Weakly Convex Domination Subdivision Number of a Graph

Magda Dettlaff ${ }^{\text {a }}$, Saeed Kosary ${ }^{\text {b }}$, Magdalena Lemańska ${ }^{\text {a }}$, Seyed Mahmoud Sheikholeslami ${ }^{\text {b }}$
${ }^{a}$ Faculty of Applied Physics and Mathematics
Gdańsk University of Technology,
ul. Narutowicza 11/12 80-233 Gdañsk, Poland
${ }^{b}$ Department of Mathematics Azarbaijan Shahid Madani University
Tabriz, I.R. Iran

Abstract

A set X is weakly convex in G if for any two vertices $a, b \in X$ there exists an $a b$-geodesic such that all of its vertices belong to X. A set $X \subseteq V$ is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number $\gamma_{\text {wcon }}(G)$ of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number $\mathrm{sd}_{\gamma_{\text {wcon }}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the weakly convex domination number. In this paper we initiate the study of weakly convex domination subdivision number and establish upper bounds for it.

1. Introduction

Throughout this paper, G is a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). For every vertex $v \in V(G)$, the open neighborhood of $v, N_{G}(v)=N(v)$, is the set $\{u \in V(G) \mid u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N_{G}(S)=N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N_{G}[S]=N[S]=N(S) \cup S$. The degree of a vertex v is $d_{G}(v)=\left|N_{G}(v)\right|$. A leaf is a vertex of degree one and a universal vertex is a vertex of degree $|V(G)|-1$. We denote the number of leaves in a graph G by $\ell(G)$. The minimum and maximum degrees of G are respectively denoted by $\delta(G)$ and $\Delta(G)$. The private neighborhood of a vertex $u \in D$ with respect to a set $D \subseteq V$, is the set $P N_{G}[u, D]=N_{G}[u]-N_{G}[D-\{u\}]$. If $v \in P N_{G}[u, D]$, then we say that v is a private neighbor of u with respect to the set D. For a set S of vertices of G we denote by $G[S]$ the subgraph induced by S in G. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u v-$ path in G. A uv-path of length $d_{G}(u, v)$ is called a $u v$-geodesic. The largest distance between any pair of vertices u, v in G is the diameter of G, denoted by $\operatorname{diam}(G)$. The girth $g(G)$ of a graph G is the length of a shortest cycle in G. The edge connectivity number $\mathcal{K}^{\prime}(G)$ of G is the minimum number of edges whose removal results in a disconnected graph. For every connected graph, $\kappa^{\prime}(G) \leq \delta(G)$.

A set $A \subset V$ is a dominating set of G if $N_{G}[A]=V$, and is a connected dominating set if $N_{G}[A]=V$ and the induced subgraph $G[A]$ is connected. The (connected) domination number $\gamma(G)\left(\gamma_{c}(G)\right)$ is the minimum

[^0]cardinality of a (connected) dominating set of G, and a (connected) dominating set of minimum cardinality is called a $\gamma(G)-\operatorname{set}\left(\gamma_{c}(G)-\right.$ set $)$.

A set X is weakly convex in G if for any two vertices $a, b \in X$ there exists an ab-geodesic such that all of its vertices belong to X. A set $X \subseteq V$ is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number of a graph G, denoted by $\gamma_{\text {wcon }}(G)$, equals to the minimum cardinality of a weakly convex dominating set in G. Weakly convex domination number was first introduced by Jerzy Topp, Gdańsk University of Technology, 2002.

In application, network design for example, if a parameter $\mu(G)$ is important to study, then it is important to know the effect that modifications of G have on $\mu(G)$. For example, vertices can be deleted and edges can be deleted or added. In network design, deleting a vertex or an edge may represent component's failure. From the other perspective, networks can be made fault-tolerant by providing redundant communication link (adding edges). The effects on the domination number of a graph, when G is modified by deleting a vertex or deleting or adding an edge, have been investigated extensively (see chapter 7 of [16]). In particular, the effects on the weakly convex domination number of a graph, when G is modified by deleting a vertex or deleting or adding an edge, have been investigated in [19].

Alternatively, one can consider how many modifications must take place before a parameter changes. Along these lines, Fink et al. [12], defined the bondage number of a graph to equal the minimum number of edges whose removal increases the domination number. On the other hand, Kok and Mynhardt [17] defined the reinforcement number of a graph to equal the minimum number of edges which must be added to a graph in order to decrease the domination number. Considering a different type of graph modification, Velammal [20] defined the domination subdivision number $\mathrm{sd}_{\gamma}(G)$ to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the domination number. The domination subdivision number has been studied by several authors (see for instance $[1,11,14,15]$). A similar concepts related to connected domination were studied in [10], to total domination in [14], to Roman domination in [2], to rainbow domination in [5, 13], and to 2-domination in [3]. It is known that the domination subdivision parameters can take arbitrarily large values [2, 5, 9, 10, 14] and an interesting problem is to find good bounds on these parameters in terms of other parameters of G. For instance, it has been proved that for any connected graph G of order $n, \mathrm{sd}_{\gamma_{t}}(G) \leq n-\gamma_{t}(G)+1[7]$, $\operatorname{sd}_{\gamma_{t}}(G) \leq 2 n / 3[8], \operatorname{sd}_{\gamma_{c}}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor[10], \operatorname{sd}_{\gamma_{R}}(G) \leq\left\lceil\frac{n}{2}\right\rceil-1[2]$ and $\operatorname{sd}_{\gamma_{\gamma_{2}}}(G) \leq n-\Delta(G)+2$ [13].

The (weakly convex, connected) domination subdivision number $\operatorname{sd}_{\gamma}(G)\left(\operatorname{sd}_{\gamma_{\text {woon }}}(G), \operatorname{sd}_{\gamma_{c}}(G)\right)$ of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the (weakly convex, connected) domination number. (We say that an edge $e=u v \in E(G)$ is subdivided with a vertex x if the edge $u v$ is deleted, but a new vertex x is added, along with two new edges $u x$ and $v x$. The vertex x is called a subdivision vertex and obtained graph is denoted by G_{e}). Since the (weakly convex, connected) domination number of the graph K_{2} does not change when its only edge is subdivided, we consider weakly convex domination subdivision number for all graphs G satisfying $\Delta(G) \geq 2$.

For any unexplained terms see [16].
Our purpose in this paper is to initialize the study of the weakly convex domination subdivision number $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)$. In particular, we establish some sharp upper bounds on $\mathrm{sd}_{\gamma_{\text {wcon }}}(G)$.

Next result shows that subdividing an edge can decrease or increase the weakly convex domination number.

Theorem 1.1. The differences $\gamma_{\mathrm{wcon}}(G)-\gamma_{\mathrm{wcon}}\left(G_{e}\right)$ and $\gamma_{\mathrm{wcon}}\left(G_{e}\right)-\gamma_{\mathrm{wcon}}(G)$ can be arbitrarily large.
Proof. First we show that for some edge e the difference $\gamma_{\text {wcon }}(G)-\gamma_{\text {wcon }}\left(G_{e}\right)$ can be arbitrarily large. Let $k \geq 3$ and let G^{\prime} be the graph obtained from a $(2 k+1)$-cycle

$$
C_{2 k+1}=\left(v_{1}, v_{2}, \ldots, v_{2 k+1}\right)
$$

(where $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{2 k} v_{2 k+1}, v_{2 k+1} v_{1}$ are edges of this cycle) by adding the edge $v_{k} v_{k+2}$, the edges $v_{i} v_{2 k-i+1}$ for $i=1, \ldots, k-2$ and adding the pendant edges $v_{i} w_{i}$ for $i=1, \ldots, k+1,2 k+1$. For any $\gamma_{\text {wcon }}\left(G^{\prime}\right)-$ set D
of G^{\prime}, we must have $\left|D \cap\left\{v_{i}, w_{i}\right\}\right| \geq 1$ for $i=1, \ldots, k+1,2 k+1$. Since D is weakly convex, we deduce that $v_{i} \in D$. In particular, $v_{k+1}, v_{2 k+1} \in D$. Since $v_{k+1}, v_{k+2}, \ldots, v_{2 k+1}$ is the only $v_{k+1} v_{2 k+1}$-geodesic in G^{\prime}, we have $v_{i} \in D$ for each $i=1,2, \ldots, 2 k+1$ and hence $\gamma_{\text {wcon }}\left(G^{\prime}\right) \geq 2 k+1$. On the other hand, $V\left(C_{2 k+1}\right)$ is obviously a weakly convex dominating set of G^{\prime} and so $\gamma_{\text {wcon }}\left(G^{\prime}\right)=2 k+1$. Let G_{e}^{\prime} be a graph obtained from G^{\prime} by subdividing the edge $e=v_{2 k+1} v_{2 k}$. It is easy to see that $\gamma_{\mathrm{wcon}}\left(G_{e}^{\prime}\right)=k+2$ (note that the support vertices of G_{e}^{\prime} form a $\gamma_{\text {wcon }}\left(G_{e}^{\prime}\right)$-set $)$. The case $k=3$ is illustrated in Figure 1.

Figure 1: Graph G^{\prime} and G_{e}^{\prime} for $k=3$.
Now we show that $\gamma_{\text {wcon }}\left(G_{e}\right)-\gamma_{\text {wcon }}(G)$ can be arbitrarily large for some edge e. Let $k \geq 1$ be an integer and let $G^{\prime \prime}$ be obtained from a $(2 k+2)$-cycle $C_{2 k+2}=\left(v_{1}, v_{2}, \ldots, v_{2 k+2}\right)$ by adding the edges $v_{i} v_{2 k+2-i}$ for $i=1, \ldots, k$ and adding the pendant edges $v_{i} w_{i}$ for $i=1, \ldots, k+1,2 k+2$. As above we can see that $\gamma_{\text {wcon }}\left(G^{\prime \prime}\right)=k+2$ (note that the support vertices form a minimum weakly convex dominating set of $G^{\prime \prime}$). After subdividing the edge $e=v_{1} v_{2 k+2}$ we obtain $G_{e}^{\prime \prime}$, for which $\gamma_{\text {wcon }}\left(G_{e}^{\prime \prime}\right)=2 k+3$ (all of the vertices except leaves form a minimum weakly convex dominating set for $\left.G_{e}^{\prime \prime}\right)$. Figure 2 demonstrates the case $k=3$.

Figure 2: Graph $G^{\prime \prime}$ and $G_{e}^{\prime \prime}$ for $k=3$.
In the next theorem we give an upper bound for weakly convex domination number.
Theorem 1.2. Let G be a connected graph of order $n \geq 3$ with $\delta(G)>\left\lfloor\frac{n}{2}\right\rfloor$. Then

$$
\gamma_{\text {wcon }}(G) \leq \max \left\{3,2\left\lfloor\frac{n}{2}\right\rfloor-\delta(G)\right\} .
$$

Proof. Let us denote $c=\delta(G)-\left\lfloor\frac{n}{2}\right\rfloor$. If diam $(G) \geq 3$, then let x and y be the vertices such that $d_{G}(x, y)=3$. Then $1+d_{G}(x)+1+d_{G}(y) \leq n$ that implies $2\left\lfloor\frac{n}{2}\right\rfloor+2<2 \delta(G)+2 \leq n$, which is impossible. Thus diam $(G) \leq 2$. If $\operatorname{diam}(G)=1$, then $\gamma_{\text {wcon }}(G)=1$. Suppose now that $\operatorname{diam}(G)=2$. Let $v \in V(G)$ be a vertex with minimum degree $\delta(G)$ and let $N(v)=\left\{v_{1}, v_{2} \ldots, v_{\delta(G)}\right\}$. Since $\operatorname{diam}(G)=2$ and $d_{G}(v)=\delta(G), V(G)-N[v] \neq \emptyset$. Assume first there is a vertex $u \in V(G)-N[v]$ such that $V(G)-N[v] \subseteq N[u]$. Since $\operatorname{diam}(G)=2, u$ and v have a common neighbor, say w. In the case, $\{u, v, w\}$ is clearly a weakly convex dominating set of G and hence $\gamma_{\text {wcon }}(G) \leq 3$. Now let $V(G)-N[v] \nsubseteq N[u]$ for every $u \in V(G)-N[v]$. It follows that $|V(G)-N[v]| \geq 2$. Let $x \in V(G)-N[v]$. Then

$$
d_{G}(v)+d_{G}(x)-|N(v) \cap N(x)|+3 \leq n .
$$

Since $d_{G}(x) \geq \delta(G), d_{G}(v) \geq \delta(G), \delta(G)=\left\lfloor\frac{n}{2}\right\rfloor+c$ and $2\left\lfloor\frac{n}{2}\right\rfloor \geq n-1$ we have

$$
|N(v) \cap N(x)| \geq 2 c+2
$$

Hence each vertex in $V(G)-N[v]$ is adjacent to at least $2 c+2$ vertices in $N(v)$. Moreover, the set $N(v)-$ $\left\{v_{1}, v_{2}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor-c-1}\right\}$ consists of $2 c+1$ vertices. Hence, each vertex in $V(G)-N[v]$ is adjacent to at least one of the vertices in $\left\{v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor-c-1}\right\}$. This implies that the set $\left\{v, v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor-c-1}\right\}$ is a weakly convex dominating set of G and so $\gamma_{\text {wcon }}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor-c=2\left\lfloor\frac{n}{2}\right\rfloor-\delta(G)$. This completes the proof.

2. Bounds on Weakly Convex Domination Subdivision Number

In this section, we establish some upper bounds on weakly convex domination subdivision number. Given $S, T \subseteq V(G)$, we write $[S, T]$ for the set of edges having one end-point in S and the other in T. An edge cut is an edge set of the form $[S, \bar{S}]$, where S is a nonempty proper subset of $V(G)$ and \bar{S} denotes $V(G)-S$.

Theorem 2.1. For any connected graph G of order $n \geq 3, \operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \mathcal{K}^{\prime}(G)$.
Proof. Let $[S, \bar{S}]$ be an edge cut of G of size $\kappa^{\prime}(G)$, and let G_{1} and G_{2} be the components of $G-[S, \bar{S}]$. Assume G^{\prime} is the graph obtained from G by subdividing the edges of $[S, \bar{S}]$ and T be the set of all subdivision vertices. Let D be a minimum weakly convex dominating set of G^{\prime} and $D_{i}=D \cap V\left(G_{i}\right)$ for $i=1,2$. If $D \cap T=\emptyset$, then $D_{i} \neq \emptyset$ for $i=1,2$, and $D=D_{1} \cup D_{2}$. Now for vertices $x_{1} \in D_{1}$ and $x_{2} \in D_{2}$, any $x_{1} x_{2}$-geodesic intersects T implying that $D \cap T \neq \emptyset$ which leads to a contradiction. Therefore $D \cap T \neq \emptyset$. Since D is weakly convex set of G^{\prime} and $d_{G}(x, y) \leq d_{G^{\prime}}(x, y)$ for the vertices $x, y \in D-T$, the set $D-T$ is a weakly convex dominating set of G. Moreover $|D-T|<\gamma_{\text {wcon }}\left(G^{\prime}\right)$. This yields $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \kappa^{\prime}(G)$ and the proof is completed.

According to Theorem 1.1, the subdividing an edge may decrease the weakly convex domination number. Hence, it is not immediately obvious that the weakly convex domination subdivision number is defined for all connected graphs G with $\Delta(G) \geq 2$. However, since every connected graph of order at least 3 has an edge cut, we conclude from Theorem 2.1 that the weakly convex domination number is well-defined for all connected graphs G with $\Delta(G) \geq 2$.

Moreover, from Theorem 2.1 we also obtain two corollaries.
Corollary 2.2. If there exists a cut edge in G, then $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)=1$.
Corollary 2.3. For any connected simple graph G of order $n \geq 3, \operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \delta(G)$.
Next result presents the necessary condition for a graph to have $\mathrm{sd}_{\gamma_{\text {woon }}}(G)>1$.
Proposition 2.4. If $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)>1$, then every edge of G belongs to a cycle C_{3}, C_{4} or C_{5}.
Proof. Assume that G has an edge e such that e does not belong neither to a 3-cycle nor to 4 -cycle nor to 5 -cycle. We will show that $\operatorname{sd}_{\gamma_{\text {woon }}}(G)=1$. If e is a cut-edge, then from Corollary $2.2, \operatorname{sd}_{\gamma_{\text {wcon }}}(G)=1$. Suppose now e belongs to a cycle. Let C be a smallest cycle containing e. From our assumption $C=C_{p}$, where $p \geq 6$. Let us subdivide the edge $e=u v$ with a vertex w and let D^{\prime} be a $\gamma_{\text {wcon }}\left(G_{e}\right)$-set. If $\{u, v\} \subseteq D^{\prime}$, then $w \in D^{\prime}$
and clearly $D^{\prime}-\{w\}$ is a weakly convex dominating set in G that implies $\operatorname{sd}_{\gamma_{\text {woon }}}(G)=1$. Let $\left|D^{\prime} \cap\{u, v\}\right|=1$. Assume, without loss of generality, that $\{u, v\} \cap D^{\prime}=\{u\}$. First let $w \in D^{\prime}$. Suppose v^{\prime} is the neighbor of v on C other than u. Since $p \geq 6, v^{\prime} \notin D^{\prime}$. So v^{\prime} is dominated by $v^{\prime \prime} \in D^{\prime}$. Then $d_{G_{e}}\left(v, v^{\prime \prime}\right) \leq 3$. Since v and v^{\prime} does not belong to D^{\prime} and D^{\prime} is weakly convex, there is another $w v^{\prime \prime}$-path, say P_{1}. Then the induced subgraph $G\left[V\left(P_{1}\right)-\{w\} \cup\left\{v, v^{\prime}, v^{\prime \prime}\right\}\right]$ gives a cycle of length at most 5 , a contradiction. Now let $w \notin D^{\prime}$. Then v is dominated by $z \in D^{\prime}$ and $d_{G_{e}}(u, z) \leq 3$. Since $w \notin D^{\prime}$ and $v \notin D^{\prime}$ and D^{\prime} is weakly convex, there is another $u z$-path, say P_{2}, of length at most 3 . Then the induced subgraph $G\left[V\left(P_{2}\right) \cup\{v\}\right]$ is a cycle of length at most 5 , a contradiction.

In [10] the following Proposition was shown.
Proposition 2.5. [10] If G is a connected graph of order $n \geq 3$, then $\operatorname{sd}_{\gamma_{c}}(G) \leq \gamma_{c}(G)+1$.
We prove similar relation for weakly convex domination. Let $\alpha^{\prime}(G)$ be the maximum number of edges in a matching in G.

Proposition 2.6. If G contains a matching M such that $\gamma_{\text {wcon }}(G)<|M|$, then $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq|M|$. In particular, if $\alpha^{\prime}(G)>\gamma_{\text {wcon }}(G)$, then $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \gamma_{\text {wcon }}(G)+1$.

Proof. Let G^{\prime} be obtained by subdividing every edge of M. Each weakly convex dominating set of G^{\prime} has order at least $|M|$. Hence $\gamma_{\text {wcon }}\left(G^{\prime}\right)>\gamma_{\text {wcon }}(G)$ and thus $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq|M|$. If $\alpha^{\prime}(G)>\gamma_{\text {wcon }}(G)$, then G contains a matching M of size $\gamma_{\text {wcon }}(G)+1$, which leads to the result.

Theorem 2.7. If G is a connected graph of order $n \geq 3$, then

$$
\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \gamma_{\text {wcon }}(G)+1
$$

Proof. The result is immediate for $n=3,4,5$. Let $n \geq 6$. If $\delta(G) \leq \gamma_{\text {wcon }}(G)+1$, then by Corollary 2.3 we have $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \delta(G) \leq \gamma_{\text {wcon }}(G)+1$. If $\gamma_{\text {wcon }}(G)>\left\lfloor\frac{n}{2}\right\rfloor$, then by Theorem 1.2, $\delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ and again by Corollary 2.3 we have $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \gamma_{\text {wcon }}(G)$. Moreover, if $\gamma_{c}(G)=\gamma_{\text {wcon }}(G)$, then from Proposition 3.2 and Proposition 2.5 we obtain $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G) \leq \gamma_{c}(G)+1=\gamma_{\text {wcon }}(G)+1$. For $\alpha^{\prime}(G)>\gamma_{\text {wcon }}(G)$ the result follows from Proposition 2.6.

In the remaining cases we assume that $\gamma_{\text {wcon }}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor, \delta(G) \geq \gamma_{\text {wcon }}(G)+1, \alpha^{\prime}(G) \leq \gamma_{\text {wcon }}(G)$ and $\gamma_{c}(G)<\gamma_{\text {wcon }}(G)$. It is known from [6] that the matching number of every graph is at least $\min \left\{\delta(G),\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Hence, since $\delta(G)>\alpha^{\prime}(G)$, we have $\alpha^{\prime}(G)=\left\lfloor\frac{n}{2}\right\rfloor$. This implies $\gamma_{\text {wcon }}(G)=\left\lfloor\frac{n}{2}\right\rfloor$. So $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$, what gives $\operatorname{diam}(G) \leq 2$. Hence every $\gamma_{c}(G)$-set is also $\gamma_{\text {wcon }}(G)$-set, a contradiction with $\gamma_{c}(G)<\gamma_{\text {wcon }}(G)$.

In [4] and [18] the following results were shown.
Proposition 2.8. ([4]) For any connected simple graph G of order $n \geq 3$ with $g(G) \geq 5, \gamma(G) \geq \delta(G)$.
Proposition 2.9. [18] If G is a connected graph of order n, then $\gamma(G) \leq \gamma_{c}(G) \leq \gamma_{\text {wcon }}(G)$.
From above Propositions and Corollary 2.3 we obtain the next result.
Proposition 2.10. For any connected graph G of order $n \geq 3$ with $g(G)=5$,

$$
\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \gamma_{\text {wcon }}(G)
$$

Proof. By Propositions 2.8 and 2.9, we obtain $\gamma_{\text {wcon }}(G) \geq \delta(G)$ and the result follows from Corollary 2.3.

3. Graphs with Small Weakly Convex Domination Subdivision Number

In this section, we consider graphs with small weakly convex domination subdivision number. We make use of the following results in this section.

Proposition 3.1. [10] If a connected graph G of order $n \geq 3$ satisfies one of the following properties
(i) $\gamma_{c}(G)=1$;
(ii) $\gamma_{c}(G)=2$ and G contains a $\gamma_{c}(G)-\operatorname{set}\{a, b\}$ such that $N(a) \cap N(b)=\emptyset$,
then $\operatorname{sd}_{\gamma_{c}}(G)=1$.
Proposition 3.2. If $\gamma_{c}(G)=\gamma_{\text {wcon }}(G)$, then $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G)$.
Proof. After subdividing $\operatorname{sd}_{\gamma_{c}}(G)$ edges of G, the resulting graph G^{\prime} satisfies $\gamma_{c}\left(G^{\prime}\right)>\gamma_{c}(G)=\gamma_{\text {wcon }}(G)$. Hence $\gamma_{\text {wcon }}\left(G^{\prime}\right) \geq \gamma_{c}\left(G^{\prime}\right)>\gamma_{\text {wcon }}(G)$ and $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G)$.

Now we present sufficient conditions for a graph to have weakly convex domination subdivision number equal to 1 .

Proposition 3.3. Let G be a connected graph of order $n \geq 3$. If G satisfies one of the following properties:
(i) $\gamma_{\mathrm{wcon}}(G)=1$;
(ii) $\gamma_{\text {wcon }}(G)=2$ and G contains a $\gamma_{\text {wcon }}(G)-$ set $\{a, b\}$ such that $N(a) \cap N(b)=\emptyset$;
(iii) G contains two adjacent vertices of degree 2;
(iv) $g(G) \geq 6$;
(v) G has an edge e such that if e is subdivided with a vertex w, then G_{e} has a $\gamma_{\text {wcon }}\left(G_{e}\right)$-set containing w, then $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)=1$.

Proof. (i, ii) Clearly $\gamma_{c}(G)=\gamma_{\text {wcon }}(G)$ and the result follows from Proposition 3.2 and Proposition 3.1.
(iii) Let x_{1} and y_{1} be two adjacent vertices of degree 2 in G and let G^{\prime} be obtained from G by subdividing the edge $x_{1} y_{1}$ with a vertex z. Then G^{\prime} contains an induced path x, x_{1}, z, y_{1}, y (possibly a cycle if x and y are adjacent or if $x=y$). Let D be a $\gamma_{\text {wcon }}\left(G^{\prime}\right)$-set. If $z \in D$, then $D-\{z\}$ is a weakly convex dominating set of G. Let $z \notin D$. To dominate z, without loss of generality we can suppose that $x_{1} \in D$. Since D is weakly convex, $\left\{x, x_{1}\right\}$ is a subset of D. Since x_{1} was in D only to dominate the vertex z, the set $D-\left\{x_{1}\right\}$ is a weakly convex dominating set of G. Therefore $\gamma_{\text {wcon }}(G)<\gamma_{\text {wcon }}\left(G^{\prime}\right)$. In particular for paths and cycles, $\operatorname{sd}_{\gamma_{\text {wcon }}}\left(P_{n}\right)=\operatorname{sd}_{\gamma_{\text {wcon }}}\left(C_{n}\right)=1$.
(iv) Let $e=u_{1} u_{2}$ be an arbitrary edge of G. If e is a cut edge, then clearly $\gamma_{\text {wcon }}\left(G_{e}\right)>\gamma_{\text {wcon }}(G)$. Let $C=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be a cycle containing e. Assume G_{e} is obtained from G by subdividing the edge e with subdivision vertex w and D is a $\gamma_{\text {wcon }}\left(G_{e}\right)-$ set. We show that $w \in D$ which implies $D-\{w\}$ is a weakly convex dominating set of G, as desired. Assume to the contrary that $w \notin D$. It follows that $\left\{u_{1}, u_{2}\right\} \nsubseteq D$. Assume without loss of generality that $u_{2} \notin D$. Then to dominate w and u_{2}, we must have $u_{1} \in D$ and $D \cap N_{G}\left(u_{2}\right) \neq \emptyset$. Let $v \in D \cap N_{G}\left(u_{2}\right)$. Since $g(G) \geq 6$, then u_{1}, w, u_{2}, v is the unique $u_{1} v$-path in G^{\prime} that implies $u_{1}, w, u_{2}, v \in D$, a contradiction. Therefore, $w \in D$ and $\gamma_{\text {wcon }}\left(G_{e}\right)>\gamma_{\text {wcon }}(G)$. Thus $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)=1$.
(v) Let $e=a b$ be an edge of G such that if e is subdivided with a vertex w then G_{e} has a $\gamma_{\text {wcon }}\left(G_{e}\right)$-set D^{\prime} containing w. Since D^{\prime} is a weakly convex dominating set, $D^{\prime} \cap\{a, b\} \neq \emptyset$. If $a, b \in D^{\prime}$, then $w \in D^{\prime}$ and $D^{\prime}-\{w\}$ is obviously a weakly convex dominating set of G implying that $\gamma_{\text {wcon }}(G) \leq\left|D^{\prime}\right|-1<\gamma_{\text {wcon }}\left(G_{e}\right)$. Let $\{a, b\} \nsubseteq D^{\prime}$. Assume without loss of generality that $a \in D^{\prime}$ and $b \notin D^{\prime}$. If $D^{\prime}=\{a, w\}$, then obviously $D^{\prime}-\{w\}$ is a weakly convex dominating set of G and hence $\gamma_{\text {wcon }}(G)<\gamma_{\text {wcon }}\left(G_{e}\right)$ again. Let $\{a, w\} \varsubsetneqq D^{\prime}$. Since D^{\prime} is a weakly convex dominating set, we deduce that for any $x \in D^{\prime}-\{a, w\}$ there exists a $x w$-geodesic $P_{x w}$ in G^{\prime} such that $V\left(P_{x w}\right) \subseteq D^{\prime}$. Obviously $P_{x w}-\{w\}$ is a $x a-$ geodesic in G for each $x \in D^{\prime}$. It follows that $D^{\prime}-\{w\}$ is a weakly convex dominating set of G implying that $\gamma_{\text {wcon }}(G)<\gamma_{\text {wcon }}\left(G_{e}\right)$. Thus $\operatorname{sd}_{\gamma_{\text {wcon }}}(G)=1$.

Note that the case (i) includes the complete graphs and the case (ii) includes the complete bipartite graph $K_{p, q}$ with $p, q \geq 2$, and the graph obtained from K_{4} by subdividing one edge once.

Now we give upper bounds for weakly convex domination subdivision number of graphs with weakly convex domination number 2 or 3 .

Proposition 3.4. Let G be a connected graph of order $n \geq 3$ with $\gamma_{\text {wcon }}(G)=2$. Then

$$
\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq 2
$$

Proof. Let G be a connected graph of order $n \geq 3$ with $\gamma_{\text {wcon }}(G)=2$. Then $\Delta(G) \leq n-2$. Let $S=\{u, v\}$ be a $\gamma_{\text {wcon }}(G)$-set, u^{\prime} a private neighbor of u with respect to S and v^{\prime} a private neighbor of v with respect to S. Let G^{\prime} be the graph obtained from G by subdividing the edges $u u^{\prime}, v v^{\prime}$ with subdivision vertices x and y, respectively, and let D be a $\gamma_{\text {wcon }}\left(G^{\prime}\right)$-set. We show that $|D| \geq 3$ that implies $\operatorname{sd}_{\gamma_{\text {won }}}(G) \leq 2$. Suppose to the contrary that $|D| \leq 2$. To dominate x, y, we must have $\left|D \cap\left\{u, u^{\prime}\right\}\right| \geq 1$ and $\left|D \cap\left\{v, v^{\prime}\right\}\right| \geq 1$. Since $|D| \leq 2$, we have $\left|D \cap\left\{u, u^{\prime}\right\}\right|=1$ and $\left|D \cap\left\{v, v^{\prime}\right\}\right|=1$. Since $G[D]$ is connected, $u v^{\prime} \notin E(G)$ and $v u^{\prime} \notin E(G)$, we deduce that either $D=\{u, v\}$ or $D=\left\{u^{\prime}, v^{\prime}\right\}$. In each case, D is not a dominating set of G^{\prime} which is a contradiction.

Proposition 3.5. Let $k \geq 2$ be an integer. For the complete k-partite graph $G=K_{p_{1}, p_{2}, \ldots p_{k}}$ with $2 \leq p_{1} \leq p_{2} \leq$ $\ldots \leq p_{k}$,

$$
\operatorname{sd}_{\gamma_{\text {woon }}}(G)= \begin{cases}1 & \text { if } k=2 \\ 2 & \text { otherwise } .\end{cases}
$$

Proof. It is clear that any two adjacent vertices form a minimum weakly convex dominating set of G which implies $\gamma_{\text {wcon }}(G)=2$. If $k=2$, the result follows from Proposition 3.3 (ii). Let $k \geq 3$ and let $V_{1}, V_{2}, \ldots, V_{k}$ be the partite sets of $V(G)$. By Proposition 3.4, $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq 2$. Now we show that $\mathrm{sd}_{\gamma_{\text {woon }}}(G) \geq 2$. Let $e=a b$ be an edge of G. Hence $a \in V_{i}, b \in V_{j}$, where $i \neq j$. In this case the set $\{a, v\}$, where v is a vertex belonging to V_{k} and $k \notin\{i, j\}$, forms a minimum weakly convex dominating set of G. Thus $\operatorname{sd}_{\gamma_{\text {woon }}}(G)=2$ and the proof is completed.

Proposition 3.5 shows that the bound in Proposition 3.4 is sharp.
In [10] the following Proposition was presented.
Proposition 3.6. If G is a connected graph of order $n \geq 3$ and $\gamma_{c}(G)=3$, then $1 \leq \operatorname{sd}_{\gamma_{c}}(G) \leq 3$.
We use above result when we consider graphs with weakly convex domination subdivision number equal to 3.
Proposition 3.7. For every connected graph G of order $n \geq 3$, if $\gamma_{\text {wcon }}(G)=3$, then $\operatorname{sd}_{\gamma_{\text {won }}}(G) \leq 3$.
Proof. If $\gamma_{\text {wcon }}(G)=3$, then the $\gamma_{c}(G)$-sets and the $\gamma_{\text {wcon }}(G)$-sets are the same and so $\gamma_{c}(G)=\gamma_{\text {wcon }}(G)$. By Proposition 3.2, $\mathrm{sd}_{\gamma_{\text {won }}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G)$ and the result follows from Proposition 3.6.

Using Propositions 3.3, 3.4 and 3.7, we obtain other two general upper bounds for weakly convex domination subdivision number.

Theorem 3.8. For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{\text {won }}}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor .
$$

Proof. The result is immediate for $n=3$. Let $n \geq 4$. If $\delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$, the result is true by Corollary 2.3. Let $\delta(G)>\left\lfloor\frac{n}{2}\right\rfloor$. If $n=4$, then $\gamma_{\text {wcon }}(G)=1$ and it follows from Proposition 3.3 that $\operatorname{sd}_{\gamma_{\text {woon }}}(G)=1<\left\lfloor\frac{n}{2}\right\rfloor$. If $n=5$, then clearly $\gamma_{\text {wcon }}(G) \leq 2$ and by Propositions 3.3 and 3.4 we have $\operatorname{sd}_{\gamma_{\text {won }}}(G) \leq 2=\left\lfloor\frac{n}{2}\right\rfloor$. Let $n \geq 6$. We deduce from Theorem 1.2 that $\gamma_{\text {wcon }}(G) \leq \max \left\{3,2\left\lfloor\frac{n}{2}\right\rfloor-\delta(G)\right\}$. Now the result follows from Proposition 3.7 and Theorem 2.7.

Corollary 3.9. For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \alpha^{\prime}(G)
$$

Proof. By Corollary 2.3 and Theorem 3.8, we have $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \min \left\{\delta(G),\left\lfloor\frac{n}{2}\right\rfloor\right\}$. On the other hand, it is known from [6] that the matching number of every graph is at least $\min \left\{\delta(G),\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Thus $\operatorname{sd}_{\gamma_{\text {woon }}}(G) \leq \alpha^{\prime}(G)$.

Next result gives a bound for the weakly convex domination subdivision number of a triangle-free graph graph G with $\gamma_{\text {wcon }}(G)=4$.
Theorem 3.10. Let G be a connected triangle-free graph G with $\gamma_{\text {wcon }}(G)=4$. Then $\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq 4$.
Proof. Let $D=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a $\gamma_{\text {wcon }}(G)$-set such that the size of $G[D]$ is as large as possible. Since the induced subgraph $G[D]$ is connected, we consider three cases.
Case 1. $G[D]=C_{4}$ such that $u_{1} u_{2} \in E\left(C_{4}\right), u_{2} u_{3} \in E\left(C_{4}\right), u_{3} u_{4} \in E\left(C_{4}\right), u_{4} u_{1} \in E\left(C_{4}\right)$.
If u_{i} has no private neighbor with respect to D for some i, then clearly $D-\left\{u_{i}\right\}$ is a weakly convex dominating set of G which is a contradiction. Let v_{i} be a private neighbor of u_{i} with respect to D for each i. Assume G^{\prime} is obtained from G by subdividing the edges $u_{i} v_{i}$ with vertices x_{i} for each i. Suppose S_{1} is a $\gamma_{\text {wcon }}\left(G^{\prime}\right)$-set. We show that $\left|S_{1}\right| \geq 5$. Assume to the contrary that $\left|S_{1}\right| \leq 4$. To dominate x_{i}, we must have $S_{1} \cap\left\{u_{i}, v_{i}\right\} \neq \emptyset$. Since $\left|S_{1}\right| \leq 4,\left|S_{1} \cap\left\{u_{i}, v_{i}\right\}\right|=1$. Since v_{i} is a private neighbor of u_{i} with respect to D for each $i, S_{1} \cap\left\{u_{i} \mid 1 \leq i \leq 4\right\} \neq \emptyset$ and $S_{1} \cap\left\{v_{i} \mid 1 \leq i \leq 4\right\} \neq \emptyset$. Let $u_{i} \in S_{1}, v_{j} \in S_{1}$ for some $i \neq j$. Then clearly every $u_{i} v_{j}$-path contains a vertex not in $\left\{u_{i}, v_{i} \mid 1 \leq i \leq 4\right\}$ which leads to a contradiction.
Case 2. $G[D]=P_{4}$ such that $u_{1} u_{2} \in E\left(P_{4}\right), u_{2} u_{3} \in E\left(P_{4}\right), u_{3} u_{4} \in E\left(P_{4}\right)$.
Obviously u_{1} and u_{4} have no common neighbor. If u_{1} has no private neighbor with respect to D, then clearly $D-\left\{u_{1}\right\}$ is a weakly convex dominating set of G, a contradiction. Let v_{1} be a private neighbor of u_{1} with respect to D. Similarly, u_{4} has a private neighbor with respect to D, say v_{4}. Assume G^{\prime} is obtained from G by subdividing the edges $u_{1} v_{1}, u_{1} u_{2}, u_{2} u_{3}, u_{4} v_{4}$ with vertices $x_{1}, x_{2}, x_{3}, x_{4}$, respectively. Assume S_{2} is a $\gamma_{\text {wcon }}\left(G^{\prime}\right)$-set. Now we show that $\left|S_{2}\right| \geq 5$. Let $\left|S_{2}\right| \leq 4$. Clearly, $S_{2} \cap\left\{u_{1}, v_{1}\right\} \neq \emptyset, S_{2} \cap\left\{u_{4}, v_{4}\right\} \neq \emptyset$ and $S_{2} \cap\left\{u_{2}, u_{3}\right\} \neq \emptyset$. If $\left\{u_{1}, v_{1}\right\} \subseteq S_{2}$ then $x_{1} \in S_{2}$ implying that $\left|S_{2}\right| \geq 5$ which is a contradiction. Therefore $\left|S_{2} \cap\left\{u_{1}, v_{1}\right\}\right|=1$. Similarly, $\left|S_{2} \cap\left\{u_{4}, v_{4}\right\}\right|=1$. First let $u_{1} \notin S_{2}$. Then we must have $u_{2}, v_{1} \in S_{2}$. Since G is triangle-free and $\left|S_{2}\right| \leq 4$, we have $2 \leq d_{G^{\prime}}\left(v_{1}, u_{2}\right) \leq 3$. If $d_{G^{\prime}}\left(v_{1}, u_{2}\right)=3$, then let $v_{1}, w_{1}, w_{2}, u_{2}$ is a geodesic path such that $S_{2}=\left\{v_{1}, u_{2}, w_{1}, w_{2}\right\}$. Since G is triangle-free, $u_{1} w_{1} \notin E(G)$ and $u_{1} w_{2} \notin E(G)$ and so S_{2} does not dominate u_{1}, a contradiction. Therefore $d_{G^{\prime}}\left(v_{1}, u_{2}\right)=2$ and so u_{2} and v_{1} have a common neighbor w not in $\left\{u_{3}, u_{4}, v_{4}\right\}$. Hence $S_{2}=\left\{v_{1}, w, u_{2}, w^{\prime}\right\}$ where $w^{\prime} \in\left\{u_{4}, v_{4}\right\}$. But then, to dominate u_{1}, we must have $w u_{1} \in E(G)$ which is a contradiction because G is triangle-free. Assume now $u_{1} \in S_{2}$. If $u_{2} \in S_{2}$, then $x_{2} \in S_{2}$ and clearly $G^{\prime}\left[S_{2}\right]$ will be not connected which is a contradiction. Let $u_{2} \notin S_{2}$ that yields $u_{3} \in S_{2}$. Since G is triangle-free and $\left|S_{2}\right| \leq 4, u_{3}, u_{1}$ have a common neighbor w which belongs to S_{2}. If $w^{\prime} \in S_{2} \cap\left\{u_{4}, v_{4}\right\}$, then $S_{2}=\left\{w, w^{\prime}, u_{1}, u_{3}\right\}$. It is easy to see that S_{2} does not dominate u_{2}, a contradiction.
Subcase 2.3. $G[D]=K_{1,3}$.
Assume $u=u_{4}$ is the center of $G[D]=K_{1,3}$ and u_{1}, u_{2}, u_{3} are leaves adjacent to u. As above, we can see that u_{i} has a private neighbor with respect to D, say v_{i}, for each i. Let G^{\prime} be the graph obtained from G by subdividing the edges $u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3}$ with vertices x_{1}, x_{2}, x_{3}, respectively, and let S_{3} be a $\gamma_{\text {wcon }}\left(G^{\prime}\right)$-set. We show that $\left|S_{3}\right| \geq 5$. Assume to the contrary that $\left|S_{3}\right| \leq 4$. To dominate x_{i}, we must have $S_{3} \cap\left\{u_{i}, v_{i}\right\} \neq \emptyset$ for each i. If $\left\{u_{i}, v_{i}\right\} \subseteq S_{3}$ for some i, then $x_{i} \in S_{3}$ implying that $\left|S_{3}\right| \geq 5$, a contradiction. If $u_{i}, u_{j} \in S_{3}$, then u_{i}, u_{j} must have a common neighbor $w \in S_{3}$ that dominates v_{i} or is adjacent to $u_{k}, v_{k}(k \notin\{i, j\})$ which is a contradiction because G is triangle-free. If $u_{i}, v_{j} \in S_{3}$ for some $i \neq j$, then u_{i}, v_{j} must have a common neighbor w that dominates u_{j}, a contradiction again. So we assume $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq S_{3}$. If $S_{3}=\left\{v_{1}, v_{2}, v_{3}, w\right\}$, then w must be adjacent to u_{i} for each i which leads to a contradiction because G is triangle-free. This completes the proof.

Next result is an immediate consequence of Propositions 2.10, 3.3 (part (iv)), 3.4, 3.7 and Theorem 3.10.
Corollary 3.11. For any connected graph G of order $n \geq 3$ with $g(G) \geq \gamma_{\text {wcon }}(G)$,

$$
\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \gamma_{\text {wcon }}(G)
$$

4. Graphs with Large Weakly Convex Domination Subdivision Number

In the previous sections, we essentially presented bounds on the weakly convex domination subdivision number in graphs. Our goal in this section is to show that the weakly convex domination subdivision number of a graph can be arbitrarily large. The following graph was introduced by Haynes et al. in [14] to prove a similar result for $\operatorname{sd}_{\gamma_{t}}(G)$.

Let $X=\{1,2, \ldots, 3(k-1)\}$ and let $\mathcal{Y}=\{Y \subset X| | Y \mid=k\}$. Thus, \mathcal{Y} consists of all k-subsets of X, and so
$|\boldsymbol{Y}|=\binom{3(k-1)}{k}$. Let G be the graph with vertex set $X \cup \mathcal{Y}$ and with edge set constructed as follows: add an edge joining every two distinct vertices of X and for each $x \in X$ and $Y \in \mathcal{Y}$, add an edge joining x and Y if and only if $x \in Y$. Then, G_{k} is a connected graph of order $n=\binom{3(k-1)}{k}+3(k-1)$. The set X induces a clique in G_{k}, while the set \boldsymbol{y} is an independent set and each vertex of \boldsymbol{y} has degree k in G_{k}. Therefore $\delta(G)=k$. Favaron et al. [10] proved that $\gamma_{c}\left(G_{k}\right)=2(k-1)$ and $\operatorname{sd}_{\gamma_{c}}\left(G_{k}\right)=k$.

Proposition 4.1. For any integer $k \geq 2, \gamma_{\text {wcon }}\left(G_{k}\right)=2(k-1)$.
Proof. By Proposition 3.6, $\gamma_{\text {wcon }}\left(G_{k}\right) \geq \gamma_{c}\left(G_{k}\right)=2(k-1)$. On the other hand, any subset of X of cardinality $2(k-1)$ is a weakly convex dominating set of G, and so $\gamma_{\text {wcon }}\left(G_{k}\right) \leq 2(k-1)$. Consequently, $\gamma_{\text {wcon }}\left(G_{k}\right)=$ $\gamma_{c}\left(G_{k}\right)=2(k-1)$.

Theorem 4.2. For any integer $k \geq 2, \operatorname{sd}_{\gamma_{\text {wcon }}}\left(G_{2 k}\right) \geq k+1$.
Proof. Assume $F=\left\{e_{1}, \ldots, e_{k}\right\}$ is an arbitrary subset of k edges of $G_{2 k}$ and let $G_{2 k}^{\prime}$ be the graph obtained from $G_{2 k}$ by subdividing all edges in F. We show that $\gamma_{\text {wcon }}\left(G_{2 k}^{\prime}\right) \leq \gamma_{\text {wcon }}\left(G_{2 k}\right)=2(2 k-1)$. Assume $e_{i}=u_{i} v_{i}$ for each i and let $S=X \cap\left\{u_{i}, v_{i} \mid 1 \leq i \leq k\right\}$. Clearly $|X-S| \geq 4 k-3$ and each vertex in $X-S$ is adjacent to all vertices in S. Since every edge of $G_{2 k}$ is incident with at least one vertex of X, we may assume that $u_{i} \in X$ for each i. If $v_{i} \in \mathcal{Y}$, then since $d_{G_{2 k}}\left(v_{i}\right)=2 k$ and $|F|=k, v_{i}$ is adjacent to a vertex of $X-S$, say w_{i}, such that $v_{i} w_{i} \notin F$. If $v_{i} \in X$, then let w_{i} be any vertex of $X-S$. Assume $D_{F}=\left\{u_{i}, w_{i} \mid 1 \leq i \leq k\right\}$. Then $\left|D_{F}\right| \leq 2 k$. Now extend D_{F} to a set D of size $2(2 k-1)$ by adding $4 k-2-\left|D_{F}\right|$ vertices of $X-S$. Obviously D is a weakly convex dominating set of $G_{2 k^{\prime}}^{\prime}$ and so $\gamma_{\text {wcon }}\left(G_{2 k}^{\prime}\right) \leq 2(2 k-1)=\gamma_{\text {wcon }}\left(G_{2 k}\right)$. This implies that $\operatorname{sd}_{\gamma_{\text {wcon }}}\left(G_{2 k}\right) \geq k+1$.

We conclude this paper with an open problem.
Problem 4.3. Prove or disprove: For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{\text {wcon }}}(G) \leq \gamma_{\text {wcon }}(G)
$$

Acknowledgment. The second and fourth authors have been supported by Research Office of Azarbaijan Shahid Madani University.

References

[1] H. Aram, S. M. Sheikholeslami and O. Favaron, Domination subdivision numbers of trees, Discrete Math. 309 (2009) 622-628.
[2] M. Atapour, S. M. Sheikholeslami and A. Khodkar, Roman domination subdivision number of graphs, Aequationes Math. 78 (2009) 237-245.
[3] M. Atapour, S. M. Sheikholeslami, A. Hansberg, L. Volkmann and A. Khodkar, 2-domination subdivision number of graphs, AKCE J. Graphs. Combin. 5 (2008) 165-173.
[4] R. C. Brigham and R. D. Dutton, Bounds on the domination number of a graph, Quart. J. Math. Oxford Ser. 241 (1990) 269-275,
[5] N. Dehgardi, S. M. Sheikholeslami and L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015) 102-114.
[6] P. Erdős and L. Posá, On the maximal number of disjoint circuits in a graph, Publ. Math. Debrecen 9 (1962), 3-12.
[7] O. Favaron, H. Karami and S. M. Sheikholeslami, Total domination and total domination subdivision numbers of graphs, Australas. J. Combin. 38 (2007) 229-235.
[8] O. Favaron, H. Karami and S. M. Sheikholeslami, Bounding the total domination subdivision number of a graph in terms of its order, J. Comb. Optim. 21 (2011) 209-218.
[9] O. Favaron, H. Karami and S. M. Sheikholeslami, Disprove of a conjecture the domination subdivision number of a graph, Graphs Combin. 24 (2008) 309-312.
[10] O. Favaron, H. Karami and S. M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008) 101-111.
[11] O. Favaron, T. W. Haynes and S. T. Hedetniemi, Domination subdivision numbers in graphs, Util. Math. 66 (2004) 195-209.
[12] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
[13] M. Falahat, S. M. Sheikholeslami and L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014) 615-622.
[14] T. W. Haynes, M. A. Henning and L. S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004) 457-467.
[15] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, J. Knisely and L. C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001) 239-253.
[16] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998
[17] J. Kok and C. M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990) 225-231.
[18] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004) 181-188.
[19] M. Lemańska, Connected, weakly convex and convex domination numbers, M.Sc. Thesis, 2003.
[20] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis, 1997.

[^0]: 2010 Mathematics Subject Classification. 05C69
 Keywords. weakly convex dominating set, weakly convex domination number, weakly convex domination subdivision number Received: 13 May 2014; Accepted: 01 April 2015
 Communicated by Francesco Belardo
 Email addresses: mdettlaff@mif.pg.gda.pl (Magda Dettlaff), saeedkosari38@yahoo.com (Saeed Kosary), magda@mif.pg.gda.pl (Magdalena Lemańska), s.m.sheikholeslami@azaruniv.edu (Seyed Mahmoud Sheikholeslami)

