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Abstract. A set X is weakly convex in G if for any two vertices a, b ∈ X there exists an ab–geodesic such
that all of its vertices belong to X. A set X ⊆ V is a weakly convex dominating set if X is weakly convex and
dominating. The weakly convex domination number γwcon(G) of a graph G equals the minimum cardinality
of a weakly convex dominating set in G. The weakly convex domination subdivision number sdγwcon (G) is the
minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in
order to increase the weakly convex domination number. In this paper we initiate the study of weakly
convex domination subdivision number and establish upper bounds for it.

1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V(G) and edge set E(G) (briefly V
and E). For every vertex v ∈ V(G), the open neighborhood of v, NG(v) = N(v), is the set {u ∈ V(G) | uv ∈ E(G)}
and its closed neighborhood is the set NG[v] = N[v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V is the
set NG(S) = N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set NG[S] = N[S] = N(S) ∪ S. The degree
of a vertex v is dG(v) = |NG(v)|. A leaf is a vertex of degree one and a universal vertex is a vertex of degree
|V(G)| −1. We denote the number of leaves in a graph G by `(G). The minimum and maximum degrees of G
are respectively denoted by δ(G) and ∆(G). The private neighborhood of a vertex u ∈ D with respect to a set
D ⊆ V, is the set PNG[u,D] = NG[u] −NG[D − {u}]. If v ∈ PNG[u,D], then we say that v is a private neighbor
of u with respect to the set D. For a set S of vertices of G we denote by G[S] the subgraph induced by S in G.
The distance dG(u, v) between two vertices u and v in a connected graph G is the length of a shortest uv–path
in G. A uv–path of length dG(u, v) is called a uv–geodesic. The largest distance between any pair of vertices
u, v in G is the diameter of G, denoted by diam(G). The girth 1(G) of a graph G is the length of a shortest
cycle in G. The edge connectivity number κ′(G) of G is the minimum number of edges whose removal results
in a disconnected graph. For every connected graph, κ′(G) ≤ δ(G).

A set A ⊂ V is a dominating set of G if NG[A] = V, and is a connected dominating set if NG[A] = V and
the induced subgraph G[A] is connected. The (connected) domination number γ(G) (γc(G)) is the minimum
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cardinality of a (connected) dominating set of G, and a (connected) dominating set of minimum cardinality
is called a γ(G)–set (γc(G)–set).

A set X is weakly convex in G if for any two vertices a, b ∈ X there exists an ab–geodesic such that all of
its vertices belong to X. A set X ⊆ V is a weakly convex dominating set if X is weakly convex and dominating.
The weakly convex domination number of a graph G, denoted by γwcon(G), equals to the minimum cardinality
of a weakly convex dominating set in G. Weakly convex domination number was first introduced by Jerzy
Topp, Gdańsk University of Technology, 2002.

In application, network design for example, if a parameterµ(G) is important to study, then it is important
to know the effect that modifications of G have on µ(G). For example, vertices can be deleted and edges can
be deleted or added. In network design, deleting a vertex or an edge may represent component’s failure.
From the other perspective, networks can be made fault-tolerant by providing redundant communication
link (adding edges). The effects on the domination number of a graph, when G is modified by deleting a
vertex or deleting or adding an edge, have been investigated extensively (see chapter 7 of [16]). In particular,
the effects on the weakly convex domination number of a graph, when G is modified by deleting a vertex
or deleting or adding an edge, have been investigated in [19].

Alternatively, one can consider how many modifications must take place before a parameter changes.
Along these lines, Fink et al. [12], defined the bondage number of a graph to equal the minimum number
of edges whose removal increases the domination number. On the other hand, Kok and Mynhardt [17]
defined the reinforcement number of a graph to equal the minimum number of edges which must be added
to a graph in order to decrease the domination number. Considering a different type of graph modification,
Velammal [20] defined the domination subdivision number sdγ(G) to be the minimum number of edges
that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the
domination number. The domination subdivision number has been studied by several authors (see for
instance [1, 11, 14, 15]). A similar concepts related to connected domination were studied in [10], to total
domination in [14], to Roman domination in [2], to rainbow domination in [5, 13], and to 2-domination in
[3]. It is known that the domination subdivision parameters can take arbitrarily large values [2, 5, 9, 10, 14]
and an interesting problem is to find good bounds on these parameters in terms of other parameters of
G. For instance, it has been proved that for any connected graph G of order n, sdγt (G) ≤ n − γt(G) + 1 [7],

sdγt (G) ≤ 2n/3 [8], sdγc (G) ≤ b n
2 c [10], sdγR (G) ≤ d

n
2
e − 1 [2] and sdγr2 (G) ≤ n − ∆(G) + 2 [13].

The (weakly convex, connected) domination subdivision number sdγ(G) (sdγwcon (G), sdγc (G)) of a graph G
is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at
most once) in order to increase the (weakly convex, connected) domination number. (We say that an edge
e = uv ∈ E(G) is subdivided with a vertex x if the edge uv is deleted, but a new vertex x is added, along with
two new edges ux and vx. The vertex x is called a subdivision vertex and obtained graph is denoted by Ge).
Since the (weakly convex, connected) domination number of the graph K2 does not change when its only
edge is subdivided, we consider weakly convex domination subdivision number for all graphs G satisfying
∆(G) ≥ 2.

For any unexplained terms see [16].
Our purpose in this paper is to initialize the study of the weakly convex domination subdivision number

sdγwcon (G). In particular, we establish some sharp upper bounds on sdγwcon (G).
Next result shows that subdividing an edge can decrease or increase the weakly convex domination

number.

Theorem 1.1. The differences γwcon(G) − γwcon(Ge) and γwcon(Ge) − γwcon(G) can be arbitrarily large.

Proof. First we show that for some edge e the difference γwcon(G) − γwcon(Ge) can be arbitrarily large. Let
k ≥ 3 and let G′ be the graph obtained from a (2k + 1)–cycle

C2k+1 = (v1, v2, . . . , v2k+1)

(where v1v2, v2v3, . . . , v2kv2k+1, v2k+1v1 are edges of this cycle) by adding the edge vkvk+2, the edges viv2k−i+1
for i = 1, . . . , k − 2 and adding the pendant edges viwi for i = 1, . . . , k + 1, 2k + 1. For any γwcon(G′)–set D
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of G′, we must have |D ∩ {vi,wi}| ≥ 1 for i = 1, . . . , k + 1, 2k + 1. Since D is weakly convex, we deduce that
vi ∈ D. In particular, vk+1, v2k+1 ∈ D. Since vk+1, vk+2, . . . , v2k+1 is the only vk+1v2k+1–geodesic in G′, we have
vi ∈ D for each i = 1, 2, . . . , 2k + 1 and hence γwcon(G′) ≥ 2k + 1. On the other hand, V(C2k+1) is obviously
a weakly convex dominating set of G′ and so γwcon(G′) = 2k + 1. Let G′e be a graph obtained from G′ by
subdividing the edge e = v2k+1v2k. It is easy to see that γwcon(G′e) = k + 2 (note that the support vertices of G′e
form a γwcon(G′e)–set). The case k = 3 is illustrated in Figure 1.
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Figure 1: Graph G′ and G′e for k = 3.

Now we show that γwcon(Ge) − γwcon(G) can be arbitrarily large for some edge e. Let k ≥ 1 be an
integer and let G′′ be obtained from a (2k + 2)–cycle C2k+2 = (v1, v2, . . . , v2k+2) by adding the edges viv2k+2−i
for i = 1, . . . , k and adding the pendant edges viwi for i = 1, . . . , k + 1, 2k + 2. As above we can see that
γwcon(G′′) = k + 2 (note that the support vertices form a minimum weakly convex dominating set of G′′).
After subdividing the edge e = v1v2k+2 we obtain G′′e , for which γwcon(G′′e ) = 2k + 3 (all of the vertices except
leaves form a minimum weakly convex dominating set for G′′e ). Figure 2 demonstrates the case k = 3.
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Figure 2: Graph G′′ and G′′e for k = 3.

In the next theorem we give an upper bound for weakly convex domination number.

Theorem 1.2. Let G be a connected graph of order n ≥ 3 with δ(G) > b n
2 c. Then

γwcon(G) ≤ max{3, 2
⌊n

2

⌋
− δ(G)}.
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Proof. Let us denote c = δ(G) −
⌊

n
2

⌋
. If diam(G) ≥ 3, then let x and y be the vertices such that dG(x, y) = 3.

Then 1 + dG(x) + 1 + dG(y) ≤ n that implies 2b n
2 c+ 2 < 2δ(G) + 2 ≤ n, which is impossible. Thus diam(G) ≤ 2.

If diam(G) = 1, then γwcon(G) = 1. Suppose now that diam(G) = 2. Let v ∈ V(G) be a vertex with minimum
degree δ(G) and let N(v) = {v1, v2 . . . , vδ(G)}. Since diam(G) = 2 and dG(v) = δ(G), V(G) − N[v] , ∅. Assume
first there is a vertex u ∈ V(G) − N[v] such that V(G) − N[v] ⊆ N[u]. Since diam(G) = 2, u and v have a
common neighbor, say w. In the case, {u, v,w} is clearly a weakly convex dominating set of G and hence
γwcon(G) ≤ 3. Now let V(G) − N[v] * N[u] for every u ∈ V(G) − N[v]. It follows that |V(G) − N[v]| ≥ 2. Let
x ∈ V(G) −N[v]. Then

dG(v) + dG(x) − |N(v) ∩N(x)| + 3 ≤ n.

Since dG(x) ≥ δ(G), dG(v) ≥ δ(G), δ(G) = b n
2 c + c and 2b n

2 c ≥ n − 1 we have

|N(v) ∩N(x)| ≥ 2c + 2.

Hence each vertex in V(G) − N[v] is adjacent to at least 2c + 2 vertices in N(v). Moreover, the set N(v) −
{v1, v2, . . . , vb n

2 c−c−1} consists of 2c + 1 vertices. Hence, each vertex in V(G)−N[v] is adjacent to at least one of
the vertices in {v1, . . . , vb n

2 c−c−1}. This implies that the set {v, v1, . . . , vb n
2 c−c−1} is a weakly convex dominating

set of G and so γwcon(G) ≤ b n
2 c − c = 2b n

2 c − δ(G). This completes the proof.

2. Bounds on Weakly Convex Domination Subdivision Number

In this section, we establish some upper bounds on weakly convex domination subdivision number.
Given S,T ⊆ V(G), we write [S,T] for the set of edges having one end–point in S and the other in T. An edge
cut is an edge set of the form [S,S] , where S is a nonempty proper subset of V(G) and S denotes V(G) − S.

Theorem 2.1. For any connected graph G of order n ≥ 3, sdγwcon (G) ≤ κ′(G).

Proof. Let [S,S] be an edge cut of G of size κ′(G), and let G1 and G2 be the components of G− [S,S]. Assume
G′ is the graph obtained from G by subdividing the edges of [S,S] and T be the set of all subdivision vertices.
Let D be a minimum weakly convex dominating set of G′ and Di = D∩V(Gi) for i = 1, 2. If D∩ T = ∅, then
Di , ∅ for i = 1, 2, and D = D1 ∪ D2. Now for vertices x1 ∈ D1 and x2 ∈ D2, any x1x2–geodesic intersects T
implying that D ∩ T , ∅ which leads to a contradiction. Therefore D ∩ T , ∅. Since D is weakly convex set
of G′ and dG(x, y) ≤ dG′ (x, y) for the vertices x, y ∈ D− T, the set D− T is a weakly convex dominating set of
G. Moreover |D − T| < γwcon(G′). This yields sdγwcon (G) ≤ κ′(G) and the proof is completed.

According to Theorem 1.1, the subdividing an edge may decrease the weakly convex domination
number. Hence, it is not immediately obvious that the weakly convex domination subdivision number is
defined for all connected graphs G with ∆(G) ≥ 2. However, since every connected graph of order at least 3
has an edge cut, we conclude from Theorem 2.1 that the weakly convex domination number is well-defined
for all connected graphs G with ∆(G) ≥ 2.

Moreover, from Theorem 2.1 we also obtain two corollaries.

Corollary 2.2. If there exists a cut edge in G, then sdγwcon (G) = 1.

Corollary 2.3. For any connected simple graph G of order n ≥ 3, sdγwcon (G) ≤ δ(G).

Next result presents the necessary condition for a graph to have sdγwcon (G) > 1.

Proposition 2.4. If sdγwcon (G) > 1, then every edge of G belongs to a cycle C3, C4 or C5.

Proof. Assume that G has an edge e such that e does not belong neither to a 3-cycle nor to 4-cycle nor to
5-cycle. We will show that sdγwcon (G) = 1. If e is a cut–edge, then from Corollary 2.2, sdγwcon (G) = 1. Suppose
now e belongs to a cycle. Let C be a smallest cycle containing e. From our assumption C = Cp, where p ≥ 6.
Let us subdivide the edge e = uv with a vertex w and let D′ be a γwcon(Ge)–set. If {u, v} ⊆ D′, then w ∈ D′
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and clearly D′ − {w} is a weakly convex dominating set in G that implies sdγwcon (G) = 1. Let |D′ ∩ {u, v}| = 1.
Assume, without loss of generality, that {u, v} ∩D′ = {u}. First let w ∈ D′. Suppose v′ is the neighbor of v on
C other than u. Since p ≥ 6, v′ < D′. So v′ is dominated by v′′ ∈ D′. Then dGe (w, v′′) ≤ 3. Since v and v′ does
not belong to D′ and D′ is weakly convex, there is another wv′′–path, say P1. Then the induced subgraph
G[V(P1) − {w} ∪ {v, v′, v′′}] gives a cycle of length at most 5, a contradiction. Now let w < D′. Then v is
dominated by z ∈ D′ and dGe (u, z) ≤ 3. Since w < D′ and v < D′ and D′ is weakly convex, there is another
uz–path, say P2, of length at most 3. Then the induced subgraph G[V(P2) ∪ {v}] is a cycle of length at most
5, a contradiction.

In [10] the following Proposition was shown.

Proposition 2.5. [10] If G is a connected graph of order n ≥ 3, then sdγc (G) ≤ γc(G) + 1.

We prove similar relation for weakly convex domination. Let α′(G) be the maximum number of edges
in a matching in G.

Proposition 2.6. If G contains a matching M such that γwcon(G) < |M|, then sdγwcon (G) ≤ |M|. In particular, if
α′(G) > γwcon(G), then sdγwcon (G) ≤ γwcon(G) + 1.

Proof. Let G′ be obtained by subdividing every edge of M. Each weakly convex dominating set of G′ has
order at least |M|. Hence γwcon(G′) > γwcon(G) and thus sdγwcon (G) ≤ |M|. If α′(G) > γwcon(G), then G contains
a matching M of size γwcon(G) + 1, which leads to the result.

Theorem 2.7. If G is a connected graph of order n ≥ 3, then

sdγwcon (G) ≤ γwcon(G) + 1.

Proof. The result is immediate for n = 3, 4, 5. Let n ≥ 6. If δ(G) ≤ γwcon(G) + 1, then by Corollary 2.3 we
have sdγwcon (G) ≤ δ(G) ≤ γwcon(G) + 1. If γwcon(G) > b n

2 c, then by Theorem 1.2, δ(G) ≤ b n
2 c and again by

Corollary 2.3 we have sdγwcon (G) ≤ γwcon(G). Moreover, if γc(G) = γwcon(G), then from Proposition 3.2 and
Proposition 2.5 we obtain sdγwcon (G) ≤ sdγc (G) ≤ γc(G) + 1 = γwcon(G) + 1. For α′(G) > γwcon(G) the result
follows from Proposition 2.6.

In the remaining cases we assume that γwcon(G) ≤ b n
2 c, δ(G) ≥ γwcon(G) + 1, α′(G) ≤ γwcon(G) and

γc(G) < γwcon(G). It is known from [6] that the matching number of every graph is at least min{δ(G), b n
2 c}.

Hence, since δ(G) > α′(G), we have α′(G) = b n
2 c. This implies γwcon(G) = b n

2 c. So δ(G) ≥ b n
2 c + 1, what gives

diam(G) ≤ 2. Hence every γc(G)–set is also γwcon(G)–set, a contradiction with γc(G) < γwcon(G).

In [4] and [18] the following results were shown.

Proposition 2.8. ([4]) For any connected simple graph G of order n ≥ 3 with 1(G) ≥ 5, γ(G) ≥ δ(G).

Proposition 2.9. [18] If G is a connected graph of order n, then γ(G) ≤ γc(G) ≤ γwcon(G).

From above Propositions and Corollary 2.3 we obtain the next result.

Proposition 2.10. For any connected graph G of order n ≥ 3 with 1(G) = 5,

sdγwcon (G) ≤ γwcon(G).

Proof. By Propositions 2.8 and 2.9, we obtain γwcon(G) ≥ δ(G) and the result follows from Corollary 2.3.
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3. Graphs with Small Weakly Convex Domination Subdivision Number

In this section, we consider graphs with small weakly convex domination subdivision number. We
make use of the following results in this section.

Proposition 3.1. [10] If a connected graph G of order n ≥ 3 satisfies one of the following properties

(i) γc(G) = 1;

(ii) γc(G) = 2 and G contains a γc(G)–set {a, b} such that N(a) ∩N(b) = ∅,

then sdγc (G) = 1.

Proposition 3.2. If γc(G) = γwcon(G), then sdγwcon (G) ≤ sdγc (G).

Proof. After subdividing sdγc (G) edges of G, the resulting graph G′ satisfies γc(G′) > γc(G) = γwcon(G).
Hence γwcon(G′) ≥ γc(G′) > γwcon(G) and sdγwcon (G) ≤ sdγc (G).

Now we present sufficient conditions for a graph to have weakly convex domination subdivision number
equal to 1.

Proposition 3.3. Let G be a connected graph of order n ≥ 3. If G satisfies one of the following properties:

(i) γwcon(G) = 1;

(ii) γwcon(G) = 2 and G contains a γwcon(G)–set {a, b} such that N(a) ∩N(b) = ∅;

(iii) G contains two adjacent vertices of degree 2;

(iv) 1(G) ≥ 6;

(v) G has an edge e such that if e is subdivided with a vertex w, then Ge has a γwcon(Ge)-set containing w,

then sdγwcon (G) = 1.

Proof. (i, ii) Clearly γc(G) = γwcon(G) and the result follows from Proposition 3.2 and Proposition 3.1.
(iii) Let x1 and y1 be two adjacent vertices of degree 2 in G and let G′ be obtained from G by subdividing

the edge x1y1 with a vertex z. Then G′ contains an induced path x, x1, z, y1, y (possibly a cycle if x and y
are adjacent or if x = y). Let D be a γwcon(G′)–set. If z ∈ D, then D − {z} is a weakly convex dominating
set of G. Let z < D. To dominate z, without loss of generality we can suppose that x1 ∈ D. Since D is
weakly convex, {x, x1} is a subset of D. Since x1 was in D only to dominate the vertex z, the set D − {x1} is
a weakly convex dominating set of G. Therefore γwcon(G) < γwcon(G′). In particular for paths and cycles,
sdγwcon (Pn) = sdγwcon (Cn) = 1.

(iv) Let e = u1u2 be an arbitrary edge of G. If e is a cut edge, then clearly γwcon(Ge) > γwcon(G). Let
C = (u1,u2, . . . ,uk) be a cycle containing e. Assume Ge is obtained from G by subdividing the edge e with
subdivision vertex w and D is a γwcon(Ge)–set. We show that w ∈ D which implies D−{w} is a weakly convex
dominating set of G, as desired. Assume to the contrary that w < D. It follows that {u1,u2} * D. Assume
without loss of generality that u2 < D. Then to dominate w and u2, we must have u1 ∈ D and D∩NG(u2) , ∅.
Let v ∈ D ∩NG(u2). Since 1(G) ≥ 6, then u1,w,u2, v is the unique u1v–path in G′ that implies u1,w,u2, v ∈ D,
a contradiction. Therefore, w ∈ D and γwcon(Ge) > γwcon(G). Thus sdγwcon (G) = 1.

(v) Let e = ab be an edge of G such that if e is subdivided with a vertex w then Ge has a γwcon(Ge)-set
D′ containing w. Since D′ is a weakly convex dominating set, D′ ∩ {a, b} , ∅. If a, b ∈ D′, then w ∈ D′ and
D′−{w} is obviously a weakly convex dominating set of G implying that γwcon(G) ≤ |D′| −1 < γwcon(Ge). Let
{a, b} * D′. Assume without loss of generality that a ∈ D′ and b < D′. If D′ = {a,w}, then obviously D′ − {w}
is a weakly convex dominating set of G and hence γwcon(G) < γwcon(Ge) again. Let {a,w} $ D′. Since D′ is a
weakly convex dominating set, we deduce that for any x ∈ D′ − {a,w} there exists a xw–geodesic Pxw in G′

such that V(Pxw) ⊆ D′. Obviously Pxw − {w} is a xa–geodesic in G for each x ∈ D′. It follows that D′ − {w} is
a weakly convex dominating set of G implying that γwcon(G) < γwcon(Ge). Thus sdγwcon (G) = 1.
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Note that the case (i) includes the complete graphs and the case (ii) includes the complete bipartite graph
Kp,q with p, q ≥ 2, and the graph obtained from K4 by subdividing one edge once.

Now we give upper bounds for weakly convex domination subdivision number of graphs with weakly
convex domination number 2 or 3.

Proposition 3.4. Let G be a connected graph of order n ≥ 3 with γwcon(G) = 2. Then

sdγwcon (G) ≤ 2.

Proof. Let G be a connected graph of order n ≥ 3 with γwcon(G) = 2. Then ∆(G) ≤ n − 2. Let S = {u, v} be a
γwcon(G)–set, u′ a private neighbor of u with respect to S and v′ a private neighbor of v with respect to S.
Let G′ be the graph obtained from G by subdividing the edges uu′, vv′ with subdivision vertices x and y,
respectively, and let D be a γwcon(G′)–set. We show that |D| ≥ 3 that implies sdγwcon (G) ≤ 2. Suppose to the
contrary that |D| ≤ 2. To dominate x, y, we must have |D ∩ {u,u′}| ≥ 1 and |D ∩ {v, v′}| ≥ 1. Since |D| ≤ 2, we
have |D∩{u,u′}| = 1 and |D∩{v, v′}| = 1. Since G[D] is connected, uv′ < E(G) and vu′ < E(G), we deduce that
either D = {u, v} or D = {u′, v′}. In each case, D is not a dominating set of G′ which is a contradiction.

Proposition 3.5. Let k ≥ 2 be an integer. For the complete k-partite graph G = Kp1,p2,...pk with 2 ≤ p1 ≤ p2 ≤

. . . ≤ pk,

sdγwcon (G) =

{
1 if k = 2
2 otherwise.

Proof. It is clear that any two adjacent vertices form a minimum weakly convex dominating set of G which
implies γwcon(G) = 2. If k = 2, the result follows from Proposition 3.3 (ii). Let k ≥ 3 and let V1,V2, . . . ,Vk be
the partite sets of V(G). By Proposition 3.4, sdγwcon (G) ≤ 2. Now we show that sdγwcon (G) ≥ 2. Let e = ab be
an edge of G. Hence a ∈ Vi, b ∈ V j, where i , j. In this case the set {a, v}, where v is a vertex belonging to Vk
and k < {i, j}, forms a minimum weakly convex dominating set of G. Thus sdγwcon (G) = 2 and the proof is
completed.

Proposition 3.5 shows that the bound in Proposition 3.4 is sharp.

In [10] the following Proposition was presented.

Proposition 3.6. If G is a connected graph of order n ≥ 3 and γc(G) = 3, then 1 ≤ sdγc (G) ≤ 3.

We use above result when we consider graphs with weakly convex domination subdivision number equal
to 3.

Proposition 3.7. For every connected graph G of order n ≥ 3, if γwcon(G) = 3, then sdγwcon (G) ≤ 3.

Proof. If γwcon(G) = 3, then the γc(G)–sets and the γwcon(G)–sets are the same and so γc(G) = γwcon(G). By
Proposition 3.2, sdγwcon (G) ≤ sdγc (G) and the result follows from Proposition 3.6.

Using Propositions 3.3, 3.4 and 3.7, we obtain other two general upper bounds for weakly convex
domination subdivision number.

Theorem 3.8. For any connected graph G of order n ≥ 3,

sdγwcon (G) ≤
⌊n

2

⌋
.

Proof. The result is immediate for n = 3. Let n ≥ 4. If δ(G) ≤ b n
2 c, the result is true by Corollary 2.3. Let

δ(G) > b n
2 c. If n = 4, then γwcon(G) = 1 and it follows from Proposition 3.3 that sdγwcon (G) = 1 <

⌊
n
2

⌋
. If

n = 5, then clearly γwcon(G) ≤ 2 and by Propositions 3.3 and 3.4 we have sdγwcon (G) ≤ 2 =
⌊

n
2

⌋
. Let n ≥ 6. We

deduce from Theorem 1.2 that γwcon(G) ≤ max{3, 2b n
2 c − δ(G)}. Now the result follows from Proposition 3.7

and Theorem 2.7.
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Corollary 3.9. For any connected graph G of order n ≥ 3,

sdγwcon (G) ≤ α′(G).

Proof. By Corollary 2.3 and Theorem 3.8, we have sdγwcon (G) ≤ min{δ(G), b n
2 c}. On the other hand, it is known

from [6] that the matching number of every graph is at least min{δ(G), b n
2 c}. Thus sdγwcon (G) ≤ α′(G).

Next result gives a bound for the weakly convex domination subdivision number of a triangle–free
graph graph G with γwcon(G) = 4.

Theorem 3.10. Let G be a connected triangle-free graph G with γwcon(G) = 4. Then sdγwcon (G) ≤ 4.

Proof. Let D = {u1,u2,u3,u4} be a γwcon(G)–set such that the size of G[D] is as large as possible. Since the
induced subgraph G[D] is connected, we consider three cases.
Case 1. G[D] = C4 such that u1u2 ∈ E(C4), u2u3 ∈ E(C4), u3u4 ∈ E(C4), u4u1 ∈ E(C4).
If ui has no private neighbor with respect to D for some i, then clearly D−{ui} is a weakly convex dominating
set of G which is a contradiction. Let vi be a private neighbor of ui with respect to D for each i. Assume G′ is
obtained from G by subdividing the edges uivi with vertices xi for each i. Suppose S1 is a γwcon(G′)–set. We
show that |S1| ≥ 5. Assume to the contrary that |S1| ≤ 4. To dominate xi, we must have S1∩{ui, vi} , ∅. Since
|S1| ≤ 4, |S1∩{ui, vi}| = 1. Since vi is a private neighbor of ui with respect to D for each i, S1∩{ui | 1 ≤ i ≤ 4} , ∅
and S1 ∩ {vi | 1 ≤ i ≤ 4} , ∅. Let ui ∈ S1, v j ∈ S1 for some i , j. Then clearly every uiv j–path contains a vertex
not in {ui, vi | 1 ≤ i ≤ 4}which leads to a contradiction.
Case 2. G[D] = P4 such that u1u2 ∈ E(P4), u2u3 ∈ E(P4), u3u4 ∈ E(P4).
Obviously u1 and u4 have no common neighbor. If u1 has no private neighbor with respect to D, then
clearly D − {u1} is a weakly convex dominating set of G, a contradiction. Let v1 be a private neighbor of u1
with respect to D. Similarly, u4 has a private neighbor with respect to D, say v4. Assume G′ is obtained
from G by subdividing the edges u1v1,u1u2,u2u3,u4v4 with vertices x1, x2, x3, x4, respectively. Assume S2
is a γwcon(G′)–set. Now we show that |S2| ≥ 5. Let |S2| ≤ 4. Clearly, S2 ∩ {u1, v1} , ∅,S2 ∩ {u4, v4} , ∅ and
S2 ∩ {u2,u3} , ∅. If {u1, v1} ⊆ S2 then x1 ∈ S2 implying that |S2| ≥ 5 which is a contradiction. Therefore
|S2 ∩ {u1, v1}| = 1. Similarly, |S2 ∩ {u4, v4}| = 1. First let u1 < S2. Then we must have u2, v1 ∈ S2. Since G is
triangle–free and |S2| ≤ 4, we have 2 ≤ dG′ (v1,u2) ≤ 3. If dG′ (v1,u2) = 3, then let v1,w1,w2,u2 is a geodesic
path such that S2 = {v1,u2,w1,w2}. Since G is triangle–free, u1w1 < E(G) and u1w2 < E(G) and so S2 does
not dominate u1, a contradiction. Therefore dG′ (v1,u2) = 2 and so u2 and v1 have a common neighbor w
not in {u3,u4, v4}. Hence S2 = {v1,w,u2,w′} where w′ ∈ {u4, v4}. But then, to dominate u1, we must have
wu1 ∈ E(G) which is a contradiction because G is triangle–free. Assume now u1 ∈ S2. If u2 ∈ S2, then x2 ∈ S2
and clearly G′[S2] will be not connected which is a contradiction. Let u2 < S2 that yields u3 ∈ S2. Since G is
triangle–free and |S2| ≤ 4, u3,u1 have a common neighbor w which belongs to S2. If w′ ∈ S2 ∩ {u4, v4}, then
S2 = {w,w′,u1,u3}. It is easy to see that S2 does not dominate u2, a contradiction.
Subcase 2.3. G[D] = K1,3.
Assume u = u4 is the center of G[D] = K1,3 and u1,u2,u3 are leaves adjacent to u. As above, we can see
that ui has a private neighbor with respect to D, say vi, for each i. Let G′ be the graph obtained from G by
subdividing the edges u1v1,u2v2,u3v3 with vertices x1, x2, x3, respectively, and let S3 be a γwcon(G′)–set. We
show that |S3| ≥ 5. Assume to the contrary that |S3| ≤ 4. To dominate xi, we must have S3 ∩ {ui, vi} , ∅
for each i. If {ui, vi} ⊆ S3 for some i, then xi ∈ S3 implying that |S3| ≥ 5, a contradiction. If ui,u j ∈ S3, then
ui,u j must have a common neighbor w ∈ S3 that dominates vi or is adjacent to uk, vk (k < {i, j}) which is
a contradiction because G is triangle–free. If ui, v j ∈ S3 for some i , j, then ui, v j must have a common
neighbor w that dominates u j, a contradiction again. So we assume {v1, v2, v3} ⊆ S3. If S3 = {v1, v2, v3,w},
then w must be adjacent to ui for each i which leads to a contradiction because G is triangle–free. This
completes the proof.

Next result is an immediate consequence of Propositions 2.10, 3.3 (part (iv)), 3.4, 3.7 and Theorem 3.10.

Corollary 3.11. For any connected graph G of order n ≥ 3 with 1(G) ≥ γwcon(G),

sdγwcon (G) ≤ γwcon(G).
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4. Graphs with Large Weakly Convex Domination Subdivision Number

In the previous sections, we essentially presented bounds on the weakly convex domination subdivision
number in graphs. Our goal in this section is to show that the weakly convex domination subdivision
number of a graph can be arbitrarily large. The following graph was introduced by Haynes et al. in [14] to
prove a similar result for sdγt (G).

Let X = {1, 2, . . . , 3(k − 1)} and letY = {Y ⊂ X | |Y| = k}. Thus,Y consists of all k–subsets of X, and so
|Y| =

(3(k−1)
k

)
. Let G be the graph with vertex set X ∪Y and with edge set constructed as follows: add an

edge joining every two distinct vertices of X and for each x ∈ X and Y ∈ Y, add an edge joining x and Y if
and only if x ∈ Y. Then, Gk is a connected graph of order n =

(3(k−1)
k

)
+ 3(k − 1). The set X induces a clique

in Gk, while the set Y is an independent set and each vertex of Y has degree k in Gk. Therefore δ(G) = k.
Favaron et al. [10] proved that γc(Gk) = 2(k − 1) and sdγc (Gk) = k.

Proposition 4.1. For any integer k ≥ 2, γwcon(Gk) = 2(k − 1).

Proof. By Proposition 3.6, γwcon(Gk) ≥ γc(Gk) = 2(k − 1). On the other hand, any subset of X of cardinality
2(k − 1) is a weakly convex dominating set of G, and so γwcon(Gk) ≤ 2(k − 1). Consequently, γwcon(Gk) =
γc(Gk) = 2(k − 1).

Theorem 4.2. For any integer k ≥ 2, sdγwcon (G2k) ≥ k + 1.

Proof. Assume F = {e1, . . . , ek} is an arbitrary subset of k edges of G2k and let G′2k be the graph obtained from
G2k by subdividing all edges in F. We show that γwcon(G′2k) ≤ γwcon(G2k) = 2(2k − 1). Assume ei = uivi for
each i and let S = X ∩ {ui, vi | 1 ≤ i ≤ k}. Clearly |X − S| ≥ 4k − 3 and each vertex in X − S is adjacent to all
vertices in S. Since every edge of G2k is incident with at least one vertex of X, we may assume that ui ∈ X
for each i. If vi ∈ Y, then since dG2k (vi) = 2k and |F| = k, vi is adjacent to a vertex of X − S, say wi, such that
viwi < F. If vi ∈ X, then let wi be any vertex of X − S. Assume DF = {ui,wi | 1 ≤ i ≤ k}. Then |DF| ≤ 2k. Now
extend DF to a set D of size 2(2k−1) by adding 4k−2−|DF| vertices of X−S. Obviously D is a weakly convex
dominating set of G′2k, and so γwcon(G′2k) ≤ 2(2k − 1) = γwcon(G2k). This implies that sdγwcon (G2k) ≥ k + 1.

We conclude this paper with an open problem.

Problem 4.3. Prove or disprove: For any connected graph G of order n ≥ 3,

sdγwcon (G) ≤ γwcon(G).
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