. 
W-dominance-extended VAEA (wVAEA) was compared in a series of simulations with four state-of-the-art refer- 
ence point-based multi-objective algorithms. The results show that wVaEA outperforms the four representative 
algorithms for selected benchmark problems. 
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. Introduction 

Multi-Objective Evolutionary Algorithms (MOEA) and other Multi-
bjective Meta Heuristics (MOMH) become more popular because of

wo facts. First, the majority of real-world optimization problems are
e facto multi-objective ones. Second, reducing a multi-objective prob-
em to a single objective by means of aggregated functions (or turning
ome objectives into constraints) results in losing solutions which could
e preferred by a decision maker (DM). On the other hand, sticking to
egular Pareto dominance in EMO has the disadvantage of processing
nd returning some solutions undesired from DM’s point of view. Thus
n turn may severely increase processing time [1] , in some situations
aking the optimization process unacceptably long-lasting. Therefore,

t is common in EMO to take into account DM preferences. Owing to
his, the EMO algorithm may focus on that part of the objective space
hich is essential to DM and speed up the convergence towards the true
areto Front (PF). 

The approaches to incorporating DM preferences can be classified in
 number of ways, depending which criterion is considered. The three
ommonly used criteria are: 

1) The time of eliciting DM preferences: the elicitation can be done
a priori (before the optimization process), interactively (during the
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optimization process) or a posteriori (after the main optimization
process is finished). 

2) The way of expressing DM preferences: among others, DM prefer-
ences can be specified by means of reference points or reference
vectors, preference relations, comparisons of solutions, outranking,
knee points and tradeoffs. 

3) Incorporating DM preferences into algorithms: the preferences can
be handled by means of dominance relations, decomposition algo-
rithms and indicator-based methods. 

As for preference elicitation, each of the three approaches has its ad-
antages, which make it a good fit for some application cases, as well
s some limitations. An a priori approach is useful if the DM knows the
references in advance. It may also be a necessity, if interaction with
M is impossible due to the optimization’s working environment, e.g.

n case of real time systems, where solutions have to be generated and
pplied automatically and within strict time limits. However, if DM can
e engaged, interactive approach [2] may be recommended, as it en-
bles DM to adapt their preferences based on newly obtained solutions
nd their coordinates in the space of objectives. This approach can result
n solutions, which meet DM’s needs best, though this gain may come
t the cost of a longer overall optimization time due to interaction. Fi-
ally, DM can relate to an already generated solution a posteriori – in a
ulti-Criteria Decision Making phase, which is done after the main op-
wn.umg.edu.pl (J. Szlapczynska). 
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imization process. However, the drawback of the last approach is that
he optimization phase cannot benefit from DM preferences by focusing
n DM’s needs and reducing computational time. 

In terms of the form that DM preferences can take, reference points
RP) are particularly popular [1] . RPs are points in the objective space
hich represent desired and probably feasible solutions [3–5] . Possi-
le applications of RPs to MOEA and other MOMH include among oth-
rs dominance relation [ 6 , 7 ], non-dominated solution sorting [ 8 , 9 ] and
rowding distances [ 10 , 11 ]. Apart from specifying a single RP, it is also
ossible for DM to give a reference vector [10] . Both a single RP and
 reference vector may reflect DMs requirements as well as aspiration
evels [12] or expectations. Another RP-related approach is specifying
irectly a Region of Interest (ROI) or target region [13] . DM may express
heir satisfaction with solutions within ROI by means of density function
14] , desirability function [ 15 , 16 ] or a combinations of the above two
17] . Furthermore, in case of decomposition-oriented EMO algorithms,
 DM-supplied aspiration-level vector may be used to map uniformly
istributed reference points to their new positions, thus focusing the
ptimization process on ROI [18] . Other, not RP-related approaches to
andling DM’s preferences include comparison of solutions [19] , pref-
rence relations, outranking, knee points [ 1 , 20 ] and finally – tradeoffs
 9 , 21–23 ]. Of these, both preference relations and outranking [ 24 , 25 ]
tilize the same concept of comparing the objectives [26] , however the
ransitive relation is assumed in the former [27] , while non-transitivity
s allowed in the latter [ 25 , 28 ]. As for comparison of solutions, pair-wise
omparisons may be used to construct a DM preference cone [2] , which
ay be updated interactively to fit DM’s needs and limit the search space

f the optimization process. 
When it comes to incorporating DM preferences into MOMH also

 few approaches can be applied. Of them, the most popular are
ominance-based, decomposition-based and indicator-based ones. In the
rst case, preference-oriented relations extend the range of dominance
eyond regular Pareto dominance and thus enable the algorithm to com-
are some of Pareto non-dominated solutions. Dominance relations may
e based on RPs and various approaches are possible here. Among oth-
rs, an RP-based dominance relation may take into account Euclidean
istance and angle information between the solutions and RPs to eval-
ate the solutions in terms of their convergence and diversity, respec-
ively [29] . As for decomposition-based algorithms, they usually rely on
eight vectors or related concepts. Here DM preferences are reflected
y the distribution of weight vectors, which are more densely placed in
he DM’s ROI [ 30 , 31 ] and this mechanism may be additionally tuned to
void premature convergence [32] . Indicator-based methods apply pref-
rence information by means of quality indicators. Depending on how
ell various solutions match DM preferences, they have different im-
act on the indicator value, which results in directing the optimization
rocess. Finally, it is worth noting, that combinations of two or more
pproaches to incorporating DM preferences are also possible. 

According to the three division criteria given above, the method pro-
osed here can be classified as a priori, tradeoff-inspired and dominance-
ased. It extends the concept of [21] , but unlike in [21] , here tradeoff
oefficients are not used directly, but are replaced with weight intervals.
hose weight intervals turn out to be easier to handle than coefficients
nd allow for a generalization from bi-objective to multi-objective as
s later explained in Section 2.3. The method introduces w-dominance
elation, which takes into account DM-specified weight intervals and
an be checked in linear time with regard to the number of objectives.
s opposed to RP-based approaches, it does not require any knowledge
oncerning expected solutions. W-dominance relation was added to over
0 MOMHs, whose performance was then tested leading to the choice
f Vector Angle Evolutionary Algorithm (VaEA) [33] as most promis-
ng. The w-dominance-equipped VaEA (wVaEA) was then compared to
our state-of-the art RP-based EMO algorithms. The results shown that
VaEA outperforms the other algorithms for the majority of selected
roblems, especially in terms of convergence. Given the algorithm’s per-
ormance and the fact that DM does not need to have any knowledge
2 
n the feasible objective values, w-dominance can be considered an al-
ernative to other preference-based approaches, especially for problems
here it is impossible to estimate the true Pareto Front (PF) a priori
ith reasonable accuracy. 

The rest of this paper is organized as follows. Next section shows
otivation for developing the proposed method as well as some liter-

ture backgrounds. After this, w-dominance is described in detail, in-
luding three newly proposed metrics, which make it possible to com-
are w-dominance-equipped algorithms with other preference-based
OMHs. Experimental studies are then presented, followed by a dis-

ussion of their results. Finally, conclusions are provided in the last sec-
ion. Appendix 1 includes comparison results of w-dominance-equipped
aEA (wVaEA) with the original VaEA algorithm. 

. Backgrounds 

.1. Dominance-based approaches to incorporating DM preferences into 

OMH 

Dominance-based algorithms use relations, which extend the range
f dominance beyond regular Pareto approach and thus are able to com-
are some of Pareto non-dominated solutions. Dominance relations do
ot have to be based on DM preferences – e.g. the popular epsilon-
ominance [34] is not. As for preference-oriented dominance relations
hey include, among others g-dominance [35] , r-dominance [7] and p-
ominance [36] , all of which utilize reference points. The RP-based
ominance relations may compare solutions based on division of objec-
ives’ space (g-dominance [35] ) or their Euclidean distance to an RP. The
uclidean distance may take into account weights assigned to objectives
r-dominance [7] ) and may be enhanced by indicators like preference
adius (p-dominance [36] ) or preference angle [29] . Those additional
ndicators aim at combining algorithms’ good convergence (resulting
rom using Euclidean distances) with diversity. Some other variants of
ominance relations use local search strategies [37] and user prefer-
nce indicators [8] to improve performance of NSGA-II and R-NSGAII
espectively. 

.2. Route optimization – limitations of RP-based approaches and 

otivation for applying tradeoff-oriented methods 

Arguably, the most popular recent thread in specifying DM prefer-
nces is by means of RPs. They are easy to use provided that DM is either
ble to specify their values in the objective space in advance or that it
s possible to engage DM in the interactive preference elicitation dur-
ng the optimization process. For example, when optimizing design of
ome devices DM usually can point desired and feasible combinations
f objective values. This is especially true in case of market-available
roducts, whose performance parameters are widely known. Also, in
uch case, DM is able to relate to the newly obtained solutions, which
akes it possible to handle DM preferences interactively. 

Unfortunately there is also a class of real-world multi-objective op-
imization problems where neither of the above is possible, that is RPs
annot be specified in advance because of insufficient knowledge and
he interactive process is impossible due to working conditions of the
ptimization process. Such problems include real time route optimiza-
ion in land and marine transport, where possible objective values are
ot known a priori and interactive process is impossible because of com-
utational time constraints. Typical objectives in transport are mini-
ization of travel time, fuel consumption and risk. In route planning

f road vehicles all three objective values depend on the start and desti-
ation points, vehicle parameters, time of the year, loading conditions
nd current congestion levels including temporary traffic jams. There-
ore, even if historic data are available, they may not be relevant for
he current case. Also, a driver transiting through a country or a conti-
ent may not wish to be troubled with entering new RPs for each leg
f a route. The same is true for routing of transoceanic vessels [38] ,
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hich is heavily affected by seasonal environmental changes (includ-
ng tropical cyclones), ships’ speed characteristics for various loading
onditions and up-to-date weather forecasts. Whenever a new forecast
s made available, the weather routing system should re-run the opti-
ization with the ship’s current position as a starting point. Thus, using
P-based approach would lead to involving a navigator more often than

t is actually possible. Similarly, in case of managing a fleet of vessels, a
hip-owner would have to specify RPs for each combination of a vessel,
oute endpoints, time of the year etc., which, again, would be extremely
iresome. Finally, in ship collision avoidance [39] , particular encounter
onditions are usually unique and navigator has a limited time for deci-
ion making, which means that entering RPs is not feasible. 

Summing up, RPs are of limited use in route optimization and related
roblems, which makes impossible or impractical to apply RP-based
ominance relations mentioned in the previous subsection. Instead, DM
ill be interested in specifying his general, context-independent pol-

cy towards objectives. This need is addressed by tradeoff approaches,
hough, unfortunately tradeoffs also have their limitations as is de-
cribed in the following subsection. 

.3. Tradeoff-oriented MOMH 

Within tradeoff based approaches to incorporate DM preferences it is
ossible to distinguish objective (problem structure-based) tradeoffs and
ubjective (DM’s-preference based) ones [1] . In terms of input data the
atter may either take numerical or linguistic values, which can then be
ransformed into objective weightings, weight intervals or coefficients
y means of fuzzy preference relations, as has been shown in [ 22 , 40 ].
 guided MOEA utilizing the subjective tradeoff approach with DM-
pecified coefficients has been presented in [21] . The authors define
here the tradeoffs as values reflecting how much the DM is ready to
acrifice some objectives for improving the other. Such information can
e specified in units, e.g. DM may decide that improvement by a single
nit in one objective is worth at most degradation by n units in another
bjective. This coefficients-based approach is well-suited for bi-objective
ptimization but, as stated in [1] , the approach presented in [21] can-
ot be directly applied to more than two objectives. For a larger number
f objectives this tradeoff approach requires a matrix of tradeoff coeffi-
ients given for each combination of two objectives. Each coefficient’s
alue 𝑐 𝑖,𝑗 reflects the fact that according to the DM a single unit improve-

ent in 𝑓 𝑖 ( 𝑥 ) is worth at most 
𝑤 𝑚𝑖𝑛 
𝑖 

𝑤 𝑚𝑎𝑥 
𝑗 

units of degradation in 𝑓 𝑗 ( 𝑥 ) . This

as two disadvantages. First, providing such a matrix would be tiresome
or DM and would require consistency check. The coefficients c i,j have
o be consistent, that is, the following condition has to be satisfied for
ll 𝑚 ( 𝑚 −1 )( 𝑚 −2 ) 6 combinations of i, j and k : 𝑐 𝑖𝑗 𝑐 𝑗𝑘 𝑐 𝑘𝑖 = 𝑐 𝑖𝑘 𝑐 𝑗𝑖 𝑐 𝑘𝑗 , where m is
he number of objectives. If any of those conditions was not met, we
ould get a contradiction: a tradeoff not allowed by a single coefficient

ould be obtained by a sequence of two tradeoffs. Furthermore, even if
e are given a matrix, which satisfies the consistency condition, it is still

mpossible to apply it directly in the algorithm. In practice, when com-
aring two solutions, we encounter different objective values for all or
early all objectives, not just the two addressed by a given coefficient.
he above issues contribute to the fact that the tradeoff from Branke
t al. [21] cannot be generalized to more than two objectives. 

In general, it can be stated that tradeoffs’ main drawback is the dif-
culty to apply tradeoff preferences during optimization process. As for
radeoffs’ main advantage, it is the fact that they are independent on
he particular occurrence of an optimization problem and thus can be
rovided a priori. Considering the above, we can state that it is desirable
o propose a tradeoff-based method that would offer DM the possibility
o specify their context-independent preferences a priori in such a way
hat they could be easily incorporated into the algorithm and applied
hroughout the optimization process. This can be done by extending the
ethod from Branke et al. [21] to more than two objectives and re-
lacing troublesome matrix of coefficients with some more DM-friendly
3 
olution. The current paper addresses both of those issues by combin-
ng tradeoffs with a flexible weight intervals-based dominance relation.
he proposed approach is a compromise between popular weighted av-
rage (which is both too knowledge-demanding and too limiting for
M) and unfocused Pareto-optimization approach (which does utilize
M preferences). Instead of requesting precise weight values assigned

o objectives, the proposed method can accept very vague DM-given in-
ormation and still benefit from them. As it turns out, even quite wide
eight intervals can significantly limit the objectives’ space and make

he optimization process more focused. 

. Proposed weight interval-based tradeoff in MOMH 

w-dominance) 

In this section we describe in detail our approach to quantification
f DM’s preferences in MOMH. It extends any Pareto-dominance-based
OMH to preference-based one, by applying weight intervals and a new

ominance relation – w-dominance. We have developed an early ver-
ion of this method [38] specifically for weather routing of sea-going
essels, using SPEA2 [41] algorithm. Here we present w-domination
n its mature stage, generalized for any kind of application and any
areto-preference-based MOMH. We introduce three new metrics to
ompare performance of a w-dominance equipped MOMH with any
ther preference-based MOMH. The following subsections elaborate on
hat. 

.1. A generalized weighted average objective function 

Using weighted averages of objective functions instead of multi-
bjective optimization has two disadvantages. One of them is that DM
s usually not able to specify the weights precisely. The other, that a
ot of potentially interesting solutions cannot be found that way (e.g.
on-convexities of the true Pareto Front). The approach we present
ere is based on the observation that DM may specify weights as in-
ervals instead of single values. The mean value of each interval reflects
M’s assessment of the objective’s importance and the interval’s width
DM’s uncertainty concerning this assessment. Furthermore, the wider

he intervals, the deeper the optimization algorithm will search into non-
onvex parts of the true Pareto Front (PF). 

Now let us consider the i-th objective and denote weight interval w i 

ssigned by DM to it: 

 𝑖 ∈ ⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩, (1)

here 𝑤 

𝑚𝑖𝑛 
𝑖 

, ∈ ⟨0 , 1 ⟩, 𝑤 

𝑚𝑎𝑥 
𝑖 

∈ (0 , 1 ⟩ and 𝑤 

𝑚𝑖𝑛 
𝑖 

≤ 𝑤 

𝑚𝑎𝑥 
𝑖 

. This results in:
𝑚 ∑
 =1 

𝑤 𝑖 ∈ ⟨0 , 𝑚 ⟩, where m is the number of objectives. If needed, 
𝑚 ∑
𝑖 =1 

𝑤 𝑖 

an be scaled down to ⟨0 , 1 ⟩ range: it is enough to divide each of the

M-specified 𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

by 
𝑚 ∑
𝑖 =1 

𝑤 

𝑚𝑎𝑥 
𝑖 

. 

Further on, a generalized weighted average objective function will
e used, where each 𝑤 𝑖 given by (1) will remain an unspecified value
rom the ⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩ range: 

 ( 𝑥 ) = 

𝑚 ∑
𝑖 =1 

𝑤 𝑖 𝑓 𝑖 ( 𝑥 ) , (2)

here m is the number of objectives and 𝑓 𝑖 ( 𝑥 ) is a normalized i-th ob-
ective function. 

Despite the use of weights the above generalized weighted average
bjective function (2) does not mean a loss of generality, because it is an
quivalent of regular Pareto optimization if: 𝑤 

𝑚𝑖𝑛 
1 , 𝑤 

𝑚𝑖𝑛 
2 , … , 𝑤 

𝑚𝑖𝑛 
𝑛 

= 0 .
his results from the fact that according to DM a single unit improve-

ent in 𝑓 𝑖 ( 𝑥 ) is worth at most 
𝑤 𝑚𝑖𝑛 
𝑖 

𝑤 𝑚𝑎𝑥 
𝑗 

units of degradation in 𝑓 𝑗 ( 𝑥 ) . If all

 

𝑚𝑖𝑛 
i are equal to 0 than the quotient 

𝑤 𝑚𝑖𝑛 
𝑖 

𝑤 𝑚𝑎𝑥 
𝑗 

is also 0 for all i, which

eans that DM does not accept any degradation in any objective and
hus a tradeoff is not possible. 



R. Szlapczynski and J. Szlapczynska Swarm and Evolutionary Computation 63 (2021) 100866 

 

a  

o
 

v  

a  

𝑤  

b

3

 

o  

fi  

(  

t  

“  

t  

I  

n  

A  

a  

c  

i  

a  

t

 

 

 

 

O  

a  

a  

t  

o  

e  

t  

o  

i  

o  

i  

i  

t  

p  

𝑤

 

t  

n  

s  

m  

a  

t  

i  

o  

a  

n  

P  

o  

i  

a  

d

 

t  ⟨  

t  

t  

o  

F  

n  

o  

d  

a  

l

3

a

 

i∑
 

∃

 

(  

i  

i  

d
 

g
 

i  

t  

(  

fi∑
 

w∑
 

𝑑  

(
a(

𝑔

 

f

𝑤  

(

On the other hand, if 𝑤 

𝑚𝑖𝑛 
𝑖 

= 𝑤 

𝑚𝑎𝑥 
𝑖 

for all i then the weight intervals
re replaced by precise weight values and thus the proposed aggregated
bjective function (2) would become a typical weighted average. 

The above two cases ( ∀𝑖 𝑤 

𝑚𝑖𝑛 
𝑖 

= 0 or ∀𝑖 𝑤 

𝑚𝑖𝑛 
𝑖 

= 𝑤 

𝑚𝑎𝑥 
𝑖 

) are the extreme
ariants, which are covered by the proposed method, but do not bring
ny practical benefits. Therefore it is expected of DM to specify: 0 <
 

𝑚𝑖𝑛 
𝑖 

< 𝑤 

𝑚𝑎𝑥 
𝑖 

. Once 𝑤 

𝑚𝑖𝑛 
𝑖 

and 𝑤 

𝑚𝑎𝑥 
𝑖 

are known, the dominance rules can
e proposed, which extend the range of classical Pareto dominance. 

.2. An example of preferences elicitation in the proposed approach 

Let us now look at the example of preferences elicitation in case
f autonomous ship. International Maritime Organization (IMO) speci-
es four degrees of autonomy for Maritime Autonomous Surface Ship
MASS). The last of them is: “Fully autonomous ship: The operating sys-
em of the ship is able to make decisions and determine actions by itself
. Let us focus on this fully automated MASS. One of frequent opera-
ions that it will have to perform is avoiding collisions with other ships.
n general, vessels’ behavior in encounter situations is governed by Inter-
ational Regulations for Preventing Collisions at Sea (COLREGs) [42] .
mong others, COLREGs point out which vessel is obliged to give way
nd what types of maneuvers are preferred. The detailed choice and exe-
ution of a sequence of maneuvers is however up to the navigator, which
n case of a MASS means – a navigation system installed onboard and
cting as navigator. It is a multiobjective optimization problem, where
he objectives may be as follows: 

- minimization of collision risk index (covering collisions with ships
and static obstacles as well as groundings), 

- minimization of cargo damage risk due to large and instant course
alterations, 

- minimization of extra fuel consumption due to evasive maneuvers
and getting back on course. 

Let us denote those three objectives by: f 1 , f 2 and f 3 respectively.
bviously, some tradeoff between them is needed, but in case of a fully
utomated MASS it is not possible to consult an external DM every time
nother vessel is encountered. RPs cannot be used because the objec-
ive values will depend on a particular encounter (motion parameters
f encountered vessels, surrounding traffic, limitations of a waterway
tc.). Instead, a certain policy of tradeoffs between all objectives has
o be set a priori for the system to use it during the exploitation. The
bjectives have been sorted in the order of their importance: avoid-
ng collisions is critical because collisions may involve casualties in the
ther vessel’s crew, environmental damages and losing a vessel. Min-
mization of extra fuel consumption is least important here, though it
s still desired as long as may be done without significant degrada-
ion in the first two objectives. Thus, an example of DM’s policy ex-
ressed in weight intervals assigned to each objective may be as follows:
 1 ∈ ⟨0 . 9 , 1 ⟩, 𝑤 2 ∈ ⟨0 . 4 , 0 . 7 ⟩, 𝑤 3 ∈ ⟨0 . 1 , 0 . 3 ⟩. 

The weight intervals above are averaged values obtained by the au-
hors from navigators of conventional manned vessels. As we can see,
avigators are sure of the critical importance of the first objective (colli-
ion risk index). As for the second objective (cargo damage risk), the nu-
erical values can be interpreted as moderate to significant importance

nd the third (extra fuel consumption) – as little to moderate impor-
ance. During the optimization process, the objectives will be normal-
zed in each generation (based on the objective values obtained through-
ut the population) and following this, the w-dominance can be checked
s described in the following section 3.3. Owing to w-dominance a sig-
ificant reduction in objective’s space is possible, when compared to
areto dominance. This reduction of objective’s space depends strictly
n the widths of DM-specified intervals and it is possible to estimate
t in advance, based on those widths. For weight intervals given in the
bove example, the percentages of solutions Pareto-dominated and w-
ominated by a given solution Y are provided in Table 1 . 
4 
As can be seen, even though navigators have a vague idea of rela-
ive weights of the second and third objective (intervals: ⟨0 . 4 , 0 . 7 ⟩ and
0 . 1 , 0 . 3 ⟩), w-dominance can still bring a massive reduction of objec-
ive’s space, when compared to Pareto-dominance. For given weight in-
ervals even an average solution ( 0 . 5 , 0 . 5 , 0 . 5 ) w-dominates nearly 43%
f all objectives’ space, while only 12.5% are Pareto-dominated by it.
urthermore, a solution approaching utopia ( 0 . 1 , 0 . 1 , 0 . 1 ) w-dominates
early all of objectives’ space (98.4%), despite the fact that only 72.9%
f them are Pareto-dominated. The latter means that in case of w-
ominance only 1.6% of objectives’ space would be taken into account
fter obtaining solution ( 0 . 1 , 0 . 1 , 0 . 1 ) , while Pareto dominance would still
eave us with 27.3% of objective space to handle. 

.3. Extending the range of dominance by application of weight intervals –

 conditions for w-dominance check 

First, we may observe that the following always holds when taking
nto account (2): 

𝑚 

𝑖 =1 
𝑤 

𝑚𝑖𝑛 
𝑖 

𝑓 𝑖 ( 𝑥 ) ≤ 𝑓 ( 𝑥 ) ≤ 

𝑚 ∑
𝑖 =1 

𝑤 

𝑚𝑎𝑥 
𝑖 

𝑓 𝑖 ( 𝑥 ) . (3)

In minimization Pareto MOP x dominates y if and only if: 

𝑖 

(
𝑓 𝑖 ( 𝑥 ) < 𝑓 𝑖 ( 𝑦 ) 

)
and ∀𝑖 

(
𝑓 𝑖 ( 𝑥 ) ≤ 𝑓 𝑖 ( 𝑦 ) 

)
. (4) 

For the generalized weighted average objective function as given in
2), the rule (4) still implies dominance. However, in cases when (4)
s not satisfied, thus x does not dominate y , another relation extend-
ng Pareto-dominance can be introduced, namely w-dominance. It is
efined that a solution x w-dominates solution y if: 
𝑓 ( 𝑥 ) < 𝑓 ( 𝑦 ) , where 𝑓 ( 𝑥 ) is the generalized weighted average function

iven by (2). 
Because each 𝑤 𝑖 is an unspecified value from ⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩ range it
s impossible to check condition 𝑓 ( 𝑥 ) < 𝑓 ( 𝑦 ) in a direct way. However,
here is also another condition, which is sufficient for w-dominance
 𝑓 ( 𝑥 ) < 𝑓 ( 𝑦 ) ) and even easier to be fulfilled. To formulate it we need
rst to present the condition of 𝑓 ( 𝑥 ) < 𝑓 ( 𝑦 ) as: 

𝑚 

𝑖 =1 
𝑤 𝑖 𝑓 𝑖 ( 𝑦 ) − 

𝑚 ∑
𝑖 =1 

𝑤 𝑖 𝑓 𝑖 ( 𝑥 ) > 0 , (5)

hich can also be presented as: 

𝑚 

𝑖 =1 
𝑤 𝑖 

(
𝑓 𝑖 ( 𝑦 ) − 𝑓 𝑖 ( 𝑥 ) 

)
> 0 (6)

To simplify further formulas let us denote: 

 𝑖 ( 𝑥, 𝑦 ) = 𝑓 𝑖 ( 𝑦 ) − 𝑓 𝑖 ( 𝑥 ) . (7)

Since 𝑤 𝑖 ∈ ⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩, we may observe that: 

𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 0 
)
⇒

(
𝑤 𝑖 𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 𝑤 

𝑚𝑖𝑛 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) 
)

(8) 

nd similarly 

𝑑 𝑖 ( 𝑥, 𝑦 ) ≤ 0 
)
⇒

(
𝑤 𝑖 𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 𝑤 

𝑚𝑎𝑥 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) 
)
. (9) 

Let us now introduce a function: 𝑔 𝑖 ( 𝑥, 𝑦 ) : 

 𝑖 ( 𝑥, 𝑦 ) = 

{ 

𝑤 

𝑚𝑖𝑛 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) , for 𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 0 
𝑤 

𝑚𝑎𝑥 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) , for 𝑑 𝑖 ( 𝑥, 𝑦 ) < 0 (10) 

Taking into account (8) and (9) we can see that for this function the
ollowing holds: 

 𝑖 𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 𝑔 𝑖 ( 𝑥, 𝑦 ) . (11)

Consequently, the following also holds: 
 

𝑚 ∑
𝑖 =1 

𝑔 𝑖 ( 𝑥, 𝑦 ) > 0 

) 

⇒

( 

𝑚 ∑
𝑖 =1 

𝑤 𝑖 𝑑 𝑖 ( 𝑥, 𝑦 ) > 0 

) 

. (12) 
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Table 1 

The percentage of solutions, which are Pareto-dominated and w-dominated by example solutions in the < 0;1 > -normalized objective space if weight intervals 
< 0.9, 1 > , < 0.4, 0.7 > , < 0.1, 0.3 > are assigned to the objectives for w-dominance. 

Solution Y ( 0 . 5 , 0 . 5 , 0 . 5 ) ( 0 . 4 , 0 . 4 , 0 . 4 ) ( 0 . 3 , 0 . 3 , 0 . 3 ) ( 0 . 2 , 0 . 2 , 0 . 2 ) ( 0 . 1 , 0 . 1 , 0 . 1 ) 
Percentage of solutions dominated by solution Y 

Pareto dominated 12.5% 21.6% 34.3% 51.2% 72.9% 

w-dominated (including Pareto dominated) 42.6% 60.3% 77.2% 90.9% 98.4% 

w-dominated but not Pareto dominated (our gain in objective space reduction) 30.1% 38.7% 42.9% 39.3% 25.5% 
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Fig. 1. wIGD: problem of prescreening solution set and true PF. True PF points 
marked in blue, obtained solutions marked in green. W-dominated solutions 
additionally marked with red letters. 
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Therefore, the following condition is sufficient for the proposed w-
ominance rules: 
𝑚 

𝑖 =1 
𝑔 𝑖 ( 𝑥, 𝑦 ) > 0 . (13)

Checking the above condition (13) has a linear computational com-
lexity regarding the number of objectives, just as regular Pareto domi-
ance has. Therefore, it can be incorporated into most MOMHs without
ffecting their computational complexity. 

As mentioned in section 3.1, if 𝑤 

𝑚𝑖𝑛 
1 , 𝑤 

𝑚𝑖𝑛 
2 , … , 𝑤 

𝑚𝑖𝑛 
𝑛 

= 0 ., then (13)
annot be fulfilled because, based on (12), its left side will not include
ny positive elements. Therefore, in such theoretical case the range of
areto-dominance will not be extended by w-dominance and the algo-
ithm will not make any use of the weight intervals. 

.4. Adding w-dominance to a MOMH 

The proposed tradeoff relation can be incorporated to practically
ny MOMH by means of replacing regular Pareto-dominance with a
-dominance condition (13). In case of MOMHs using non-dominated

orting algorithm (e.g. NSGA-inspired algorithms) the non-w-dominated
orting needs to be introduced, e.g. by modifying the Efficient Non-
ominated Sort with Sequential Search (ENS-SS) [43] . 

However, applying the dominance rule of (13) with 𝑔 𝑖 ( 𝑥, 𝑦 ) defined
s in (10) may result in too fast convergence and a loss of diversity
ithin population. Therefore, we use a modified, generalized version of
 𝑖 ( 𝑥, 𝑦 ) throughout the evolutionary process. It is defined as: 

 𝑖 ( 𝑥, 𝑦 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑤 

𝑚𝑖𝑛 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) 
(
1 − 𝑒 

𝑘 

𝑛 

)
for 𝑑 𝑖 ( 𝑥, 𝑦 ) ≥ 0 

𝑤 

𝑚𝑎𝑥 
𝑖 

𝑑 𝑖 ( 𝑥, 𝑦 ) 
(
1 + 𝑒 

𝑘 

𝑛 

)
for 𝑑 𝑖 ( 𝑥, 𝑦 ) < 0 

, (14)

here: 

k – current generation number, 
n – number of all generations, 
e – diversity encouragement factor from (0,1) range. 

Owing to this modification, the dominance acts as if ⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩ in-
erval was much wider for initial generations and then linearly narrowed
own to the interval specified by DM. If necessary, k and n values can be
eplaced with: a number of fitness evaluations already performed and a
otal number of allowed fitness evaluations, respectively. As for diversity
ncouragement factor e , it has been found in the course of preliminary
imulations that it is best to set it to around 0.5. Values smaller than 0.3
ay result in the abovementioned too fast convergence and a loss of
iversity within population. On the other hand, values larger than 0.7
ecrease the impact of DM preferences and make the optimization pro-
ess unfocused. Therefore, values between 0.4 and 0.6 are recommended
or use in practice, with the lower bound accentuating DM preferences
nd the upper bound – diversity. The value of e = 0.5 has been used
hroughout the experimental studies presented in section 4. 

.5. Proposed w-dominance metrics 

As recognized in [44] , classic metrics for evaluation performance of
OMHs fail to address properly the problem of considering DMs prefer-

nces. Therefore in [44] new metrics are proposed, whose main concept
5 
s prescreening of the original solution set and trimming the Pareto Front
PF), so that only solutions within Region of Interest (ROI) are taken into
ccount for performance assessment. Since our preference-based method
oes not use RPs, R-Metrics from [44] (e.g. R-IGD) cannot be directly
pplied here. However, the main idea of R-Metrics – prescreening solu-
ion set and available representation of PF – can still be used. Thus, we
ropose wIGD, wGD and wHV metrics. They are based on commonly
sed metrics of IGD, GD and HV respectively, but (like R-Metrics) they
rescreen the original solution set and PF: only non w-dominated solu-
ions are taken into account. The metrics aim to offer the possibility of a
air comparison between w-dominance and RP-based methods. In order
o fulfill this, we have to handle the below described problems. 

As opposed to RP-based methods, in case of w-dominance, based
n DM-specified weight intervals we are always able to decide unam-
iguously if a certain solution is w-dominated by another or not. Con-
idering the motivation behind DM-specified weight intervals it seems
atural to only take into account non-w-dominated solutions and non-
-dominated points of the true PF. However, when applying this policy,

he problems of excluding certain points affect the final metrics values
uch more than in case of RP-based approach. This issue is illustrated

elow. 
Let us assume the bi-objective case of minimizing functions f 1 and

 2 and the weight intervals of < 0.5, 1 > for f 1 and < 0.25, 0.5 > for f 2 .
he following phenomenon can then be observed for wIGD and wGD
etrics. 

.5.1. wIGD 

In Fig. 1 we show the available representation of true PF as blue dots
A to F). Those true PF points are approximated by solutions A’ to F’
green dots) of the obtained solution set. Neither of true PF points is w-
ominated by any other, hence they can all be taken into account. How-
ver, as for solution set, points A’ and F’ w-dominate the other four (C’ to
’) so neither of those other four points would be taken into account. As
 result, points B to E of the true PF will not have their equivalents in the
rescreened solution set, leading to poor value of the wIGD metric, de-
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Fig. 2. wGD: problem of prescreening solution set and true PF. True PF points 
marked in blue, obtained solutions marked in green. W-dominated true PF point 
B additionally marked with red letter. 
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pite the fact, that points B’ to E’ are actually reasonably close to points
 to E. The question arises here: should points B’ to E’ be considered af-
er all? Unfortunately, taking them into account would contradict DM’s
references because those solutions are w-dominated and thus should
ot be among recommendations for DM. Therefore, despite the above
entioned problem, we prescreen both the solution set and true PF for
IGD assessment throughout further simulation experiments. 

.5.2. wGD 

In Fig. 2 we again show the true PF points as blue dots (A to C). Those
rue PF points are approximated by solutions A’ to C’ of the solution
et. Neither of the solutions is w-dominated by any other, hence they
an all be taken into account. However, as for true PF, point B is w-
ominated by point A. Unfortunately, if we exclude it, the point B’ will
e assigned a large distance despite the fact that it actually lies exactly
n the true PF and is itself not w-dominated. Ironically, if the EMO
lgorithm did not find the non-w-dominated solution B’, the metric value
ould be better. Therefore to avoid such paradoxes, we have decided

hat only non-w-dominated solutions will be valid, but we will consider
heir distances to the closest point in true PF regardless if this true PF
oint is w-dominated or not. Concluding: we only prescreen solution set
nd we do not prescreen true PF for wGD assessment. 

.5.3. wHV 

The wHV metric is based on HV, however, similarly to previous two
etrics, only non-w-dominated solutions are considered for evaluation

nd regular Pareto dominance is replaced with w-dominance. The metric
s not directly affected by the problem described in section 3.5.1 ( Fig. 1 ),
ecause distances between solution set and true PF are not used there.
owever, the metric values may still suffer if there are very few non-w-
ominated solutions in the final set. 

. Experimental studies 

This section presents results of w-dominance application experi-
ents and comparison of w-dominance-enhanced EMO with the other

tate-of-the-art RP-based EMOs, as well as with original VaEA algorithm.

.1. Selected algorithms 

In general, w-dominance can be combined with nearly every MOMH,
hough it is designed to enhance those of the, which are not origi-
ally preference-based. In the course of our research we first added
-dominance relation to over 40 EMO and other MOMH algorithms
6 
mplemented in PLATEMO platform [45] . We have focused on the al-
orithms which were not initially preference-based so as not to mix
-dominance with other preference-based approaches within one al-
orithm. Tested algorithms included: Decomposition-Based Multiobjec-
ive Evolutionary Algorithm With the 𝜀 -Constraint Framework (DMOEA-
C) [46] , Generic Front Modeling-based Multiobjective Evolutionary
lgorithm (GFM-MOEA) [47] , Large Scale Multiobjective Optimiza-

ion Framework (LSMOF) [48] , Multiobjective Evolutionary Algorithm
ased on Decomposition (MOEA/D) [49] , Nondominated Sorting and
ocal Search (NSLS) [50] , Sparse multi-objective Evolutionary Algo-
ithm (SparseEA) [51] , Two-Archive Algorithm for Many-Objective Op-
imization (Two_Arch2) [52] , Vector Angle Evolutionary Algorithm
VaEA) [33] and Weighted Optimization Framework-enhanced SMPSO
WOF-SMPSO) [53] . During preliminary tests it has been found that w-
ominance worked particularly well with decomposition-oriented al-
orithms including MOEA/D. This can be attributed to the fact that
-dominance makes it possible to limit the range of weight vectors

hus focusing on those parts of the true Pareto front, which satisfy DM
references. Of all decomposition-based and decomposition-related al-
orithms enhanced by w-dominance we registered the best results for
aEA. VaEA is an algorithm, which uses the maximum-vector-angle-
rst rule for environmental selection to obtain good coverage of the
rue PF by the solution set. The above rule is supplemented by remov-
ng worst-convergence solutions, which results in a stronger selection
ressure toward the true PF. As shown in [33] , the combination of the
bove mechanisms leads to very good convergence without sacrificing
iversity. 

W-dominance-extended VaEA (wVaEA) outperformed the other w-
ominance-enhanced algorithms for the majority of tried benchmark
roblems from DTLZ and WFG suites. Therefore, we selected wVaEA as
 w-dominance-based EMO algorithm for further comparisons: this time
ith some state-of-the-art preference-based EMO algorithms. When se-

ecting the reference algorithms we took into account both preference-
ased and those, which are known for overall good performance and
an be turned into preference-based by appropriate choice of RPs (like
SGAIII [3] , A-NSGAIII [54] and ar-MOEA [29] ). Eventually, for com-
arison with wVAEA we selected four successful and recent preference-
ased and RP-based algorithms, which showed very good performance
n the initial simulations: hpaEA [55] , RPD-NSGAII [56] , RVEA [30] and
ICEA-g [57] . 

.2. Experimental settings 

Experiments described in the following sections were aimed at: 

- validating the w-dominance enhanced VaEA (wVaEA), 
- comparison of wVaEA’s results with the four selected reference-

point-based EMOs (hpaEA, RPD-NSGAII, RVEA and PICEA-g). 

The algorithms were tested on two strongly different cases of DM
references expressed as weight interval settings. 

- Case 1 assumed comparable importance of all objectives, with⟨𝑤 

𝑚𝑖𝑛 
𝑖 

, 𝑤 

𝑚𝑎𝑥 
𝑖 

⟩ equal for all objectives, but dependent on the number
of objectives m : 

𝑤 

𝑚𝑖𝑛 
𝑖 

= 0 . 5 − 

1 
𝑚 + 1 

, (15)

𝑤 

𝑚𝑎𝑥 
𝑖 

= 0 . 5 + 

1 
𝑚 + 1 

. (16)

As can be seen, the weight interval’s width decreases with the to-
al number of objectives m and will vary: from 𝑤 𝑖 ∈ ⟨0 . 2 . 5 , 0 . 75 ⟩ for 3
bjectives, to 𝑤 𝑖 ∈ ⟨0 . 4 , 0 . 6 ⟩ for 9 objectives. 

Owing to this, there will still be a considerable percentage of w-
ominated solutions even for a large number of objectives m . 

- Case 2 assumed cascaded diminishing of objective importance de-
pending on the objective number i and given by (17) and (18). 

𝑤 

𝑚𝑖𝑛 
𝑖 

= 

(√
2 
)− 𝑖 −2 

, (17)
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Table 2 

Maximum number of FEs in each test case in 
the experiments. 

Problem m max FEs 

DTLZ1 3; 5 40 000 

7; 9 50 000 

DTZL2 3 10 000 

5; 7; 9 40 000 

DTZL3 3; 5 100 000 

7; 9 120 000 

DTLZ4 3; 5; 7; 9 50 000 

DTLZ5 3 10 000 

5; 7; 9 40 000 

DTLZ6 3 50 000 

5; 7; 9 60 000 

DTLZ7 3 20 000 

5 50 000 

7; 9 120 000 

WFG1 3; 5 100 000 

7; 9 200 000 

WFG2 3 30 000 

5 50 000 

7; 9 150 000 

WFG3 3 30 000 

5 80 000 

7; 9 200 000 

WFG4 3 30 000 

5; 7; 9 100 000 

WFG5 3; 5 100 000 

7; 9 150 000 

WFG6 3 100 000 

5 120 000 

7; 9 200 000 

WFG7 3 100 000 

5; 7; 9 120 000 

WFG8 3 100 000 

5 150 000 

7; 9 300 000 

WFG9 3; 5 100 000 

7; 9 200 000 

Table 3 

Population size (number of individuals) depending on 
the number of objectives. 

Number of objectives 3 5 7 9 

Population size 100 120 150 200 
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𝑤 

𝑚𝑎𝑥 
𝑖 

= 

(√
2 
)1− 𝑖 

. (18)

As can be seen, for case 2: 
𝑤 𝑚𝑖𝑛 
𝑖 

𝑤 𝑚𝑎𝑥 
𝑖 +1 

= 

1 
2 , 

𝑤 𝑚𝑎𝑥 
𝑖 

𝑤 𝑚𝑖𝑛 
𝑖 +1 

= 4 , which means that DM

ould be ready to “buy ”: 

- 1 unit of improvement in i-th objective for 1 2 unit of degradation in
(i + 1)th objective, 

- 1 unit of improvement in (i + 1)-th objective for 1 4 unit of degradation
in ith objective. 

A fair quantitative comparison of wVAEA with RP-based algorithms
s hard to make because DM preferences are not only handled differ-
ntly, but also are specified in different formats. Thus, a crucial aspect
f setting up the experiments for the four RP-based algorithms is the
nitial assignment of RPs. Here, all RPs were generated by PLATEMO,
hich ensures a uniform distribution of RPs over a true PF for each
enchmark problem. However, we have applied additional filtering so
s to include only the non-w-dominated RPs. Owing to this, all RP-based
ethods were aiming for the same tradeoffs as the tested wVAEA al-

orithm. All the experiments were conducted in MatLab 2018b with
LATEMO [45] platform set up for five abovementioned algorithms
wVaEA against hpaEA, RPD-NSGAII, RVEA and PICEA-g as reference
MOs). 

As we mentioned in section 2.2, the main motivation behind intro-
ucing w-dominance is the inability of DM to provide RPs for some opti-
ization problems – this includes real-time multiobjective optimization

n transport. Also, due to the nature of those problems, they require
omplex modelling, data acquisition and data processing. Therefore it
s not possible to provide a concise and unambiguous experimental com-
arison based on those practical applications. Hence we have decided to
ompare w-dominance with other preference-based methods using com-
only recognized benchmarks problems: DTLZ1 – 7 and WFG1 – 9. They

re configured with 3, 5, 7 and 9 objectives ( m = 3, 5, 7, 9 ) to show that
-dominance is resistant to the curse-of-dimensionality. W-dominance
etrics, namely wIGD, wGD and wHV, introduced previously in sec-

ion 3.5, were utilized to quantitatively compare wVaEA results with the
ther four EMOs. The default PLATEMO’s sum test (Wilcoxon’s rank sum
est) was used to make the comparisons at a significance level of 0.05
ver 20 independent runs. The optimization software during the exper-
ments was ran at a PC machine equipped with i7–6700 CPU@2.6 GHz,
6 GB RAM. 

.3. Parameter settings 

For all the tested benchmark problems reaching the maximum num-
er of FEs was utilized as the condition of optimization termination. The
Es number required to gain acceptable level of results might vary de-
ending on the problem and number of objectives ( m ). Table 2 presents
he maximum FEs assumed in each test case as a result of previous trial-
nd-error tests and recommendations given in [58] . 

Population size in all experiments was between 100 and 200, de-
ending on the number of objectives, as shown in Table 3 . 

For offspring generation simulated binary crossover and polynomial
utation were used. Default PLATEMO settings for offspring generation
arameters, recommended also by other researches, e.g. [ 59 , 60 ], were
pplied, namely: 

- distribution index of crossover: 20, 
- distribution index of mutation: 20, 
- crossover probability: 1.0, 
- mutation probability: 1/d, where d is the number of decision vari-

ables. 

The w-dominance parameter e , depicting diversity encouragement
actor, was set to 0.5, as described earlier in section 3.4. 
7 
.4. General results on DTLZ and WFG problems 

During the experiments the w-dominance enhanced VaEA (wVaEA)
lgorithm has been validated and compared with four reference RP-
ased EMO algorithms, namely: hpaEA, RPD-NSGAII, RVEA and PICEA-
. All the algorithms were compared by their performance for DTLZ1–7
nd WFG1–9 benchmark problems. Two cases of w-dominance weight
ettings (section 4.2) have been applied. 

Tables 4 –9 present results obtained for: 

- wGD ( Tables 4 and 5 for Case 1 & 2, respectively), 
- wIGD ( Tables 6 and 7 for Case 1 & 2, respectively), 
- wHV ( Tables 8 and 9 for Case 1 & 2, respectively). 

In each table the best result for a particular benchmark problem has
een shaded. 

For all considered metrics it is visible ( Tables 4 –9 ) that wVaEA out-
erforms the four reference EMOs for the majority of test cases. The
uperiority of wVaEA is especially evident for wGD and wIGD. wVaEA
ins 106 out of the 128 comparisons (a total of Case 1 and Case 2) for
GD and 113 out of the 128 comparisons for wIGD. In case of wHV
VaEA wins only 95 out of the 128 comparisons, however, in the ma-

ority of 33 lost comparisons wVaEA gets results close to those that the
inners obtained (marked with “= ”). VaEA’s original property of good
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Table 4 

Case 1: mean and standard deviation of wGD values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 
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Table 5 

Case 2: mean and standard deviation of wGD values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 

9 
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Table 6 

Case 1: mean and standard deviation of wIGD values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 

10 
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Table 7 

Case 2: mean and standard deviation of wIGD values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 
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Table 8 

Case 1: mean and standard deviation of wHV values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 
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Table 9 

Case 2: mean and standard deviation of wHV values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 
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onvergence of the obtained solutions [33] has been reinforced by w-
ominance incorporated in wVaEA, which is reflected by better wGD
etric values. At the same time, superior values of wIGD indicate that

his good convergence is achieved without sacrificing coverage. 
It is particularly interesting that for WFG2 and WFG9 problems

VaEA obtained the best results for all metrics, regardless of the num-
er of objectives ( m ) and the weight settings (Case 1 and 2). Nearly the
ame is true for DTZ7 problem. Based on this we conclude that wVaEA
s a promising algorithm for handling problems with disconnected PFs
DTLZ7) or non-separable fitness landscapes (WFG2 and 9). As for the
ther test cases, the four reference EMOs only occasionally do better
han wVaEA with RPDNSGAII and RVEA being the most successful of
hem. For some test cases of RPDNSGAII and RVEA evidently do much
etter than wVaEA (by an order of magnitude) in terms of wGD and
IGD metrics, which indicates significantly better convergence and cov-
rage of those algorithms. 

It is noticeable that the best wGD results are not necessarily accom-
anied by the best wIGD values and, surprisingly, this is also true for
PDNSGAII, which is generally known to have a good coverage. In such
ases the inferior wIGD values may result from the phenomena described
n section 3.5. Namely, some of the final solutions are w-dominated
ence the non w-dominated points in true PF do not have their counter-
arts in the considered part of the solution set. In comparison, wVaEA
s less likely to suffer from this phenomena, because it is oriented on
romoting non w-dominated solutions during optimization process. In
eneral, the superior metric values of wVaEA may mostly result from
he fact that the algorithm does not use RPs, so its performance is not
ffected by the imperfect choice of RP coordinates. 

.5. Problematic results of wIGD and wHV metrics for some problems 

Of the three proposed metrics, wGD can be considered the most re-
iable as its values do not depend on the number of w-dominated solu-
ions in the final set. In comparison, wIGD and wHV values are heavily
ffected by the number of w-dominated (and thus excluded) solutions.
his is particularly evident in case of WFG8 problem, where wIGD values
re larger by 2 orders of magnitude than wGD values and may suggest
t first glance that wVAEA completely failed to solve this benchmark
roblem. This is not true, in fact, such weak results show that the al-
orithm could not find solutions, which would approximate the true
F points while being compliant with DM-specified preferences. This
an be partially attributed to the already mentioned phenomenon from
ection 3.5.1 ( Fig. 1 ) and partially to the population size, which is rel-
tively small (150–200 individuals) for 7–9 objective cases. The latter
onclusion is supported by the fact that the other algorithms also failed
o obtain reasonable wIGD values for WFG8 problem. As for wHV met-
ic, it was particularly sensitive to the size of non-w-dominated part of
he solution set, hence largely differing wHV values were obtained for
arious problems. In general it can be stated that, while it is easy to
easure the convergence of the proposed tradeoff-based method, the

overage and diversity are much harder to assess. This is due to the na-
ure of tradeoff-specified preferences: the narrower the weight intervals
re, the less DM is actually interested in coverage of the true PF. Nev-
rtheless, improving the population diversity obtained by w-algorithms
s one of the goals, which we will pursue in the forthcoming research.
lternatives for wVAEA will be tried for this, especially combinations
f w-dominance with most successful recent decomposition-based and
ecomposition-related algorithms, e.g. OPE-MOEA [61] . 

.6. Influence of prescreening PF and prescreening final solutions 

In the presented results of wIGD both the true PF and final set were
ltered to only include non-w-dominated solutions (as they are of DM’s

nterest). However, in the course of additional simulation considerably
etter results were obtained for all five algorithms when the final set
emained unfiltered (we do not provide detailed results due to limited
14 
pace). In such case, the points in the filtered true PF had larger chance
f having their counterparts in the final set ( Fig. 1 ), which resulted in
maller distances between true PF points and points in the final solution
et. 

Similarly, in case of wGD, leaving true PF unfiltered resulted in
maller average distances between the final set and true PF. Signifi-
antly inferior results have been obtained in case of filtering both true
F and final set, the reason for this being the phenomena illustrated in
ig. 2 (again, we do not provide detailed results). 

However, for all combinations of filtered / unfiltered true PF and
nal set the results registered for wVAEA were considerably better
smaller wIGD and wGD metric values) than those registered for the
our RP-based algorithms. 

.7. Influence of diversity encouragement factor 

In the course of simulations it has been found that it is best to set
he diversity encouragement factor from (14) to 0.5. For values smaller
han 0.4 wVAEA tends to lose diversity and converge too fast at the
ost of coverage and accuracy of approximating true PF. On the other
and, for values larger than 0.6, the algorithm practically ignores DM’s
references in the initial generations and this lack of focus also translates
o a poorer overall performance (once more – we do not provide detailed
esults due to limited space). 

.8. Additional studies: comparing wVaEA with original VaEA algorithm 

Comparing wVaEA with original VaEA is problematic due to differ-
nt purposes of both algorithms. wVaEA focuses on addressing DM’s
references and thus targets only those parts of the true PF, which com-
ly with those preferences. In contrast to that, original VaEA aims at ap-
roximating full true PF. Consequently, applying proposed wGD, wIGD
nd wHV metrics (which include preference-based prescreening) results
n wVaEA outperforming the original VaEA algorithm. This can be seen
n Table A1 of Appendix 1 , where wVAEA scores better in the vast ma-
ority of comparison cases. On the other hand, if we use classic met-
ics, original VaEA gets significantly better values of IGD, as shown in
able A2 of Appendix 1 . The reason for this is that original VaEA tries to
pproximate full PF and thus returns more diverse solutions. However,
n both cases (metrics with and without preference-based prescreening)
VaEA performs better in terms of GD, because good convergence is
uch easier to achieve for a preference-based algorithm, which deals
ith a selected subset of objective space. 

. Conclusions 

RP-based EMO algorithms remain the most popular means of han-
ling DM preferences in MOPs. However, for some real world optimiza-
ion problems (especially real time ones) they are inconvenient or even
mpossible to apply, as they require DM to enter RP coordinates for each
articular occurrence of a MOP. In such situations it is much easier for a
M to specify off-time a general policy of tradeoffs, which will then be
pplied automatically in real time, whenever necessary. In the paper we
ropose to enter and handle DM preferences as weight intervals assigned
o objectives. Such intervals can reflect both DM’s assessment of objec-
ives’ importance and uncertainty of this assessment. Based on this a new
ominance relation – w-dominance – is introduced, which extends the
radeoff coefficient approach [21] from bi-objective to multi-objective.
s we show, checking w-dominance can be done linearly with regard to

he number of objectives. W-dominance can be incorporated into prac-
ically any EMO or MOMH algorithm and we have observed the best
esults when combining it with VaEA [33] in the form of wVaEA. We
ave compared the proposed wVaEA algorithm with four state-of-the-art
P-based EMO methods on 3 to 9-objective DTLZ and WFG benchmark
roblems using specially designed wGD, wIGD and wHV metrics, which
ake into account DM preferences. wVAEA has outperformed the other
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our algorithms for the majority of the test cases, thus showing that w-
ominance can be an interesting alternative to RP-based approaches,
specially for problems with up to five objectives. However, the ma-
or difference between w-dominance and RP-based methods remains
ualitative rather than quantitative. The main field of application for
-dominance are MOPs where RPs simply cannot be specified because

rue PF is hard to assess a priori and interaction is impossible due to
ime pressure or DM being physically engaged in other activities. 

Future research into w-dominance will be focused on w-algorithms
or constraint problems as well as improving the method’s performance
or many objective optimization problems. The former will aim at w-
nhancing and testing multiple existing MOMHs. Targeted MOEAs will
nclude recent ones based on decomposition (OPE-MOEA and FDEA)
61 , 62] as well as other emerging algorithms obtaining good conver-
ence and diversity simultaneously, e.g. ensemble MaOEAs [63] . As for
mproving the method’s performance for MAOPs, it will involve devel-
ping an efficient non w-dominated sort for many objective optimization
nd testing the algorithms on more challenging benchmark problems
64] . Also, the topic of w-dominance metrics will be further investigated
o address the issue of diversity among the final non-w-dominated solu-
ions. 
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ppendix 1 – Results of Comparing wVaEA with original VaEA 

lgorithm 

Table A1 presents comparison of wVaEA and VaEA by means of
he proposed w-dominance metrics: wIGD, wGD and wHV. Table A2
resents comparison of wVaEA and VaEA by means of classic IGD and
D metrics. Both tables include data for DTLZ1-7 and WFG1-9 problems
ith best results shaded. 
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Table A1 

wVaEA vs VaEA comparison: mean of wIGD, wGD and wHV values on DTLZ1–7 and WFG1–9 problems (best results are shaded). 

16 
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Table A2 

wVaEA vs VaEA comparison: mean of classic IGD and GD values on DTLZ1–7 and WFG1–9 problems (best results are 
shaded). 

17 



R. Szlapczynski and J. Szlapczynska Swarm and Evolutionary Computation 63 (2021) 100866 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

[  

 

[  

[  

 

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

[  

 

[  

 

eferences 

[1] S. Bechikh, M. Kessentini, L. Ben Said, K. Ghédira, Preference incorporation in evo-
lutionary multiobjective optimization: a survey of the state-of-the-art, Adv. Comput.
98 (2015) 141–207, doi: 10.1016/bs.adcom.2015.03.001 . 

[2] M. Kadzi ń ski, M.K. Tomczyk, R. S ł owi ń ski, Preference-based cone contraction al-
gorithms for interactive evolutionary multiple objective optimization, Swarm Evol.
Comput. (2020) 52, doi: 10.1016/j.swevo.2019.100602 . 

[3] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm us-
ing reference-point-based nondominated sorting approach, Part I: solving prob-
lems with box constraints, IEEE Trans. Evol. Comput. 18 (2014) 577–601,
doi: 10.1109/TEVC.2013.2281535 . 

[4] H. Ishibuchi, R. Imada, Y. Setoguchi, Y. Nojima, Reference point specification in
inverted generational distance for triangular linear pareto front, IEEE Trans. Evol.
Comput. 22 (2018) 961–975, doi: 10.1109/TEVC.2017.2776226 . 

[5] K. Sindhya, K. Miettinen, K. Deb, A hybrid framework for evolutionary
multi-objective optimization, IEEE Trans. Evol. Comput. 17 (2013) 495–511,
doi: 10.1109/TEVC.2012.2204403 . 

[6] A.L. Jaimes, A.A. Montaño, C.A.C. Coello, Preference incorporation to
solve many-objective airfoil design problems, in: Proceedings of the IEEE
Congress on Evolutionary Computation CEC, 2011, 2011, pp. 1605–1612,
doi: 10.1109/CEC.2011.5949807 . 

[7] L. Ben Said, S. Bechikh, K. Ghedira, The r-Dominance: a new dominance relation for
interactive evolutionary multicriteria decision making, IEEE Trans. Evol. Comput.
14 (2010) 801–818, doi: 10.1109/TEVC.2010.2041060 . 

[8] E. Filatovas, A. Lan činskas, O. Kurasova, J. Ž ilinskas, A preference-based multi-
objective evolutionary algorithm R-NSGA-II with stochastic local search, Cent. Eur.
J. Oper. Res. 25 (2017) 859–878, doi: 10.1007/s10100-016-0443-x . 

[9] K. Miettinen, F. Ruiz, A.P. Wierzbicki, Introduction to multiobjective op-
timization: interactive approaches, in: J. Branke, K. Deb, K. Miettinen,
R. S ł owi ń ski (Eds.), Multiobjective Optimization Interactive and Evolutionary
Approaches, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 27–57,
doi: 10.1007/978-3-540-88908-3_2 . 

10] K. Deb, A. Kumar, Light beam search based multi-objective optimization using evo-
lutionary algorithms, in: Proceedings of the IEEE Congress on Evolutionary Compu-
tation CEC, 2007, 2007, pp. 2125–2132, doi: 10.1109/CEC.2007.4424735 . 

11] K. Deb, J. Sundar, Reference point based multi-objective optimization using evo-
lutionary algorithms, in: Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, ACM, New York, NY, USA, 2006, pp. 635–642,
doi: 10.1145/1143997.1144112 . 

12] A.B. Ruiz, R. Saborido, M. Luque, A preference-based evolutionary algorithm for
multiobjective optimization: the weighting achievement scalarizing function genetic
algorithm, J. Glob. Optim. 62 (2015) 101–129, doi: 10.1007/s10898-014-0214-y . 

13] L. Li, Y. Wang, H. Trautmann, N. Jing, M. Emmerich, Multiobjective evolutionary
algorithms based on target region preferences, Swarm Evol. Comput. 40 (2018) 196–
215, doi: 10.1016/j.swevo.2018.02.006 . 

14] E. Zitzler , D. Brockhoff, L. Thiele , The hypervolume indicator revisited: on the design
of pareto-compliant indicators via weighted integration, in: S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evolutionary Multi-Criterion Optimization,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 862–876 . 

15] G. Rudolph , O. Schütze , C. Grimme , H. Trautmann , An aspiration set EMOA based
on averaged hausdorff distances, in: P.M. Pardalos, M.G.C. Resende, C. Vogiatzis,
J.L. Walteros (Eds.), Learning and Intelligent Optimization, Springer International
Publishing, Cham, 2014, pp. 153–156 . 

16] H. Trautmann , T. Wagner , D. Brockhoff, R2-EMOA: focused multiobjective search
using R2-indicator-based selection, in: G. Nicosia, P. Pardalos (Eds.), Learning
and Intelligent Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 70–74 . 

17] M.T.M. Emmerich, A.H. Deutz, I. Yevseyeva, On Reference Point Free Weighted Hy-
pervolume Indicators Based on Desirability Functions and Their Probabilistic Inter-
pretation, Elsevier B.V., 2014, doi: 10.1016/j.protcy.2014.10.001 . 

18] K. Li, R. Chen, G. Min, X. Yao, Integration of preferences in decomposi-
tion multiobjective optimization, IEEE Trans. Cybern. 48 (2018) 3359–3370,
doi: 10.1109/TCYB.2018.2859363 . 

19] J. Branke, S. Corrente, S. Greco, R. S ł owi ń ski, P. Zielniewicz, Using choquet integral
as preference model in interactive evolutionary multiobjective optimization, Eur. J.
Oper. Res. 250 (2016) 884–901, doi: 10.1016/j.ejor.2015.10.027 . 

20] S. Bechikh, L. Ben Said, K. Ghédira, Searching for knee regions of the
Pareto front using mobile reference points, Soft Comput. 15 (2011) 1807–1823,
doi: 10.1007/s00500-011-0694-3 . 

21] J. Branke , T. Kaußler , H. Schmeck , Guidance in evolutionary multi-objective opti-
mization, Adv. Eng. Softw. 32 (2001) 499–507 10.1016/S0965-9978(00)00110-1 . 

22] D. Cvetkovi ć, I.C. Parmee, Preferences and their application in evolution-
ary multiobjective optimization, IEEE Trans. Evol. Comput. 6 (2002) 42–57,
doi: 10.1109/4235.985691 . 

23] P.K. Shukla , C. Hirsch , H. Schmeck , A framework for incorporating trade-off in-
formation using multi-objective evolutionary algorithms, in: R. Schaefer, C. Cotta,
J. Ko ł odziej, G. Rudolph (Eds.), Parallel Problem Solving from Nature, PPSN XI,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 131–140 . 

24] L. Cruz-Reyes, E. Fernandez-Gonzalez, J.P. Sanchez-Solis, C.A. Coello Coello,
C. Gomez, Hybrid evolutionary multi-objective optimisation using outranking-
based ordinal classification methods, Swarm Evol. Comput. (2020) 100652,
doi: 10.1016/j.swevo.2020.100652 . 

25] E. Oliveira, C.H. Antunes, Á. Gomes, A comparative study of different approaches
using an outranking relation in a multi-objective evolutionary algorithm, Comput.
Oper. Res. 40 (2013) 1602–1615, doi: 10.1016/j.cor.2011.09.023 . 
18 
26] D. Brockhoff, Y. Hamadi, S. Kaci, Using comparative preference statements
in hypervolume-based interactive multiobjective optimization to cite this
version : using comparative preference statements in hypervolume-based
interactive multiobjective, Learn. Intell. Optim. 8426 (2014) 121–136,
doi: 10.1007/978-3-319-09584-4_13 . 

27] H. Wang, M. Olhofer, Y. Jin, A mini-review on preference modeling and articulation
in multi-objective optimization: current status and challenges, Complex Intell. Syst.
3 (2017) 233–245, doi: 10.1007/s40747-017-0053-9 . 

28] E. Fernandez, E. Lopez, F. Lopez, C.A. Coello Coello, Increasing selective
pressure towards the best compromise in evolutionary multiobjective opti-
mization: the extended NOSGA method, Inf. Sci. 181 (2011) 44–56 NY,
doi: 10.1016/j.ins.2010.09.007 . 

29] J. Yi, J. Bai, H. He, J. Peng, D. Tang, Ar-MOEA: a novel preference-based dominance
relation for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput. 23
(2019) 788–802, doi: 10.1109/TEVC.2018.2884133 . 

30] R. Cheng , Y. Jin , M. Olhofer , B. Sendhoff, S. Member , A reference vector guided
evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput.
20 (2016) 773–791 . 

31] Y. Qi, X. Li, J. Yu, Q. Miao, User-preference based decomposition in MOEA/D
without using an ideal point, Swarm Evol. Comput. 44 (2019) 597–611,
doi: 10.1016/j.swevo.2018.08.002 . 

32] F. Wang, Y. Li, H. Zhang, T. Hu, X.L. Shen, An adaptive weight vector guided evo-
lutionary algorithm for preference-based multi-objective optimization, Swarm Evol.
Comput. 49 (2019) 220–233, doi: 10.1016/j.swevo.2019.06.009 . 

33] Y. Xiang, Y. Zhou, M. Li, Z. Chen, A vector angle-based evolutionary algorithm for
unconstrained many-objective optimization, IEEE Trans. Evol. Comput. 21 (2017)
131–152, doi: 10.1109/TEVC.2016.2587808 . 

34] M. Laumanns, L. Thiele, K. Deb, E. Zitzler, Combining convergence and diversity
in evolutionary multiobjective optimization, Evol. Comput. 10 (2002) 263–282,
doi: 10.1162/106365602760234108 . 

35] J. Molina, L.V. Santana, A.G. Hernández-Díaz, C.A. Coello Coello, R. Caballero, g-
dominance: reference point based dominance for multiobjective metaheuristics, Eur.
J. Oper. Res. 197 (2009) 685–692, doi: 10.1016/j.ejor.2008.07.015 . 

36] J. Hu, G. Yu, J. Zheng, J. Zou, A preference-based multi-objective evolutionary
algorithm using preference selection radius, Soft Comput. 21 (2017) 5025–5051,
doi: 10.1007/s00500-016-2099-9 . 

37] S. Wang, S. Ali, T. Yue, M. Liaaen, Integrating weight assignment strategies with
NSGA-II for supporting user preference multiobjective optimization, IEEE Trans.
Evol. Comput. 22 (2018) 378–393, doi: 10.1109/TEVC.2017.2778560 . 

38] J. Szlapczynska, R. Szlapczynski, Preference-based evolutionary multi-objective op-
timization in ship weather routing, Appl. Soft Comput. J. 84 (2019) 105742,
doi: 10.1016/j.asoc.2019.105742 . 

39] R. Szlapczynski, J. Szlapczynska, On evolutionary computing in multi-ship trajectory
planning, Appl. Intell. (2012) 37, doi: 10.1007/s10489-011-0319-7 . 

40] Y. Jin , B. Sendhoff, Incorporation of fuzzy preferences into evolutionary multiobjec-
tive optimisation, Proc. Genet. Evol. Comput. Conf. GECCO. (2002) 683 . 

41] L. Thiele , E. Zitzler , Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach, IEEE Trans. Evol. Comput. 3 (1999)
257–271 . 

42] A.N. (Alfred N. Cockcroft , J.N.F. Lameijer , A Guide to the Collision Avoidance Rules :
International Regulations For Preventing Collisions at Sea, Elsevier, 2012 . 

43] X. Zhang, Y. Tian, R. Cheng, Y. Jin, An efficient approach to nondominated sorting
for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput. 19 (2015)
201–213, doi: 10.1109/TEVC.2014.2308305 . 

44] K. Li, K. Deb, X. Yao, R-metric: evaluating the performance of preference-based evo-
lutionary multiobjective optimization using reference points, IEEE Trans. Evol. Com-
put. 22 (2018) 821–835, doi: 10.1109/TEVC.2017.2737781 . 

45] Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB Platform for Evolutionary
Multi-Objective Optimization [Educational Forum], IEEE Comput. Intell. Mag. 12
(2017) 73–87, doi: 10.1109/MCI.2017.2742868 . 

46] J. Chen, J. Li, B. Xin, DMOEA- 𝜖C : decomposition-based multiobjective evolutionary
algorithm with the 𝜖 -constraint framework, IEEE Trans. Evol. Comput. 21 (2017)
714–730, doi: 10.1109/TEVC.2017.2671462 . 

47] Y. Tian, X. Zhang, R. Cheng, C. He, Y. Jin, Guiding evolutionary multiobjective op-
timization with generic front modeling, IEEE Trans. Cybern. 50 (2020) 1106–1119,
doi: 10.1109/TCYB.2018.2883914 . 

48] C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, X. Yao, Accelerating large-scale
multiobjective optimization via problem reformulation, IEEE Trans. Evol. Comput.
23 (2019) 949–961, doi: 10.1109/TEVC.2019.2896002 . 

49] Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm
based on decomposition, IEEE Trans. Evol. Comput. 11 (2007) 712–731,
doi: 10.1109/TEVC.2007.892759 . 

50] B. Chen, W. Zeng, Y. Lin, D. Zhang, A new local search-based multiob-
jective optimization algorithm, IEEE Trans. Evol. Comput. 19 (2015) 50–73,
doi: 10.1109/TEVC.2014.2301794 . 

51] Y. Tian, X. Zhang, C. Wang, Y. Jin, An evolutionary algorithm for large-scale sparse
multiobjective optimization problems, IEEE Trans. Evol. Comput. 24 (2020) 380–
393, doi: 10.1109/TEVC.2019.2918140 . 

52] M. Optimization, H. Wang, S. Member, L. Jiao, S. Member, X. Yao, Two _ Arch2 : an
improved two-archive algorithm, 19 (2015) 524–541. 

53] H. Zille, H. Ishibuchi, S. Mostaghim, Y. Nojima, A framework for large-scale multi-
objective optimization based on problem transformation, IEEE Trans. Evol. Comput.
22 (2018) 260–275, doi: 10.1109/TEVC.2017.2704782 . 

54] Q. Cheng, B. Du, L. Zhang, R. Liu, ANSGA-III: a multiobjective endmember extraction
algorithm for hyperspectral images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
12 (2019) 700–721, doi: 10.1109/JSTARS.2019.2893621 . 

https://doi.org/10.1016/bs.adcom.2015.03.001
https://doi.org/10.1016/j.swevo.2019.100602
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2017.2776226
https://doi.org/10.1109/TEVC.2012.2204403
https://doi.org/10.1109/CEC.2011.5949807
https://doi.org/10.1109/TEVC.2010.2041060
https://doi.org/10.1007/s10100-016-0443-x
https://doi.org/10.1007/978-3-540-88908-3_2
https://doi.org/10.1109/CEC.2007.4424735
https://doi.org/10.1145/1143997.1144112
https://doi.org/10.1007/s10898-014-0214-y
https://doi.org/10.1016/j.swevo.2018.02.006
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0014
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0015
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0015
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0015
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0015
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0015
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0016
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0016
https://doi.org/10.1016/j.protcy.2014.10.001
https://doi.org/10.1109/TCYB.2018.2859363
https://doi.org/10.1016/j.ejor.2015.10.027
https://doi.org/10.1007/s00500-011-0694-3
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0021
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0021
https://doi.org/10.1109/4235.985691
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0023
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0023
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0023
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0023
https://doi.org/10.1016/j.swevo.2020.100652
https://doi.org/10.1016/j.cor.2011.09.023
https://doi.org/10.1007/978-3-319-09584-4_13
https://doi.org/10.1007/s40747-017-0053-9
https://doi.org/10.1016/j.ins.2010.09.007
https://doi.org/10.1109/TEVC.2018.2884133
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0030
https://doi.org/10.1016/j.swevo.2018.08.002
https://doi.org/10.1016/j.swevo.2019.06.009
https://doi.org/10.1109/TEVC.2016.2587808
https://doi.org/10.1162/106365602760234108
https://doi.org/10.1016/j.ejor.2008.07.015
https://doi.org/10.1007/s00500-016-2099-9
https://doi.org/10.1109/TEVC.2017.2778560
https://doi.org/10.1016/j.asoc.2019.105742
https://doi.org/10.1007/s10489-011-0319-7
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0040
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0041
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0042
http://refhub.elsevier.com/S2210-6502(21)00027-4/sbref0042
https://doi.org/10.1109/TEVC.2014.2308305
https://doi.org/10.1109/TEVC.2017.2737781
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.1109/TEVC.2017.2671462
https://doi.org/10.1109/TCYB.2018.2883914
https://doi.org/10.1109/TEVC.2019.2896002
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2014.2301794
https://doi.org/10.1109/TEVC.2019.2918140
https://doi.org/10.1109/TEVC.2017.2704782
https://doi.org/10.1109/JSTARS.2019.2893621


R. Szlapczynski and J. Szlapczynska Swarm and Evolutionary Computation 63 (2021) 100866 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

 

[  

 

 

[  

 

55] H. Chen, Y. Tian, W. Pedrycz, G. Wu, R. Wang, L. Wang, Hyperplane assisted evo-
lutionary algorithm for many-objective optimization problems, IEEE Trans. Cybern.
PP 50 (2020) 3367–3380, doi: 10.1109/tcyb.2019.2899225 . 

56] M. Elarbi, S. Bechikh, A. Gupta, L. Ben Said, Y. Ong, A New Decomposition-Based
NSGA-II for Many-Objective Optimization, IEEE Trans. Syst. Man, Cybern. Syst. 48
(2018) 1191–1210, doi: 10.1109/TSMC.2017.2654301 . 

57] R. Wang, R.C. Purshouse, P.J. Fleming, Preference-inspired coevolutionary algo-
rithms for many-objective optimization, IEEE Trans. Evol. Comput. 17 (2013) 474–
494, doi: 10.1109/TEVC.2012.2204264 . 

58] X. He, Y. Zhou, Z. Chen, Q. Zhang, Evolutionary Many-Objective Optimization
Based on Dynamical Decomposition, IEEE Trans. Evol. Comput. 23 (2019) 361–375,
doi: 10.1109/TEVC.2018.2865590 . 

59] L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, Y. Jin, A classification-based surrogate-
assisted evolutionary algorithm for expensive many-objective optimization, IEEE
Trans. Evol. Comput. 23 (2019) 74–88, doi: 10.1109/TEVC.2018.2802784 . 

60] H. Ge, M. Zhao, L. Sun, Z. Wang, G. Tan, Q. Zhang, C.L.P. Chen, A many-objective
evolutionary algorithm with two interacting processes: cascade clustering and ref-
erence point incremental learning, IEEE Trans. Evol. Comput. 23 (2018) 572–586,
doi: 10.1109/TEVC.2018.2874465 . 
19 
61] H. Chen, G. Wu, W. Pedrycz, P.N. Suganthan, L. Xing, X. Zhu, An adaptive resource
allocation strategy for objective space partition-based multiobjective optimization,
IEEE Trans. Syst. Man Cybern. Syst. (2019) 1–16, doi: 10.1109/tsmc.2019.2898456 .

62] H. Li, K. Deb, Q. Zhang, P.N. Suganthan, L. Chen, Comparison between
MOEA/D and NSGA-III on a set of many and multi-objective benchmark prob-
lems with challenging difficulties, Swarm Evol. Comput. 46 (2019) 104–117,
doi: 10.1016/j.swevo.2019.02.003 . 

63] W. Qiu, J. Zhu, G. Wu, M. Fan, P.N. Suganthan, Evolutionary many-
Objective algorithm based on fractional dominance relation and improved ob-
jective space decomposition strategy, Swarm Evol. Comput. 60 (2021) 100776,
doi: 10.1016/j.swevo.2020.100776 . 

64] W. Qiu, J. Zhu, G. Wu, H. Chen, W. Pedrycz, P.N. Suganthan, Ensemble Many-
Objective Optimization Algorithm Based on Voting Mechanism, IEEE Trans. Syst.
Man, Cybern. Syst. (2020) 1–15, doi: 10.1109/TSMC.2020.3034180 . 

https://doi.org/10.1109/tcyb.2019.2899225
https://doi.org/10.1109/TSMC.2017.2654301
https://doi.org/10.1109/TEVC.2012.2204264
https://doi.org/10.1109/TEVC.2018.2865590
https://doi.org/10.1109/TEVC.2018.2802784
https://doi.org/10.1109/TEVC.2018.2874465
https://doi.org/10.1109/tsmc.2019.2898456
https://doi.org/10.1016/j.swevo.2019.02.003
https://doi.org/10.1016/j.swevo.2020.100776
https://doi.org/10.1109/TSMC.2020.3034180

	W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimization
	1 Introduction
	2 Backgrounds
	2.1 Dominance-based approaches to incorporating DM preferences into MOMH
	2.2 Route optimization - limitations of RP-based approaches and motivation for applying tradeoff-oriented methods
	2.3 Tradeoff-oriented MOMH

	3 Proposed weight interval-based tradeoff in MOMH (w-dominance)
	3.1 A generalized weighted average objective function
	3.2 An example of preferences elicitation in the proposed approach
	3.3 Extending the range of dominance by application of weight intervals - a conditions for w-dominance check
	3.4 Adding w-dominance to a MOMH
	3.5 Proposed w-dominance metrics
	3.5.1 wIGD
	3.5.2 wGD
	3.5.3 wHV


	4 Experimental studies
	4.1 Selected algorithms
	4.2 Experimental settings
	4.3 Parameter settings
	4.4 General results on DTLZ and WFG problems
	4.5 Problematic results of wIGD and wHV metrics for some problems
	4.6 Influence of prescreening PF and prescreening final solutions
	4.7 Influence of diversity encouragement factor
	4.8 Additional studies: comparing wVaEA with original VaEA algorithm

	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix 1 - Results of Comparing wVaEA with original VaEA algorithm
	References


