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Abstract: Structural adhesive joints have numerous applications in many fields of industry.
The gradual deterioration of adhesive material over time causes a possibility of unexpected failure
and the need for non-destructive testing of existing joints. The Lamb wave propagation method is
one of the most promising techniques for the damage identification of such connections. The aim of
this study was experimental and numerical research on the effects of the wave frequency on damage
identification in a single-lap adhesive joint of steel plates. The ultrasonic waves were excited at one
point of an analyzed specimen and then measured in a certain area of the joint. The recorded wave
velocity signals were processed by the way of a root mean square (RMS) calculation, giving the actual
position and geometry of defects. In addition to the visual assessment of damage maps, a statistical
analysis was conducted. The influence of an excitation frequency value on the obtained visualizations
was considered experimentally and numerically in the wide range for a single defect. Supplementary
finite element method (FEM) calculations were performed for three additional damage variants.
The results revealed some limitations of the proposed method. The main conclusion was that the
effectiveness of measurements strongly depends on the chosen wave frequency value.

Keywords: Lamb waves; scanning laser vibrometry; adhesive joints; non-destructive testing; damage
detection; excitation frequency

1. Introduction

Adhesive bonding is one of the effective methods for joining elements in metallic structures, besides
welding, riveting, and bolting [1]. It has dozens of applications in the aerospace, machine, automotive,
military, and electronics industries [2]. Structural adhesive joints have numerous advantages in
comparison to other joining techniques. Firstly, adhesives do not interfere with the structure of
adherends (joined elements), which is what happens in bolted joints (openings weakening joined parts)
or welded joints (internal stresses after welding). Moreover, gluing enables the creation of heterogenic
connections, especially when welding or hole drilling is forbidden. There are also some disadvantages;
from these, among the most significant is high vulnerability to accuracy in the processes of preparation
and manufacturing. Particularly, the most important issues for the strength of the joint are the accurate
surface treatment [3] and the protection against any contamination [4]. Any inaccuracy may lead to the
formation of kissing defects or voids [5,6]. Their presence can cause a significant decrease in the strength
of the joint and, as a result, its failure. The problematic issue is that kissing defects are not detectable
in the visual assessment, because of their existence in the internal structure of the joint. This creates
the necessity of application of non-destructive testing (NDT). There are a number of promising
methods that have also been successfully applied for damage identification in adhesive joints, using
ultrasounds [7–9], thermography [10], radiography [11], laser-induced breakdown spectroscopy [12],
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or electric time-domain reflectometry [13]. These methods are the basis for structural health monitoring
(SHM) systems that provide a real-time evaluation of analyzed structures of different types, such as
bridges [14–16], tunnels [17], or marine structures [18]. Nowadays, SHM strategies are becoming more
and more popular for composite materials also [19–21].

The guided wave propagation phenomenon is commonly used for damage identification in
structures of different types (e.g., [22–27]). Lamb waves are a specific type of guided waves that
propagate in plate-like elements. It is worth noticing that they are multimodal; i.e., in general,
an infinite number of different modes (symmetric and antisymmetric) can propagate in each medium.
Another significant feature is the dispersive nature, which means that wave characteristics such as the
wavenumber and propagation velocities of each mode are frequency-dependent. These properties
make the question of wave propagation a complex problem. For certain frequency ranges, some modes
do not propagate, whereas for a different range, the same modes can travel with certain velocities;
thus, they influence the wave propagation. For this reason, the appropriate choice of the excitation
frequency is an essential issue for the effectiveness of obtained results. High sensitivity to any
disruption of geometry and changes in material properties create many applications of guided waves
in non-destructive diagnostics of existing structures. Previous studies prove their usefulness for the
identification of damages of different types, such as cracks in metallic beams and plates [28,29] or
delamination and flaws in composites [30–32]. With regard to the adhesive joints, guided waves were
efficiently used for the identification of disbond areas in the single-lap joints of plates made from
different materials. Ren and Lissenden [7] detected damaged areas in the adhesive film in a CFRP
(carbon fiber reinforced polymer) plate stiffened with a stringer using the adjustable angle beam
transducers. Nicassio et al. [33] analyzed debonding in an adhesive joint of aluminum plates using
piezo sensors. Sunarsa et al. [34] used air-coupled ultrasonic transducers to detect debonding and
weakened bonding areas of different shapes in adhesively bonded aluminum plates. The time of flight
of the measured signals was estimated with the support of the wavelet transform. Parodi et al. [35]
analyzed numerically and experimentally wave propagation in a wall of a composite pressure vessel
with flaws in the interface between the aluminum layer and CFRP coating, considering the excitation
frequency in a range of 20 to 100 kHz. Ultrasonic waves are also successfully used for the evaluation
of adhesion levels between adhesive and adherends. Gauthier et al. [36] analyzed the influence of
different adherend surface treatment methods on the guided wave propagation in a single aluminum
plate covered with epoxy-based adhesive. Castaings [37] considered a contamination of the overlap
surface by an oil pollutant in the single-lap adhesive joints of aluminum plates.

The guided wave propagation method usually consists of the excitation of waves in one point of
an analyzed structure and a collection of signals in some other points. If the number of measurement
points (fitted with ultrasonic or piezoelectric transducers) is relatively small, the actual state of the
considered structure is determined by the analysis of registered time histories. For a greater number
of measurements, the non-contact methods are beneficial, allowing to sense the guided wave field
in a considered area. The scanning laser Doppler vibrometry (SLDV) is one of the methods that
provide a more accurate analysis [38–41]. As the effect, the plane representation of propagating waves
(the so-called SLDV map) can be obtained. The existence of any defect in the scanned area results in the
disturbance of the wave front shape, but its actual position and shape are indeterminable. Therefore,
further signal processing is required to obtain a useful defect image. For example, Sohn et al. [42]
detected delamination and disbond in composite plates based on the SLDV maps processed with the
use of different techniques such as Laplacian image filtering. Another quite simple but effective method
of damage imaging is based on the vibration energy distribution, and requires root mean square (RMS)
calculations or its alternative weighted variant (WRMS). Recently, it has been successfully applied
for the damage identification of different structures [43–49]. Saravanan et al. [43] detected missing
bolts, attached masses, and openings in aluminum specimens assuming the excitation frequency as
50 kHz. Radzieński et al. [44] analyzed the detection of additional mass in aluminum and composite
plates for frequencies of 35 and 10 kHz, respectively. In another work [45], they examined aluminum
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plates strengthened with riveted L-shape stiffeners, considering different excitation frequencies (5, 35,
and 100 kHz). Aluminum plates with notches of different directions were studied by Lee and Park [46],
who proved that the orientation of defects to the incident wave front was significant. In another
research study, Lee et al. [47] investigated the notches and corrosion defects of different areas using the
weighted root mean square and edge detection algorithms. Rucka et al. [48] studied the influence of
a weighting factor on the efficiency of WRMS maps. Aryan et al. [49] visualized defects in the form of
corrosion, surface cracks, and dents in aluminum plates and the delamination in a composite beam
using scanning laser Doppler vibrometer and RMS calculations. The excitation frequencies were chosen
from a range of 100 to 300 kHz. To sum up, the above-mentioned works present the application of root
mean square calculations of registered guided wave signals without extensive consideration of the
influence of the excitation frequency. This parameter was usually arbitrary assumed; notwithstanding,
it can significantly affect the legibility of obtained RMS maps.

The aim of the study is damage imaging in a Lamb-wave based inspection of adhesively bonded
joints. Particular attention was paid to the influence of the excitation frequency on the efficiency of
obtained results. The guided wave signals were collected by the scanning laser Doppler vibrometer
and further processed using root mean square calculations. The experimental research was conducted
on a real-scale physical model of a single-lap joint of metal plates bonded with the epoxy-based
adhesive. The verification of measurements was provided by numerical analyses carried out on
finite element method (FEM) models. A novel element of the study is the proposition of choosing the
adequate excitation frequency by the qualitative measure of the effectiveness of RMS damage imaging.
The hypothesis is that an efficient frequency range for experimental measurements can be determined
in the way of initial FEM calculations for artificial defects. The relative difference between RMS values
in the damaged and intact areas of the joint can be assumed as the measure of the efficiency.

2. Materials and Methods

2.1. Specimen Description

The investigations were conducted on the single-lap adhesive joints of steel plates. The geometry of
the specimens is presented in Figure 1. The dimensions of each plate were 270 mm × 120 mm × 3 mm.
The overlap surface was 120 mm × 60 mm. The internal defect in the form of partial debonding was
designed in the adhesive film in four variants (#1 to #4, as shown in Figure 2), from which the first
one was chosen for experimental measurements. The defect (#1) was obtained by sticking a PTFE
(polytetrafluoroethylene) tape of 0.2-mm thickness in the middle of the overlap before manufacturing
the connection. To avoid creating unintended debonding areas, the overlap surface of each adherend
was treated with fine sandpaper (grit size 120) and degreased with Loctite-7063 cleaner just before
joining. The epoxy-based adhesive Loctite Hysol 9461 (Henkel, Düsseldorf, Germany) was used to
join the plates. The measured bondline thickness was equal to approximately 0.2 mm. To control the
expected geometry of the defect, the adherends were disconnected after the experiments. The separated
plates are presented in Figure 3. The failure occurred in the interfaces between the glue layer and
the steel plates (mainly the lower one); it has a purely adhesive character. There are visible leaks of
adhesive into the area of the intended defect (on the upper plate). Moreover, the defect edges are
irregular (visible mainly on the lower plate).
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2.2. Experimental Setup 

The experimental examination of prepared specimen #1 consisted of the excitation and the 
acquisition of the Lamb wave propagation signals in the specified area of the joint by the scanning 
laser Doppler vibrometry method. The experimental setup is presented in Figure 4a. The generation 
of the input wave signal was provided by the arbitrary function generator AFG 3022 (Tektronix, Inc., 
Beaverton, OR, USA) with the support of the high-voltage amplifier PPA 2000 (EC Electronics, 
Krakow, Poland). The plate piezoelectric actuator NAC2024 (Noliac, Kvistgaard, Denmark) with 
dimensions of 3 mm × 3 mm × 3 mm was used for the excitation of the guided wave field in one of 
the adherends. The actuator was attached to the top surface of the specimen by the petro wax 080A109 
(PCB Piezotronics, Inc., Depew, NY, USA). The input signal was a wave packet obtained from the 
five periods of the sinusoidal function by the Hanning window modulation. The excitation frequency 
was individual for each measurement and varied from 20 to 350 kHz. The signals of the guided wave 
field were recorded by the scanning head of the laser vibrometer PSV-3D-400-M (Polytec GmbH, 
Berlin, Germany) equipped with a VD-07 velocity decoder. The sampling frequency was assumed to 
be 2.56 MHz. The improvement of light backscatter was provided by covering the scanned surface 
with a retro-reflective sheeting. The out-of-plane components of velocity values were acquired in the 
time domain in 3721 points distributed over the area featuring the overlap surface and the part of the 
plate after it (at the top side of the specimen); see Figure 4b,c. The scanning was performed point by 
point in the quadratic mesh of 61 rows and 61 columns, resulting in the resolution of about 1.93 mm. 
The representations of acquired signals for specific time instances show the propagation of the full 
guided wave field (SLDV maps). 
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Figure 3. Photograph of experimental specimen after separation: (a) upper plate; (b) lower plate.

2.2. Experimental Setup

The experimental examination of prepared specimen #1 consisted of the excitation and the
acquisition of the Lamb wave propagation signals in the specified area of the joint by the scanning
laser Doppler vibrometry method. The experimental setup is presented in Figure 4a. The generation of
the input wave signal was provided by the arbitrary function generator AFG 3022 (Tektronix, Inc.,
Beaverton, OR, USA) with the support of the high-voltage amplifier PPA 2000 (EC Electronics,
Krakow, Poland). The plate piezoelectric actuator NAC2024 (Noliac, Kvistgaard, Denmark) with
dimensions of 3 mm × 3 mm × 3 mm was used for the excitation of the guided wave field in one of the
adherends. The actuator was attached to the top surface of the specimen by the petro wax 080A109
(PCB Piezotronics, Inc., Depew, NY, USA). The input signal was a wave packet obtained from the five
periods of the sinusoidal function by the Hanning window modulation. The excitation frequency
was individual for each measurement and varied from 20 to 350 kHz. The signals of the guided
wave field were recorded by the scanning head of the laser vibrometer PSV-3D-400-M (Polytec GmbH,
Berlin, Germany) equipped with a VD-07 velocity decoder. The sampling frequency was assumed to
be 2.56 MHz. The improvement of light backscatter was provided by covering the scanned surface
with a retro-reflective sheeting. The out-of-plane components of velocity values were acquired in the
time domain in 3721 points distributed over the area featuring the overlap surface and the part of the
plate after it (at the top side of the specimen); see Figure 4b,c. The scanning was performed point by
point in the quadratic mesh of 61 rows and 61 columns, resulting in the resolution of about 1.93 mm.
The representations of acquired signals for specific time instances show the propagation of the full
guided wave field (SLDV maps).
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Figure 4. Experimental measurements: (a) experimental setup for the generation and acquisition
of Lamb waves; (b) view of a specimen with the position of a scanned area and excitation point;
(c) investigated specimen with indicated scanning points.

2.3. FEM Modeling

The numerical modeling of elastic wave propagation in composite structures, such as adhesive
joints, is a complex problem, mainly because of material inhomogeneity and an uncertainty of contact
at the interfaces between different materials. An effective contribution to this issue was made by
Chronopoulos [50] and Apalowo and Chronopoulos [51]. In the present paper, numerical analysis of
the guided wave propagation in the considered adhesive joints (#1 to #4) was conducted using the
finite element method in Abaqus/Explicit software. Some assumptions were made to simplify the
modeling process and shorten the calculations. Three-dimensional FEM models were prepared for
a transient dynamic analysis. Each structure was discretized by eight-node solid elements with reduced
integration (C3D8R) from the explicit element library. The appropriate mapping of the wave behavior
requires at least 20 nodes for the shortest wavelength of interest [52]. According to this limitation,
the mesh was initially assumed to be regular and consisted of cube-shaped elements with a global size
of 1 mm, which was reduced to 0.2 mm for the thickness of the adhesive layer (see Figure 5). The mesh
convergence test was conducted taking into account a few refined meshes. The out-of-plane velocity
values in some randomly chosen points at specific time instances were assumed as the measure of
the convergence. The relative differences between results were negligible; thus, the exact calculations
were conducted with the use of the above-mentioned mesh with the global element size of 1 mm.
The boundary conditions were free at all the edges. The materials were adopted to meet the assumptions
of a homogenous, isotropic material model. The material parameters were: for steel Es = 195.2 GPa,
νs = 0.30, ρs = 7741.7 kg/m3, and for adhesive Ea = 5 GPa, νa = 0.35, and ρa = 1330 kg/m3. The material
damping was neglected because of its marginal influence on the RMS damage imaging. Both adherends
and the adhesive film were assumed to be independent structures combined rigidly at the part of
their surfaces by means of a tie connection (compatibility of translational degrees of freedom at all
the contacting nodes). The excitation of guided waves was applied at the lower adherend in the form
of the concentrated force surface load with the amplitude varying in time in accordance with the
wave packet signal. The excitation frequency range was extended in comparison to experimental
measurements (20 to 500 kHz). The dynamic analysis was conducted with the use of the central
difference method with a fixed time step of 10−7 s. This value meets the recommendation of at least
20 points per each cycle of the wave with the higher frequency [52]. The results of the analysis were
out-of-plane velocity signals collected at 3721 points spread over the area of the joint corresponding
with experimental measurements.
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2.4. RMS Damage Imaging

The signals of propagating waves acquired during scanning with a laser vibrometer need further
processing techniques that allow detecting damaged areas and defining their actual shape. The essential
point of damage imaging is to show the differences between the undamaged and damaged part of
an analyzed structure. One of the simplest method consists of the calculation of the root mean square
(RMS) for each recorded signal. The RMS value for the continuous time signal s(t) can be calculated
with the following formula:

RMS =

√
1

t2 − t1

∫ t2

t1

s(t)2dt (1)

where t1 is the beginning and t2 is the end of the time window, which is defined as the difference
between these two values. For a discrete signal sk = s(tk) recorded with the time interval ∆t, the RMS
value can be calculated as follows:

RMS =

√√
1
n

n∑
k=1

s2
k (2)

where n is the number of samples, and the time window is defined as T = ∆t(n − 1) = t2 − t1.
The map prepared from the calculated RMS values allows identifying and determining the geometry
of any possible defects existing in the scanned area. Overall, for damaged areas of an analyzed
element (e.g., delamination, crack, opening), different RMS values are attained because of different
characteristics of Lamb wave propagation (changes due to material stiffness or geometry disturbance).

3. Results and Discussion

3.1. Dispersion Curves

The initial step in the damage detection of adhesive joints was the comparison of Lamb wave
characteristics in a three-layer medium (steel–adhesive–steel, simulating a properly prepared adhesive
joint) and in a single-layer medium (single steel plate or disbonded area of the adhesive joint).
For this purpose, dispersion curves were prepared experimentally and numerically for a steel plate
with dimensions of 240 mm × 300 mm × 3 mm (sample D1) and for two plates with an adhesive
film with a thickness of 0.2 mm bonding them together (sample D2). In each specimen, a wave
packet in the form of a single-cycle Hanning windowed sinusoidal function was excited. The carrier
frequency was changing in the range from 50 to 300 kHz with a step of 50 kHz. Additionally, for each
frequency, symmetric and antisymmetric Lamb modes were excited independently. The velocity signals
(out-of-plane components) were acquired in 101 points distributed along the straight line with a total
length of 100 mm. The dispersion curves in the form of the maps representing wavenumber–frequency
relations were obtained in the way of 2D-FFT (two-dimensional fast Fourier transform) calculations for
each of 12 measurements (cf. [6,36,53]). The final result was the superposition of all the compound
maps (Figure 6).
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A comparison of experimental and numerical curves led to the conclusion that both approaches
gave consistent results. This also proved the appropriateness of the assumption of adhesive material
parameters. To track the theoretical dispersion curves of Lamb waves in the investigated media,
our own code was developed in the Matlab® software (9.3.0.713597, The MathWorks, Inc., Natick,
MA, USA), implementing the transfer matrix method [54,55]. Figure 7a shows wavenumber–frequency
relations for both media (samples D1 and D2). The shape of the curves is approximately the same as
that shown in the maps in Figure 6. However, the possibility of the effective excitation of certain modes
was not the same in the results of the measurements (in both experimental and numerical curves for
the single plate and the joint). In sample D1 (Figures 6a and 7, black curves), only fundamental S0 and
A0 modes can propagate in the considered frequency range, notwithstanding that the S0 curve is not as
strongly exposed as A0 in the maps, which may be the result of the acquisition of only out-of-plane
components on the upper surface that are related mainly to antisymmetric modes. In sample D2
(Figures 6b and 7, red curves), in addition to the fundamental pair, A1 and S1 modes are present
starting from the frequencies of about 130 and 260 kHz, respectively. Moreover, the shape of the S0

curve changes meaningfully compared with the single-layer plate. The shape of the A0 curve does not
change significantly in comparison to sample D1. The differences between the two types of media
are also clearly visible on group velocity–frequency relations (Figure 7b), which will be useful in
further considerations.
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Figure 6. Experimental and numerical dispersion curves: (a) steel plate (sample D1)—single
layer medium (ds = 3 mm, Es = 195.2 GPa, vs. = 0.3, ρs = 7741.7 kg/m3); (b) adhesive joint
(sample D2)—three-layer medium consisted of two steel plates (parameters same as in (a)) and
adhesive film (da = 0.2 mm, Ea = 5 GPa, va = 0.35, ρa = 1330 kg/m3).
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medium consisting of two steel plates (parameters same as above) and adhesive film (da = 0.2 mm,
Ea = 5 GPa, va = 0.35, ρa = 1330 kg/m3): (a) wavenumber–frequency relations; (b) group
velocity–frequency relations.

3.2. Influence of Excitation Frequency on the RMS Damage Imaging

The analysis of the influence of the excitation frequency on the effectiveness of RMS damage
imaging was performed for specimen #1. Experimental and numerical approaches were applied for
an analysis of guided Lamb wave fields and RMS maps.

3.2.1. Guided Wave Fields

Guided wave fields representing out-of-plane velocity values were prepared for a specific
time instance t = 30 µs. Certain frequencies (50, 100, 150, 210, 300, and 350 kHz) were chosen for
a comparative analysis of experimental and numerical results. The maps of propagating waves are
presented in Figure 8. The comparison of presented snapshots revealed the variability of group velocity
in relation to the excitation frequency. For the lowest frequency (50 kHz, Figure 8a), the wavefront is
moderately visible (disturbance only at the initial part of the overlap). In the case of higher frequencies,
the wavefront moved to the left side of the overlap, which suggests the greater speed of the excited wave
packet. In fact, the individual selection of the time instance for each measurement can reduce these
differences. Minor differences were observed between higher frequencies, because the group velocity
was similar. Knowing that the excitation has an antisymmetric character, the A0 mode is expected to
be dominant. These observations agree with the dispersion curves (Figure 7b). The A0 curve for the
three-layer plate indicates significant growth in the group velocity value in the initial frequency range,
and almost no variations in the further range. This explains why there are meaningful differences
between snapshots for lower frequencies (50, 100, and 150 kHz), but wave fields are comparable for
higher ones (210, 300, and 350 kHz), neglecting considerable changes in periods of wave packets.

Comparing the experimental and numerical results, there are some slight differences. Firstly,
the numerical maps are symmetric, whereas the symmetry of the experimental wave fields is vaguely
disturbed, probably by an imperfect preparation of the specimen and an inaccurate assumption of
the scanning area for measurements. Moreover, the wavefronts are disturbed sharply at the edges
of the defect in the numerical snapshots, but this effect is not that demonstrable in the experimental
results because of the irregularities in the shape of defect edges (cf. Figure 3). Additionally, the group
velocity is slightly higher for the experimental maps. The reason might lie in the differences between
the mechanical properties of both materials (steel, adhesive) or the geometry of plates and the
adhesive film (especially thickness). The observation of each snapshot allows identifying the defect.
Significant disturbances of the wavefront indicate the intended lack of the adhesive in the middle of
the overlap. Nonetheless, the determination of the actual geometry of the damaged area is not possible,
and additional signal processing is required.
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characterized by highest RMS values rather than an appropriately prepared joint (similar to the single 
plate after the joint). The difference between these two areas is clear. Some differences between 
experimental and numerical maps result from irregularities in defect geometry (cf. Figure 3). It is 
worth noticing that at the lower excitation frequency, the lower resolution can be obtained in the map 
and, as a result, the larger defects can be omitted. This may be very important in the case of small 

Figure 8. Experimental and numerical guided wave fields (values in m/s·10−3) for a specific time, 30 µs,
and different excitation frequencies: (a) f = 50 kHz; (b) f = 100 kHz; (c) f = 150 kHz; (d) f = 210 kHz;
(e) f = 300 kHz; and (f) f = 350 kHz.

3.2.2. RMS Imaging

Figure 9 shows the RMS maps normalized to unity for experimental and numerical signals
collected for specimen #1. The chosen frequencies were the same as those for the SLDV maps. Each RMS
value was calculated with respect to Equation (2). The time window covered the whole time of signal
acquisition, i.e., T = 3.2 ms. The individual characterization of a single-layer medium (steel plate,
such as the damage area) and a three-layer medium (properly prepared adhesive joint) should result in
the clear difference of the calculated RMS values. However, it is undeniable that excitation frequency
is an essential factor affecting the effectiveness of RMS damage imaging. For the lower frequencies
(50 kHz, Figure 9a; 100 kHz, Figure 9b; 150 kHz, Figure 9c), the damaged area is characterized by
highest RMS values rather than an appropriately prepared joint (similar to the single plate after the
joint). The difference between these two areas is clear. Some differences between experimental and
numerical maps result from irregularities in defect geometry (cf. Figure 3). It is worth noticing that
at the lower excitation frequency, the lower resolution can be obtained in the map and, as a result,
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the larger defects can be omitted. This may be very important in the case of small defects; however,
for the considered damage area, it is not essential. The frequency 210 kHz (Figure 9d) give an ineffectual
result: there is almost no difference between the defect and intact joint, especially in the numerical
map. In the experimental RMS, some boundary effects (intensification of the wave energy on the
irregular edge) led to higher RMS values. This example shows that the invalid choice of the excitation
frequency can make the measurement results useless. For the frequencies higher than 210 kHz (300 kHz,
Figure 9e; 350 kHz, Figure 9f) the RMS values are lower in the damaged area than in the intact joint.
The correlation between RMS values for these two areas is inverted. What is important is that the
visual assessment of RMS maps shows that the distinction between the damaged and intact area of
the joint is much more pronounced in the lower frequency range, especially for experimental maps,
where the whole area of the adhesive layer does not have the same value. This may be the effect of the
limitations of the used experimental setup. What is more, the increase in the excitation frequency is
related to the increase in the wave attenuation.
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The effectiveness of RMS damage identification is an important issue, so there is the need
for a qualitative measure of contradistinction between the damaged and intact areas of the joint.
The proposition is the relative difference between the level of the RMS in these two areas, which can be
expressed by the relation:

Rd =
ld − li

li
(3)

where li and ld denote the mean RMS value in the properly prepared area of the overlap and in the
damaged area, respectively. The definition of the Rd value induces that the damaged area is defined,
so it cannot be used if the joint has any unknown defects. Nevertheless, the aim of Rd calculations is
only the demonstration of changes in the effectiveness of RMS imaging in relation to the excitation
frequency. The area of the overlap was divided before the calculations into two parts (damaged and
intact) with a rejection of points localized on the edges of the defect and on the longitudinal axis of the
joint, because for these points, the RMS values are distinctly high (intensification of energy evoked by
the symmetry and boundaries, cf. Figure 9). The mean RMS values were calculated for the points
of both areas, and the Rd value was calculated for measurements over the whole considered range
of frequency.

Figure 10 shows the relation between Rd and excitation frequency for experimental and numerical
results. The curves are slightly different, but both have some characteristic points. The first one is a local
maximum for 50 kHz. For this value, the A0 modes for single and three-layer plates are crossing on
dispersion curves (cf. Figure 7b). Then, there are some fluctuations that differ between the two curves.
Another peak repeating for both experimental and numerical curves is for about 120 kHz, when the A1

mode for the three-layer plate appears. Further, the curves are falling monotonically. The numerical
curve has the root equal to approximately 215 kHz, and this is the frequency value for which the
damaged area and intact joint are not distinguishable (cf. Figure 9). For the experimental curve, the root
is translated to approximately 250 kHz. This may be the result of the energy intensification on the edges
of the defect (cf. Figure 9d). The global minimum for the numerical curve is attained for approximately
260 kHz (the appearance of the S1 mode for the three-layer plate). This is the frequency for which the
joint and the defect can be distinguished with maximal efficiency in the frequency range above 210 kHz.
Further, the curve is slightly rising until obtaining another root (about 500 kHz) at the end of the
frequency range. The experimental curve does not obtain the local minimum above 210 kHz; instead,
it is constantly falling to the end of the assumed frequency range up to 350 kHz. Generally, the positive
values of Rd are obtained when the damaged area is characterized by higher RMS values than the
intact joint. Negative values indicate on the inverted relation. If Rd equals zero, there is no possibility
of identifying the defects. What is important is that the absolute values of Rd are higher below the first
root (about 215 kHz), which suggests that the lower frequencies allow obtaining a better differentiation
of three-layer and single layer media. However, the above-mentioned decrease in map resolution
cannot be neglected. To compromise both of these factors (the differentiation between defect and intact
joint and the map resolution), the excitation frequency should be chosen from an approximate range of
120 to 180 kHz. The determination of an optimal frequency value requires mathematical optimization
and a proposition of an objective function containing components linked with the image resolution
and the Rd value.
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experimental (frequency range from 20 to 350 kHz) and numerical results (frequency range from 20 to
500 kHz).

3.2.3. Statistical Analysis of RMS Values

In addition to the foregoing considerations, the statistical analysis was conducted. All the RMS
values calculated for the whole overlap surface, rejecting points at the edges of the defect and on
the longitudinal axis (as for Rd calculations), were treated as the single series of values. Histograms
were calculated for each dataset. If there are no defects in the analyzed area, the purely unimodal
distribution would be obtained, because all the RMS values should accumulate over a single value,
which is symbolized above by li. The presence of a defect in the adhesive layer should result in the
bimodal distribution caused by the existence of two dominant values for the intact joint li and for
defect ld.

Figure 11 presents RMS histograms that have been prepared for certain frequencies (the same as
for the RMS maps). The results are normalized, both for the RMS value and the quantity axes. For the
lower frequencies (50, 100, and 150 kHz), bimodal distributions were obtained for the experimental
and numerical data. The first mode is characterized by the lower RMS values and related to the intact
joint area (cf. Figure 9a–c). The second mode indicates the defect existence (higher RMS values),
and it obtains less quantity than the first mode, because the defect surface is twice as small as the
intact joint surface. For 210 kHz (Figure 9d), the histograms are unimodal, which results from the
equality of mean RMS values calculated for the defect and intact joint (Rd = 0, not efficient damage
imaging). The experimental histogram is not as narrow as the numerical one, which is related to the
translation of root of curves from Figure 10. For higher frequencies (300 kHz, 350 kHz), the distributions
are not unimodal; the damage can be identified, and its mode is related to the lower RMS values.
The dissociation of modes is not as clear as for lower frequencies—this effect is related to the lower
absolute values of Rd for higher frequencies. In numerical histograms, the defect mode is characterized
by the lower intensity than the intact joint mode (compatibly with the relation of surfaces of damaged
and intact areas). The experimental histograms do not cover the same rule; the intact joint mode
has a lower intensity because higher RMS values are not obtained in the whole area of the properly
prepared joint (cf. Figure 9e,f). To sum up, the histogram analysis can reveal the existence of damaged
areas, but it has some limitations. Firstly, the geometry of the defects cannot be determined. Moreover,
the method is not efficient for small defects, because the damage modes would be of small quantity,
which makes it impossible to identify them on the histograms.
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the intact joint (for all the analyzed specimens). The frequency of 210 kHz appeared to be inefficient 
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3.3. Influence of Different Defect Geometry

The above considerations were conducted only for a single joint, #1. Next, the observed effects
were verified on specimens #2 to #4 by the way of numerical calculations for three certain frequencies
(100 kHz, 210 kHz, and 300 kHz). The normalized RMS maps are presented in Figure 12. It is visible
that for the frequency of 100 kHz, higher RMS values were obtained for the damaged areas than for the
intact joint (for all the analyzed specimens). The frequency of 210 kHz appeared to be inefficient for
RMS damage imaging, i.e., the difference between the damaged and properly prepared area was not
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significant. The frequency of 300 kHz resulted in lower RMS values in the damaged area. Moving
to the histograms (Figure 13), the frequency 210 kHz gave the unimodal distribution (no difference
between the defect and intact joint). The histograms for 100 and 300 kHz gave bimodal distributions,
but for lower frequencies, the defect mode was related to higher RMS values, whereas for higher
frequencies, it was related to lower RMS values. The quantity for the defect mode was always smaller
than that for an intact joint. The considerations for joints #2 to #4 provided the same results as for
specimen #1. Summarizing, the efficiency of a measurement with a specific excitation frequency does
not change with the geometry of a damaged area. It is a satisfying conclusion, because generally,
the geometry of the damaged area is unknown. This means that an additional preliminary study
consisting of numerical calculations can reveal the appropriate excitation frequency value and reduce
the number of measurements. However, the possibility of the damage identification due to a frequency
value depends strongly on the characteristics of the considered media, so they need to be determined.
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4. Conclusions

The paper discussed the effects of the wave frequency on the efficiency of damage detection in
adhesive joints of steel plates using Lamb wave propagation and RMS imaging. Experimental and
numerical approaches were applied. The research comprised the visual appreciation of obtained RMS
maps and statistical analysis of calculated values. The study resulted in the conclusions presented below.

• The guided wave fields enabled identifying the occurrence of the defect regardless of the excitation
frequency. However, the actual location and shape are indeterminable; thus, guided wave field
measurements can only be an initial step for further analyses.

• The RMS maps allowed determining the geometry of the damaged areas. The effectiveness of
damage visualization was strongly dependent on the excitation frequency.

• The variability of the relative difference between the mean RMS values for the intact joint and
the damage was fully compatible with the clarity of the RMS maps. Some analogies between the
relative RMS difference and dispersion curves were observed.
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• The statistical analysis was successfully used to determine the effectiveness of the results obtained
for different excitation frequencies based on the RMS histograms. The important advantage of
this approach is the independence of the defect geometry.

• The statistical analysis in a certain frequency range on the single numerical model with a random
defect can be sufficient for the determination of the adequate frequency for the further experimental
testing of samples with an unknown state.

The guiding conclusion was that the Lamb wave-based inspection of adhesive joints with the use
of scanning laser Doppler vibrometry and signal processing, such as root mean square calculations,
provides a successful method for damage imaging. To obtain valuable results, some initial analyses need
to be conducted before the exact measurements. The main factor is the choice of an appropriate excitation
frequency, which can be conducted using numerical calculations supported by statistical analysis.
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