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Simple Summary: One of the most common diseases in the world is cancer. The development
of an appropriate treatment pathway for cancer patients seems to be crucial to fight this disease.
Therefore, solving the problem that affects more and more people in an aging society is crucial. The
study presents the results of radiation and photochemical damage to DNA interacting with proteins
(specifically/non-specifically). The obtained results of the analysis of photoliths and radiolites by
means of the LC-MS technique allowed to identify possible mechanisms of degradation of DNA
interacting with proteins. Results suggest the protective action of protein against hydroxyl radicals
or solvated electrons and increased damaging effect when sensitized DNA is irradiated by UV light
(280 or 320 nm) compared to the DNA alone (without protein interaction).

Abstract: Radiation and photodynamic therapies are used for cancer treatment by targeting DNA.
However, efficiency is limited due to physico-chemical processes and the insensitivity of native
nucleobases to damage. Thus, incorporation of radio- and photosensitizers into these therapies
should increase both efficacy and the yield of DNA damage. To date, studies of sensitization processes
have been performed on simple model systems, e.g., buffered solutions of dsDNA or sensitizers alone.
To fully understand the sensitization processes and to be able to develop new efficient sensitizers
in the future, well established model systems are necessary. In the cell environment, DNA tightly
interacts with proteins and incorporating this interaction is necessary to fully understand the DNA
sensitization process. In this work, we used dsDNA/protein complexes labeled with photo- and
radiosensitizers and investigated degradation pathways using LC-MS and HPLC after X-ray or
UV radiation.

Keywords: radiotherapy; photodynamic therapy; DNA damage; DNA/protein interactions

1. Introduction

Ionizing radiation used during cancer radiotherapy can trigger both reversible and
irreversible cell DNA damage [1]. Primary DNA damage, created directly by high en-
ergy radiation, produces single or clustered damage [2–4]. Secondary damage also occurs
when reactive oxygen species, mostly generated by radiolysis, interact with the DNA
molecule [5,6]. Hydroxyl radicals and solvated electrons are the most abundant species
present in these reactions [7,8]. In oxygenated cells, hydroxyl radicals are produced in
higher concentrations compared to solvated electrons. However, in hypoxic conditions,
solvated electrons appear at the same concentration as hydroxyl radicals [9,10]. This obser-
vation is similar to the hypoxic conditions observed in solid tumor cells with insufficient
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angiogenesis [11]. Despite abundance of different highly reactive radiolitic species, for
native DNA, hydroxyl radicals are able to trigger more damage than solvated electrons [12].

In order to promote damage by solvated electrons it is important to use sensitizers—
modified nucleotides with high electron affinity—to capture electrons from the solution for
interaction with the DNA molecule. The most common, extensively studied radiosensi-
tizers are BrdU, BrdG, BrdA, and BrdC, which are characterized by high electron affinity
(HEA) and the ability to go through the dissociative electron attachment (DEA) process [13].
The DEA process leads to the dissociation of the Br- anion generating a reactive nucleobase
radical which triggers DNA damage. These radiosensitizers can also employed as photo-
sensitizers. The absorption maximum of BrdU, BrdA, BrdG, and BrdC is 285, 252, 276, and
283 nm, respectively, indicating that the use of UV light in the range of >280 nm should, to
a great extent, excite the brominated analogs of nucleobases rather than native nucleobases,
since the maximum of absorption of native nucleobases is around 260 nm. Photosensitizer
molecules (especially bromine derivatives of nucleobases) in the excited state exhibit strong
electron acceptor properties. Such properties, in combination with guanosine (G, the most
easily oxidized base) can result in photoinduced DNA damage. It has been previously
described that the excitation of BrdU can lead to photoinduced electron transfer between
BrdU and G in the DNA molecule [14,15]. It is also worth noting that the excitation of
5-iodo-2′-deoxyuridine, can lead to homolytic cleavage of the C–I bond in contrast to the
cleavage of C–Br bond in BrdU, where homolytic cleavage is less probable [16]. In addition,
UV light exposure can produce the common photolesions like cyclopyrimidine dimers
(CPD) and the 6-4 photoproduct (64P), 8-oxoG [17–20]. However, those lesions can be
reversed by enzymatic repair in the cell. In order to create more severe and permanent
DNA damage, photosensitizers are desirable to trigger DNA single or double stranded
breaks [13].

Lesions induced with the use of photosensitizers often require distinct processes to
occur—photoinduced electron transfer (PET) or homolysis of C–Br bond resulting in a free
radical on a DNA nucleobase [21]. PET is commonly observed between the electron donor
G and electron acceptor, the excited state of the photosensitizer, and the “excited” pair can
produce DNA lesions. It was shown that the most sensitive sequence to the PET process is
5′-GAABrU-3′ and sensitivity is highly dependent upon the DNA sequence between the
electron donor and the acceptor [22]. It was also shown previously, that electron transfer
can occur between the amines present in the surrounding BrdU molecule in DNA, thus we
should consider all distinct molecules present in the DNA environment [23].

Many groups are working with nucleosides, nucleotides, and DNA in aqueous so-
lutions, which could be contaminated by different compounds and interfere with the
experiments. Additionally, water solutions are missing an important factor—DNA/protein
interactions [13,22,24]. In the cell environment, DNA is always interacting with many
specific proteins, e.g., histones, polymerases, etc. Among the specific interaction we can
distinguish the, e.g., ARG/G, ASP/A, VAL/T, GLU/C pairs [24,25]. These interactions
could be very important for DNA damage, because of the change of the ionic properties of
the radio- or photosensitizers in their environment [4,26–28]. However, in order to fully
understand radiation and photo-damage to DNA, sufficiently simple systems for analysis
should be employed.

In this work we would like to show the novel approach to DNA damage investigation.
As indicated above, in the literature we are lacking simple enough systems to monitor DNA
damage at molecular level, thus we have filled the void by constructing the dsDNA/protein
system when we have all DNA/protein interaction conserved. In this work we will
present the comparison of damage between dsDNA and dsDNA-protein complex due
to UV or X-ray radiation. The DNA/protein complex consists of the basic fragment of
GCN4 protein (common transcriptional factor) and represents the most abundant protein
family (α-helix/B-DNA interaction). The main goal of the project was to determine the
effect of interacting proteins in generating photochemical and X-ray radiation damage in
native and sensitized DNA. In the cell environment, native DNA continuously interacts
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with proteins, such as transcription factors, histones, polymerases, repair enzymes, etc.
Specific interactions mainly consist of hydrogen bonds between the side chains of amino
acids and the nucleic bases that make up the DNA. These interactions affect the electron
affinity of the nucleobases and the mechanism of damage in the sensitized DNA. Therefore,
it seems necessary to expand upon research conducted thus far on photo- and radio-
degradation in models of sensitized DNA assembled into peptide complexes. Investigating
the efficiency of the damage process in complexes and comparing it with the degradation
in isolated, point-labeled oligonucleotides, should enable characterization of the effect of
amino acids/nucleobase interactions. The mechanisms of photo- and radio-degradation
have also been previously described using hybrid computational methods to estimate the
thermodynamic-kinetic barriers of the elementary reactions that result in oligonucleotide
damage [29].

2. Results
2.1. Molecular System Description

The final goal of the work was to understand and quantify DNA sensitization in
systems like those found in living cells. This paper focuses on specific interactions of a
basic system consisting of a GCN4 protein fragment (bZIP) and dsDNA recognized by this
peptide, described previously by Wityk et al. [30]. In order to simplify such a complicated
process, a model system was made in which a fragment of bZIP (25 aa) is covalently con-
nected to a 17 bp dsDNA oligonucleotide by the CLICK reaction. The obtained complex was
characterized by Differential Scanning Calorimetry (nano-DSC), circular dichroism (CD),
High Performance Liquid Chromatography (HPLC), Polyacrylamide Gel Electrophoresis
(PAGE), and LC-MS, which showed that it mimicked native protein-DNA complexes [30].
Subsequently, the characterized complex was point-labeled with bromo- derivative of
nucleobases, irradiated (with X-rays or photons with 280 and 320 nm wavelength), and the
resulting radio- and photo-damage was analyzed by LC-MS and dHPLC.

2.2. X-ray Experiments

X-ray irradiated (700 Gy) dsDNA and dsDNA-PEP systems were analyzed by dHPLC
and LC-MS methods. The dHPLC analysis allowed for estimation of the degree of DNA
degradation after radiation. To calculate the degradation rate, the area of the ssDNA-A
and ssDNA-B peaks were measured. The degradation rate of the material in relation to
the control was obtained from the chromatograms contained in Figures S1 and S2 and
are presented in Table 1. Data obtained by HPLC indicated that after X-ray radiation, the
sensitized oligonucleotides (BrdA, BrdC, BrdG, BrdU) are more susceptible to damage
than native DNA. The highest degree of degradation can be observed with BrdA labeled
material (82 ± 4%, 61 ± 3% for dsDNA and dsDNA-PEP, respectively). Similarly, DNA
damage was detected in BrdC labeled material (81 ± 4%, 73 ± 6% for dsDNA and dsDNA-
PEP, respectively) and BrdU (76 ± 4%, 61 ± 3% for dsDNA and dsDNA-PEP, respectively)
and significantly less damage was noted for BrdG labeled material (51 ± 1%, 57 ± 2% for
dsDNA and dsDNA-PEP, respectively). The observed X-ray DNA damage products and
yields are in accordance with the literature data [2,4,13,31].

In addition, only for the BrdG labeled DNA, the peptide-interacting system was
more damaged than the peptide-free system. This is most likely related to the specific
interaction of BrdG with the arginine amino acid residue, which significantly improves the
electron-accepting properties of the G/ARG pair. For the other sensitizers, there is no direct
contact with positively charged amino acid residues. For the BrdA, BrdC, and BrdU, less
degradation was noted for DNA/peptide complexes. To explain this regularity, attention
may be paid to strands that are not labeled with dsDNA and dsDNA-PEP sensitizers, where
their degradation triggered by X-rays is 32 ± 2% and 21 ± 5%, respectively. However, the
degradation of the complementary strand occurs at the level of approx. 25% in all cases. It
can be concluded that about 25–30% of damage occurs independently of the presence of
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a sensitizer, where the presence increases the effect of X-rays (degradation of the labeled
threads is further increased by ~45% except for BrdG—20% labeled strands).

Table 1. Degradation rate [%] of all analyzed systems by means of HPLC—X-ray, UV (280 and 320 nm). Strand labeled “B”
corresponds to the ssDNA B (see Materials and Methods) and is the same for all of the double stranded DNA molecules.
Strand “L” corresponds to the ssDNA A or ssDNA A* for dsDNA- and dsDNA-PEP, repectively (see Materials and
Methods). Strand “M *” corresponds to ssDNA-BrdA, ssDNA-BrdC, ssDNA-BrdG, ssDNA-BrdU respectively, with or
without conjugation (dsDNA vs dsDNA-PEP). The degradation rate is the % of peak area of material which was exposed to
radiation to material which was not exposed to radiation.

BrdA BrdG

700 Gy 280 nm 320 nm 700 Gy 280 nm 320 nm

STRAND M * B M * B M * B M * B M * B M * B
dsDNA [%] 28 ± 1 82 ± 4 3 ± 1 51 ± 2 −2 ± 2 1 ± 2 14 ± 3 51 ± 1 6 ± 2 8 ± 2 −1 ± 2 4 ± 1

dsDNA-PEP [%] 31 ± 2 61 ± 3 14 ± 3 53 ± 2 1 ± 1 6 ± 4 30 ± 5 57 ± 2 12 ± 3 14 ± 2 2 ± 1 7 ± 1

BrdC BrdU

700 Gy 280 nm 320 nm 700 Gy 280 nm 320 nm

STRAND M * B M * B M * B M * B M * B M * B
dsDNA [%] 26 ± 3 81 ± 4 4 ± 1 24 ± 3 −1 ± 2 0 ± 1 23 ± 1 76 ± 4 4 ± 1 6 ± 1 −3 ± 2 −1 ± 1

dsDNA-PEP [%] 35 ± 2 73 ± 6 15 ± 4 32 ± 2 17 ± 3 20 ± 5 33 ± 3 61 ± 3 15 ± 4 29 ± 1 7 ± 3 20 ± 2

Non-label material

700 Gy 280 nm 320 nm

STRAND L B L B L B
dsDNA [%] 23 ± 3 32 ± 2 −3 ± 4 8 ± 2 1 ± 1 0 ± 1

dsDNA-PEP [%] 19 ± 1 25 ± 5 1 ± 3 4 ± 3 1 ± 2 0 ± 1

Analysis of data obtained the LC-MS technique allowed for insight into the mech-
anisms occurring during irradiation indirectly through the identification of individual
fragments of DNA degradation. Therefore, when analyzing MS data (see Table S1), one can
observe the formation of DNA strand fragments as well as systems with larger masses than
the initial material. This can be directly observed in the chromatograms of the total ionic
current (see Figures S3 and S4). Thus, we can distinguish all the smaller DNA fragments,
that result from breaking phosphodiester bond along the DNA strand, by a lower retention
time (<17 min) than the signals from intact oligonucleotides. In addition, products that
elute immediately after the retention time of the undamaged strands can be distinguished
based on the chromatographic peak elongating and become asymmetrical. A deeper analy-
sis of the masses of these fragments (see Figures S5 and S6) allowed us to observe, only in
irradiated material, masses greater by a multiple of ~16 Da (see Figures S5 and S6), which
most likely corresponds to the attachment of an -OH group to the DNA molecule. It is
worth noting here that during the experiments a scavenger of hydroxyl radicals (t-butanol)
was used, although according to the LC-MS data, we can still observe adducts of hydroxyl
radicals to DNA. This is likely due to the presence of these hydroxyl radicals in the first
hydration layer of DNA, where t-butanol may have a limited effect due to the internal
structure of the water molecules. This additionally confirms the analysis of the degree
between systems with or without peptide. The presence of the peptide significantly reduces
the degree of strand degradation, which involves the displacement of water molecules
by the peptide due to binding of the α-helix within the large groove of DNA or just by
the scavenging ability of the peptide. In addition, we can also interpret the role of the
peptide as a specific hydroxyl radical scavenger, by positively charged amino acids. All
chromatographic peaks between 1 and 17 min retention time (Figures S1–S4—blue line)
correspond to possible fragments of oligonucleotides (labeled and not labeled with sen-
sitizers), in which the phosphodiester bond was broken. This is most likely due to the
presence of the above-mentioned hydroxyl radicals, which are capable of damaging the
oligonucleotide (regarding the sensitizer properties). Unfortunately, due to the presence
of these non-specific defects, identification of products with specific damage caused by
the DNA sensitizer is impossible. In Figures 1–4 the most abundant radiolysis products of
the dsDNA-PEP and dsDNA labeled material were provided. Unfortunately, analysis of
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these fragments does not allow for determination of the mechanism of their creation and
direct interpretation whether these fragments arose due to the sensitizing properties of
the radiosensitizer.
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rows the names of identified fragments are listed starting with “P” stands for system with peptide 
conjugation, starting with “D” without peptide conjugation. Additionally, the interstrands cross-
links (ICL) were observed. For possible mechanisms, please see Figures S7–S11. 

2.3.2. UV Experiments—BrdC Labeled System 
In the case of BrdC labeled systems, we can distinguish fragments that suggest PET 

[22] occurrence (DC1, DC3, PC3) and the elimination process in the 5′ direction of the 
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Figure 1. Schematic representation of all identified oligonucleotides’ fragments by means of LC-MS
for BrdA labeled systems (upper with peptide conjugate, lower without peptide conjugation). The
scheme represents only part of the dsDNA structure. The arrows represent the respective fragments
identified for X-ray radiation experiments (blue), UV irradiation by 320 nm photons (pink), and
280 nm photons (orange). Modified nucleobase was pointed in green. Below the arrows the names of
identified fragments are listed starting with “P” stands for system with peptide conjugation, starting
with “D” without peptide conjugation. Additionally, the interstrands cross-links (ICL) were observed.
For possible mechanisms, please see Figures S7–S11.
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2.3. UV Experiments

The analysis of data obtained using the dHPLC technique (see Figures S1 and S2)
allowed for a quantitative analysis of the degree of degradation of individually labeled
strands as well as non-labeled ones. Table 1 summarizes the quantitative degree of degrada-
tion by photolysis obtained by dHPLC analysis. From these data, it is clear that unlabeled
systems are resistant (degradation rate ~5%) to UV radiation in the 280 nm and 320 nm
range. However, in the case of labeled strands, we can observe significant differences in the
degree of degradation. Within the 320 nm irradiated systems, we observed an increased
rate of degradation only in two systems: BrdC (0%, 20% for dsDNA and dsDNA-PEP,
respectively) and BrdU labeled systems (0%, 20% for dsDNA and dsDNA-PEP) where
damage was observed only in DNA/peptide complexes. In all other cases, the degree of
DNA degradation was much lower ~5%, thus we conclude that the interaction of peptide
is crucial for degradation. It is clear (see Table 1), that the material labeled with sensitizers
is nearly insensitive to radiation in the 320 nm range, except for the abovementioned BrdU
and BrdC in the dsDNA-PEP systems. As shown in Figures 1–4, not all detected photolysis
products correspond to the mechanisms of photoinduced degradation of DNA sensitized
by BrdU described in the literature [15–17,22,31–33]—please find mechanism indicated in
the Supplementary Materials (Figures S7–S11). We should not observe the DNA, or observe
it in low yield. DNA damage of BrdU upon UV radiation should be highly sequence
dependent [13], the BrdU molecule should be separated from guanine by adenines moieties
in the same strand involving photo-induced electron transfer from G to BrdU and then
lead do DNA damage [32]. The degree of degradation is also influenced by the process
associated with the debromation of sensitizers (masses resulting from the replacement of
the bromine atom by hydrogen have been observed). The resulting products after 280 nm
photon exposure, in some cases, corresponded to the fragments that were expected from
the process of PET as previously described in the literature. The degree of degradation
of individual labeled strands: BrdA (51 ± 2%, 53 ± 2% for dsDNA and dsDNA-PEP,
respectively), BrdG (8 ± 2%, 14 ± 2% for dsDNA and dsDNA-PEP, respectively), BrdC
(24 ± 3%, 32 ± 2% for dsDNA and dsDNA-PEP, respectively), BrdU (6 ± 1%, 29 ± 1%
for dsDNA and dsDNA-PEP, respectively), shows that, as with X-rays, the BrdG labeled
material is the least sensitive to radiation. In addition, the rate of degradation is much
higher for labeled DNA strands.

2.3.1. UV Experiments—BrdA Labeled System

Interestingly, in the case of non-labeled dsDNA and dsDNA-PEP there is very little
damage. Fragments identified by LC-MS suggest that in the case of BrdA labeled material,
the processes described by Watanabe et al. [22] occurred, resulting in the elimination of the
nucleoside towards 5′- and the β-elimination process (see Figure S9). Identified fragments
DA3, DA5, PA1 (Figure 1) suggest the occurrence of photoinduced electron transfer (PET),
while the fragments DA2 and PA2 indicate the occurrence of the β-elimination process
(see Figure S9), whose final products have been observed. However, the remaining frag-
ments recognized for BrdA labeled systems do not correspond to the theory of electron
transfer, and are most likely related to the migration of charge, because photolesions can be
observed in the guanine region (on both the labeled and complementary strand in vicinity
of sensitizer). In addition, masses corresponding to a cross-link between strands was
observed and such damage is among the most lethal to the cell. It can be clearly observed
that the sensitizer takes a direct part in the formation of cross-links, because the molecular
mass of the resulting conjugate was reduced by the mass of the bromine atom.

2.3.2. UV Experiments—BrdC Labeled System

In the case of BrdC labeled systems, we can distinguish fragments that suggest PET [22]
occurrence (DC1, DC3, PC3) and the elimination process in the 5′ direction of the labeled
strand (Figure 2). However, it is difficult to explain the occurrence of other fragments for
the dsDNA-PEP system. The remaining fragments suggest the existence of an additional
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mechanism that causes oligonucleotide damage only in dsDNA-PEP labeled systems. In the
BrdC labeled system, the damage occurs in the direction of electron donor, as in the case of
fragments PC4 and PC5. On the other hand, fragments recognized from the complementary
strand for the labeled system without peptide suggesting elimination of guanosine from
the complementary strand (DC4, DC5). The similar result presented here are also presented
by Zdrowowicz et al. [33] Moreover, a cross-link was identified, implying the formation of
an interstrand cross-link in dsDNA-PEP system.

2.3.3. UV Experiments—BrdG Labeled System

For the BrdG labeled system, which as mentioned above, was characterized by a low
degree of sensitivity to UV radiation, please see Figure 3. Those labeled systems where
the only ones which did not exhibit interstrand cross-links, although debromination was
observed—see chromatographic data (Figures S1–S4 about 18 min retention time). What
is interesting is the debromination rate (at 280 nm) was higher for dsDNA system than
for dsDNA-PEP. In addition, we can distinguish that the labeled system is more resistant
to 320 nm photons than 280 nm ones. This may be related to the tautomeric equilibrium,
which changes the absorption spectrum of BrdG [23]. It is also important to mention
that there were almost no degradation products identified by LC-MS analysis which goes
alongside with the low degradation rate of BrdG labeled material, indicating low sensitivity
of BrdG sensitizer to UV radiation.

2.3.4. UV Experiments—BrdU Labeled System

The last system subjected to the analysis was the BrdU labeled system. Within the
LC-MS analysis, fragments (Figure 4) corresponding to the occurrence of the β-elimination
(see Figure S9) process of the sugar of the adjacent nucleobase in the 5′ direction (PU1, DU1,
DU2) and elimination of the hydrogen atom from the deoxyribose molecule of the sensitizer
nucleotide (PU2, DU5) were identified—which stays with the agreement with mechanisms
proposed in the literature [13,22,23]. However, as in the case of the BrdU molecule, we
can recognize the fragments responsible for elimination of the guanosine nucleoside (PU5,
PU3, DU4, DU6). Similarly to BrdA and BrdC labeled systems, interstrand cross-links were
also identified.

3. Materials and Methods

Oligonucleotides were purchased at Metabion (Planegg, Germany) and purified by
means of HPLC: ssDNA A: 5′-GCA CGT CAT CCG TATAG-3′, ssDNA A*: 5′-GCA XGT
CAT CCG TATAG-3′ X=C8-Alkyne dC, ssDNA-BrdG: 5′-GCA XYT CAT CCG TATAG-3′

X=C8-Alkyne dC Y=8-bromo2′-deoxyguanosine, ssDNA-BrdU: 5′-GCA XGY CAT CCG
TATAG-3′ X=C8-Alkyne dC Y=5-bromo2′-deoxyuridine, ssDNA-BrdC: 5′-GCA XGT YAT
CCG TATAG-3′ X=C8-Alkyne dC Y=5-bromo2′-deoxycitidine, ssDNA-BrdA: 5′-GCA XGT
CYT CCG TATAG-3′ X=C8-Alkyne dC Y=8-bromo2′-deoxyadenosine, ssDNA B: 5′-CTA
TAC GGA TGA CGT GC-3′. Modified azide moiety peptide was purchased from GeneCust
(Boynes, France)—PEP: H-ASP-PRO-ALA-ALA-LEU-LYS-ARG-ALA-ARG-ASN-THR-GLU
-ALA-ALA-ARG-ARG-SER-ARG-ALA-ARG-LYS-GLY-GLY-LYS(N3)-NH2. For clarity,
please refer to all abbreviations and sequences listed below in Table 2. Following reagents
were used and purchased from Merck, Darmstadt, Germany: Ascorbic acid
(anhydrous, ≥99.99%), CuSO4 (anhydrous, powder,≥99.99%), aminoguanidine hydrochlo-
ride (≥98%), THPTA: Tris(3-hydroxypropyltriazolylmethyl)amine (≥95%), Tris Buffered
Saline (pH 8, powder), Triethylamine GC grade, Acetic Acid LC-MS grade, Sodium ca-
codylate trihydrate > 98%, t-butanol anhydrous, ≥99.5%, Acetonitrile (LC-MS grade),
Methanol (LC-MS grade), 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP, LC-MS grade), 1xPBS
solution—pH 7.4. In all experiments ultrapure water was used (Darmstadt, Merck Millipore
system, Germany).
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Table 2. The list of the oligonucleotides and peptide sequences with their respective abbreviations.

Name Sequence

ssDNA A 5′-GCA CGT CAT CCG TATAG-3′

ssDNA A* 5′-GCA XGT CAT CCG TATAG-3′ (X=C8-Alkyne dC)

ssDNA-BrdG 5′-GCA XYT CAT CCG TATAG-3′ (X=C8-Alkyne dC Y=8-bromo2′-deoxyguanosine)

ssDNA-BrdU 5′-GCA XGY CAT CCG TATAG-3′ (X=C8-Alkyne dC Y=5-bromo2′-deoxyuridine)

ssDNA-BrdC 5′-GCA XGT YAT CCG TATAG-3′ (X=C8-Alkyne dC Y=5-bromo2′-deoxycitidine)

ssDNA-BrdA 5′-GCA XGT CYT CCG TATAG-3′ (X=C8-Alkyne dC Y=8-bromo2′-deoxyadenosine)

ssDNA B 5′-CTA TAC GGA TGA CGT GC-3′

PEP H-ASP-PRO-ALA-ALA-LEU-LYS-ARG-ALA-ARG-ASN-THR-GLU-ALA-ALA-ARG-ARG-SER-ARG-ALA-
ARG-LYS-GLY-GLY-LYS(N3)-NH2

3.1. CLICK Reaction Protocol

The CLICK reaction (Figure 5) was carried out in the same conditions as described
previously [30]. In brief, the proper oligonucleotides (labeled by alkyne) were mixed with
molar excess of peptide (labeled by azide) after stirring the mixture for ~1 h with freshly
prepared ascorbic acid and t-butanol solutions the product was HPLC purified.
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3.2. Annealing Protocol

Annealing was performed using an Eppendorf thermocycler (Eppendorf, Hamburg,
Germany); equal amounts of lyophilized oligonucleotides or conjugate were resuspended
in 1× PBS, mixed in 0.5 mL Eppendorf tubes to a final concentration of 10 µM. The
temperature program was as follows: 5 min at 80 ◦C, 5 min at 55 ◦C, 60 min at 4 ◦C. The
annealed product was observed by means of HPLC.X-ray experiment. Fifty microliter
aliquots were irradiated in quartz capillary tubes (3 mm × 3 mm × 50 mm) in an X-ray
Chamber (Faxitron, Tuscon, AZ, USA). The solutions were deoxygenated using argon
(99.99999% purity). The dose was 700 Gy, and the exposure rate was 6.7 Gy/min at room
temperature. t-butanol was used as a hydroxyl radical scavenger at final concentration of
10 mM).

3.3. UV Experiment

Exposure of dsDNA/dsDNA-PEP systems was performed in quartz capillaries (3 mm
× 3 mm × 50 mm) with 50 µL of solution. The solutions were deoxygenated using ar-
gon (99.99999% purity). Exposure was carried out at two wavelengths: 280 nm (60 min,
dose ~136 kJ/m2) and 320 nm (30 min, dose ~68 kJ/m2) using an optical table (OPTEL,
Opole, Poland) equipped with a 500-watt mercury lamp (OSRAM, Munich, Germany) and
monochromator (OPTEL, model M250, 2.5 nm width). The light intensity was approxi-
mately 38 Wm−2. Exposure was repeated twice in independent experiments. The radiation
dose was estimated using a Maestro11 digital actinometer (Standa, Vilnius, Lithuania).
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3.4. HPLC

The HPLC and denaturing HPLC (dHPLC) separation was carried out using the
XBridge OST with a RP C18 column (2.5 µm in particle size, 4.6 × 50 mm) (Waters, Milford,
MA, USA) and phase A: 50 mM TEAA (triethylamine acetate) and 1% Acetonitrile (ACN)
(v/v) in water, B: 80% ACN (v/v) in water. For purification (before radiation experiment)
and to check materials, a gradient of 0–20% Phase B at 25 ◦C was used at a 1 mL/min
flow rate. Analysis of material after radiation was performed at the same condition but at
an elevated temperature of 80 ◦C (dHPLC) to ensure the DNA melted into single strands.
Separation was performed on a DionexUltiMate 3000 System (Thermo Fisher, Waltham,
MA, USA) with Diode Array Detector (Thermo Fisher, Waltham, MA, USA) monitoring at
260 nm wavelength.

3.5. LC/MS

LC-MS analysis of DNA fragments was carried out using the ultra high-performance
liquid chromatography (UPLC) system Nexera X2 (Shimadzu, Duisburg, Germany) cou-
pled to a mass spectrometer TripleTOF 5600+ (AB SCIEX, Concord, ON, Canada) equipped
with a duo-electrospray interface operated in negative ionizing mode. An acquity UPLC
BEH C18 1.0 × 50 mm column (Waters) with a flow rate maintained at 0.1 mL/min was
used for chromatographic separation of oligonucleotides and conjugates. The temperature
of separation was maintained at 60 ◦C in order to assure the best separation for the undam-
aged DNA strands and the respective fragments after X-ray or UV exposure. The samples
were desalted in situ on the column by diverting effluent to waste for 1 min after injection.
The mobile phase A consisted of 400 mM HFIP (1,1,1,3,3,3-Hexafluoro-2-propanol) and
15 mM TEA (Triethylamine) in deionized ultrapure water, and mobile phase B consisted of
200 mM HFIP, 7.5 mM TEA 50% (v/v) MeOH, and 50% (v/v) H2O. MS operation parame-
ters for negative ionizing mode were as follows: the spray voltage −4.5 kV, the nebulizer
gas (N2) pressure 30 psi, collision energy at −10 V, declustering potential −150 V and the
source temperature was maintained at 300 ◦C. The analysis was performed with 10 µL
solutions of photo- or radiolites.

4. Conclusions

More and more people are diagnosed with cancer each year. To prevent cancer deaths,
many research groups are searching for “cancer drugs”, both theoretically and experimen-
tally [10,13,18]. Many new branches and directions of research have been created, including
the study of the sensitization of DNA to radiation, because the majority of patients with lo-
calized cancers undergo radiation therapy and, less frequently, dynamic phototherapy [13].
The results obtained from this project should provide a deeper understanding of the radio-
and photo-sensitization processes and allows for more purposeful design of new drugs. In
summary, the damage resulting from X-ray radiation to sensitizer labeled and native DNA
was mainly caused by hydroxyl radical species. Even when a radical scavenger was used
in huge molar excess (t-butanol, 1000 molar excess), we identified DNA damage made
by hydroxyl radicals, especially hydroxyl adducts and strand cleavage (H4′ hydrogen
abstraction). These non-scavengeable hydroxyl radicals are probably generated in the first
hydration sphere of DNA, which means that structured water molecules around DNA
molecule are substrates for hydroxyl radical production. We can also observe that the
amount of labeled strand after irradiation is significantly decreased in comparison with
complementary strand which stand with the data presented in the literature [3,24,33].
Likely, we are observing the effect resulting from the DEA process, however the amount
of debrominated strands is low. Interactions of the BrdG base with arginine significantly
improves the electron affinity of this pair, causing an increase in the degree of DNA degra-
dation under the influence of X-rays, which generates solvated electrons. The analysis of
dsDNA systems labeled with sensitizers (BrdA, BrdG, BrdC, BrdU) showed an increase in
the degree of DNA degradation in systems containing a sensitizer compared native DNA.
In this case, the protective role of the peptide was observed, which displaced the water
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molecules from the vicinity of the large groove of DNA, by specifically interacting with it,
and thereby reducing the number of non-specific lesions [4,26–28]. One of the most inter-
esting processes analyzed during this work was the photochemical damage of sensitized
oligonucleotides. It was possible to observe the influence of the peptide, which increased
the degree of degradation of the sensitized DNA as well as the formation of extremely
lethal interstrand cross-links. We observed previously described mechanisms related to
photoinduced electron transfer leading to DNA degradation, as well as what are most
likely previously unreported mechanisms responsible for photoinduced DNA damage
which need further study to fully understand the mechanism leading to degradation.

To sum up, the susceptibility of photochemical or radiation DNA/Protein damage
was investigated. Interactions of the BrdG base with the rest of arginine improve the
electron affinity of this pair, lowering the rate of DNA degradation under X-ray radiation
that generates solvated electrons. Thanks to the use of DNA sensitizers (BrdA, BrdG, BrdC,
BrdU) we have observed increasing degradation rate of sensitized material in respect to
the non-labeled DNA. Occurrence of nonspecific DNA damage was observed due to the
formation of the non-scavengeable hydroxyl radicals, despite the use of a radical scavenger.
In this case, the protective role of the peptide was evident. UV-light experiments clearly
shows the effect of a interacting peptide, that increased the rate of degradation of the
sensitized DNA and formation of interstarnd-cross links that are extremely lethal for cells.

Supplementary Materials: Supplementary materials are available online. Figure S1. Absorbance
chromatograms of labeled dsDNA after irradiation by X-ray, 320 nm or 280 nm wavelength; Figure S2.
Absorbance chromatograms of labeled dsDNA-PEP after irradiation by X-ray, 320 nm or 280 nm
wavelength; Figure S3. LC-MS chromatographic separation of labeled dsDNA after irradiation by
X-ray, 320 nm or 280 nm wavelength; Figure S4. LC-MS chromatographic separation of labeled
dsDNA-PEP after irradiation by X-ray, 320 nm or 280 nm wavelength; Figure S5. The ionic current
that equates the hydroxyl adducts to one of DNA strands: material non-irradiated (pink color) and
irradiated (color blue); Figure S6. Ion current deconvolution representing hydroxyl adducts to one of
the DNA strands: non-irradiated material (pink color) and irradiated (blue); Table S1. Table represents
the retention time and masses of fragments found during LC-MS analysis. Figure S7. Mechanism
leading to a basic site formation in DNA—schematic representation; Figure S8. Mechanism leading
to aldehyde formation in DNA—schematic representation; Figure S9. Mechanism leading to β-
elimination process in DNA—schematic representation; Figure S10. Mechanism leading to cyclo-
derivative formation in DNA—schematic representation; Figure S11. Mechanism leading to ketone
derivative formation in DNA—schematic representation.
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