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Abstract

Purpose - YADE–OPEN DEM is an open source software based on the Discrete Element
Method which uses object oriented programming techniques. The paper describes the software
architecture.
Design/methodology/approach - The DEM chosen uses position, orientation, velocity and
angular velocity as independent variables of simulated particles which are subject to explicit
leapfrog time–integration scheme (Lagrangian method). The three–dimensional dynamics equa-
tions based on the classical Newtonian approach for the second law of motion are used. The
track of forces and moments acting on each particle is kept at every time–step. Contact forces
depend on the particle geometry overlap and material properties. The normal, tangential and
moment components of interaction force are included.
Findings - An effort has been undertaken to extract the underlying object oriented abstractions
in the Discrete Element Method. These abstractions were implemented in C++, conform to
object oriented design principles and use design patterns. Based on that, a software framework
was developed in which the abstractions provide the interface where the modelling methods
can be plugged–in.
Originality/value - The resulting YADE-OPEN DEM framework is designed in a generic
way which provides great flexibility when adding new scientific simulation code. Some of the
advantages are that numerous simulation methods can be coupled within the same framework
while plug–ins can import data from other software. In addition, this promotes code improve-
ment through open source development and allows feedback from the community. However
implementing such models requires that one adheres to the framework design and the YADE
framework is a new emerging software. To download the software see http://yade.wikia.com
webpage.
Keywords Open–Source, Software Design, Generic Programming, Discrete Element Method,
Simulation
Paper type Research paper

1 Introduction

Granular materials are found much in nature and in various industries. For example, they are found
in landslides and avalanches, raw minerals extraction and transport, cereal storage, powder mix-
ing, without forgetting cohesive frictional materials like concrete which are also made of granulates.
These materials exhibit a very specific phenomena, that still need a better understanding. They can
be deformed as solid bodies or soils [38], they may have a flow ability corresponding to that of liquids
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and a compressibility like that of gases. For this purpose and beside many experimental studies,
numerical simulation is increasingly seen as a means to understand and predict their behavior. Sim-
ulation has become a common tool in the design and optimization of industrial processes [10]. The
continuous increase in computing power is now enabling researchers to implement numerical methods
that do not focus on the granular assembly as an entity, but rather deduce its global characteristics
from observing the individual behavior of each grain [16, 53]. Due to their highly discontinuous
nature, one should expect that granular media require a discontinuous simulation method. Indeed,
to date the Discrete Element Method (DEM) is the leading approach to those problems. Modeling
is straightforward: the grains are the elements, they interact through local, pairwise contacts, yet
are also subject to external factors such as gravitation or contacts with surrounding objects, and
they otherwise obey Newton’s laws of motion.

The DEM is a numerical approach where statistical measures of the global behavior of a phe-
nomenon are computed from the individual motion and mutual interactions of a large population of
elements. It is commonly used in situations where state–of–the–art theoretical knowledge has not
yet provided complete understanding and mathematical equations to model the physical system [19].

Developing a DEM software often causes scientists to focus on marginal problems not related
to their scientific work, such as: program interface, input/output of data, geometry handling, mesh
generation or visualization of results. One solution is to use existing scientific frameworks, and
plug–in one’s own calculation algorithms (eg. Abaqus, Dyna, Adina, PFC3D and others). However
these frameworks rarely give the possibility of combining together different modelling methods such
as FEM, SPH, DEM or other custom simulations. It is often a commercial software which limits
one’s ability to improve/modify existing code–base. In such a case the user has to fight through the
obstacles presented by a flawed software [4]. A common solution is to write one’s own home–brewed
software to perform simulation. Time constraints often cause this software to be very specific for a
particular problem, and even when released to the public it is difficult to reuse in another application.
As a result a large amount of interesting scientific work is lost for example after PhD students defend
their thesis.

The solution proposed here is to write a framework named YADE–OPEN DEM which will provide
a stable base for scientists to operate on. Using an open–source development model will allow direct
feedback from authors and encourage the scientific community’s participation. By application of a
proper software design the valuable work of others will be preserved and reused.

2 Constructing a framework for the Discrete Element Method

The objective is to find a framework solution which is capable of handling various different simulation
models. To perform this task, the underlying object oriented abstractions are found by means of
analysis of a Discrete Element Method [8, 9, 12, 15, 16, 34, 36, 40, 41, 45, 49, 50, 54, 55]. Other models,
such as Lattice Geometrical Model [27–31] or Finite Element Method [35,37] were also implemented
in YADE software [31] but are out of the scope of this paper.

The DEM method was initially developed by Cundall in 1979 [12] for the analysis of rock. It is
a numerical model capable of describing the mechanical behavior of assemblies of discrete elements.
The proper interactions between elements are defined to account for the mechanical properties of
the medium. Thus, the macro-mechanical response of the physical material (deformability, strength,
dilatancy, strain localization and other) is reproduced by determining the micro-properties of the
material in the contact interaction forces (see Fig. 5), i.e. normal, tangential and rolling stiffnesses,
local friction and non-dimensional plastic coefficient (these quantities are defined below). This
method provides new insight into constitutive modeling because the physical processes which govern
the constitutive behavior can be understood at the local scale. Discrete Elements can have different
geometries, but to keep a low calculation cost, the spherical geometry is often chosen and it will be
the case here.

The purpose of the YADE framework is to provide a stable and uniform environment for scientists
to implement computational algorithms for the Discrete Element Method. It allows easy code reuse,

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 1: Layered structure of YADE framework.

exchange and extensibility, while also providing many common low–level operations, through plug–
ins and libraries. Given that, scientists can now focus on their work instead of reinventing the wheel
of input/output or display. The YADE framework is divided into several layers shown in Fig. 1. Each
layer can depend on layers below it. Libraries in the lowest layer are not related to the simulation
itself, and can be used by other software.

Starting from the bottom of Fig. 1, the Class Factory is a C++ wrapper for dynamic linking
loader (dlopen(), etc.). It handles loading and unloading plugins given their class name as a string,
after which plug–in file on the hard drive is named. Since it works during runtime, it is easy to switch
between different concrete implementations of currently tested class, such as: different plugins to
solve or detect body interactions, different methods of drawing graphics with OpenGL, or saving
results to xml or binary format – which comes in handy when benchmarking and testing during
development. Plug–ins are inheriting from the class Factorable.

The Serialization library supports de/serializaing data with random access to class components
during the process, easily human readable xml format and support for creation of new formats (like
txt, yaml or binary). With this library it is recommended to inherit from class Serializable to obtain
an easy to use serialization interface. In the future the boost::serialization [1] library will be
used.

The Math library provides quaternion, vector and small matrices calculus optimized for 3D
operations. OpenGL library provides a C++ wrapper for glut. Other libraries used in the framework
are: STL [26,33], Boost [1] and QGLViewer [13].

The generic layer in Fig. 1 represents the core of YADE and provides abstract interfaces to all
concepts of scientific simulation: engines, bodies and interactions (see Sect. 3). Class World (see
Sect. 6.2) stores the simulated world, counts time, increments iterations and synchronizes threads.
The abstract interfaces for GUI and rendering are also here.

The YADE common layer in Fig. 1 contains components commonly used by various simulation
types (DEM, FEM, Lattice or SPH), like:

• Newton’s law or Hooke’s law,
• time integration algorithms (Leapfrog [20], Newmark, Runge–Kutta 4, etc.),
• damping methods (eg. Cundall non viscous damping [12]),
• collision detection algorithms (eg. Sweep and Prune [11] or Grid Collider),
• boundary conditions (imposing translation, applying gravity, etc.),
• data classes that store information about bodies or interactions.
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Figure 2: Simplified schematics of simulation loop.

• Common OpenGL methods for drawing popular geometries,

The specialized layer is based on the common layer. It contains code that cannot be shared
between different methods (see Sect. 4). Many specialized packages can exist: Discrete Element
Method, Finite Element Method or Lattice Geometrical Model. This paper focuses on granular
materials and only DEM example is explained.

The top layer is a Graphical User Interface and one based on QT is currently provided, also
GTK, ncurses or even winAPI are possible as plugins. Moreover, a command line interface can be
used to perform computations remotely.

3 Abstractions underlying scientific simulation

Consider that the simulation involves bodies between which interactions occur (Fig 2). These inter-
actions can be detected and processed by certain computational algorithms and physical rules (which
are engines in YADE). The result of these algorithms can be a moment, a force, a displacement,
etc. (class BodyExternalVariables), which in general produce a response that affects body state. All
bodies, interactions and the simulation loop that processes them (engines) are stored inside the
World class.

Three kinds of data are distinguished:

• bodies,
• interactions,
• intermediate data.

All algorithms (see Sect. 3.2) are engines, but they have been divided to:

• Command Pattern: Engine,
• Multimethods Pattern: EngineFunctor stored inside EngineDispatcher.

3.1 Data classes

The objects of data classes cannot move or interact themselves, as they only contain data. Their
movement and interaction are handled by the engine classes. The body is represented by six data
classes: BodyState, BodyStateConstraints, BodyConstitutiveParameters, BodyShape, BodySimplified-
Shape and BodyBoundingVolume. They are held inside World using boost::multi index container.
The seemingly obvious notion to create a Body class that would hold all six of them proved to be
wrong, since a single body can sometimes be described by multiple instances of BodyShape (eg. a DEM
cluster) or thousands of bodies can share a single instance of BodyConstitutiveParameters (eg. some
are the concrete, others are the reinforcement). The purpose of those six abstract data classes follows
(see examples in Fig. 3):
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Figure 3: Examples of concrete classes that describe a body, their movement is described in Sec-
tion 3.2.

BodyState (Bst) – information about a body that changes during the simulation process and is
different for each instance of a body in the simulation, like position, velocity, acceleration and
mass or inertia.

BodyStateConstraints (Bsc) – information about constraints imposed on a body state. A con-
strained value can be eg.: kept at limiting value, determine a body deletion etc. Example
constraints include: maximum strain, crossing spatial boundary or a sliding support. Many
bodies can use the same constraints or not use constraints at all.

BodyConstitutiveParameters (Bcp) – information about a body that usually does not change
during the simulation and is the same for many instances of bodies. It is intended to be an
information used by constitutive laws, like stiffness or cohesion.

BodyShape (Bsh) – the idealized geometrical shape of a body that is simulated: it is used to create
a simplified shape, and for display.

BodySimplifiedShape (Bss) – a shape of the body used for performing the actual simulation, may
be different from idealized shape, because it is merely its representation used for the purpose
of the simulation.

BodyBoundingVolume (Bbv) – a bounding volume is used to detect potential interaction between
bodies, usually is built from information stored inside simplified shape.

The interaction is represented by two data classes: InteractionState and InteractionConstitu-
tiveParameters. They serve following purposes:

InteractionState (Ist) – information about an interaction happening between bodies which changes
while the interaction evolves during the simulation (eg.: penetration depth, shearing force, con-
tact points or volume of contact V ).

InteractionConstitutiveParameters (Icp) – information about an interaction happening be-
tween bodies which usually does not change during the simulation, even when bodies discon-
nect and reconnect again (eg.: contact stiffness).

Finally two data classes contain intermediate data, those are: BodyExternalVariables and Out-
putData:

BodyExternalVariables (Bex) – this information is an intermediate stage to calculate future
values of BodyState for the next execution of simulation loop. Usually it contains the sum of
effects calculated by some physical rules. For example a sum of forces and moments acting
on a sphere is used to change body’s position and orientation. It is discussed separately from
other Body... classes, because it does not describe bodies themselves — just changes to them.

OutputData (Odt) – this data is used to store results that cannot be directly obtained from other
data classes. Usually some Engine will interpret necessary data and store it here, eg.: an
averaged stress, a number of bodies that fulfill some criterion, etc.

To store all data classes, the boost::multi index container is used. It allows to cross–reference
class instances and to iterate over data elements with respect to different keys. Eg.: to iterate over
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Figure 4: Class Engine and example algorithms inheriting from it

all bodies involved in a selected interaction or alternatively to iterate over all interactions in which
a given body takes part — a different view on the very same data.

3.2 Engine classes

Every operation concerning data is performed by a dedicated Engine. Applying boundary condi-
tions, moving, creating, modifying, destroying, displaying, loading, saving, calculating, converting,
interpreting — all those functions are performed by some specific Engine class. Figure 4 shows some
example classes of two kinds: commands and multimethods.

The Command Pattern classes (deriving from Engine) have some empty subcategories serving
to help organize the engines derivation tree. Concrete implementations of algorithms are inheriting
from them:

EgiConditionApplier (Econ) – performs tasks that depend on conditions from outside, like:
applying force as a boundary condition of the simulation or imposing a kinematic translation
according to data read from file on hard disk.

EgiBoundingVolumeCollider (Ebvc) – detects collisions using various algorithms, eg. Sweep
and Prune [11] or Grid Collider,

EgiConstitutiveLaw (Elaw) – the constitutive law for any given calculation method (compare
with Sect. 4), eg. ElawElasticContact used for DEM (Eq. 1–2).

EgiTimeStepper (Etim) – methods for choosing the optimal time step if the simulation is dy-
namic, it can be based on maximum velocity of bodies, their mass and stiffnes or other criteria
(for example as in [48]).

EgiDataProcessor (Edat) – methods for calculating any results which are to be stored in Out-
putData.

Adding more Engine subcategories is implied by design flexibility and will happen during the frame-
work evolution.

Addition of new plug–ins operating on data classes is possible by writing only two files: .hpp

and .cpp with short code inside. A convention for naming those plug–ins had to be assumed and
each class starts with a three letter code–name of a class that is on the top of its inheritance tree
(eg. Egi for Engine). Those code–names are written above next to the long name, in brackets.

The Multimethods allow implementing different collision algorithms in separate classes. Consider
that a BssSphere collides with another sphere or alternatively with a BssBox. The exact formula for
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calculating the collision will be different. With the use of multimethods it is ensured that the correct
formula is chosen automatically, without the need to modify anything else in the YADE code. To
use it, when implementing formulas for a collision between new BodySimplifiedShape-s (eg. when
adding an ellipsoid to the code), one needs to specify a FUNCTOR2D macro inside a body of the class.
The 2D indicates that two shapes are involved (eg. a sphere colliding with an ellipsoid), which means
that it is a two dimensional multimethod.

This automatic mechanism works on the basis of two following classes:

EngineDispatcher (Ed •) – the dispatcher is implemented in YADE common layer for all variants
currently used in specialized layers. The • indicates the number of dimensions, most commonly
used are two dimensions.

EngineFunctor (Ef •) – this is a parent class for concrete code used in multimethod pattern, the
• indicates the number of dimensions. When writing a new collision formula (as mentioned in
above paragraph), one needs to derive from this class.

Thanks to multimethods each algorithm resides in a separate plug–in class, which increases
modularity. This solution allows easy modification, debugging and exchanging algorithms when
needed.

4 Overview of the implemented Discrete Element Method

4.1 Generation of a DEM sample

Various generation methods for solving sphere placement in three dimensions exist, such as dynamic
compaction [15,16], radius growth or by solving geometrical equations for sphere placement [23,24].
The obtained specimen has to have the desired porosity and the sphere overlap should be as small
as possible. Currently in YADE the sample is generated by assuming spheres position at random
(overlap is allowed) in a volume bigger than the target volume. Then a triaxial compression is
performed with friction and cohesion disabled until desired stress on the walls is obtained, optionally
a kinematic radius growth can be used.

This has been implemented in files EgiTriaxialCompression.cpp and GenTriaxialTest.cpp

(which inherits from class Generator). If a need arises to create a different kind of sample configu-
ration, a new Generator can be written on the basis of other existing generators.

4.2 DEM formulation

Let two spheres A and B, be in contact. The radii of these spherical elements are rA and rB. In
the global set of axes, their positions are defined by two vectors ~xA and ~xB. The interaction force
vector ~F which represents the action of element A on element B may be decomposed into a normal
and a shear vector ~F n and ~F s respectively, which may be classically linked to relative displacements,
through normal and tangential stiffnesses, Kn and Ks.

~F n
i = Knun~ni, (1)

∆~F s
i = −Ks∆~us, (2)

where un is the relative normal displacement between two elements, ~ni is the normal contact
vector, ∆~us is the incremental tangential displacement. The shear force ~F s is obtained by summing
the ∆~F s increments.

To reproduce the behavior of non cohesive geomaterials, a Mohr-Coulomb rupture criterion is
used:

∣

∣

∣

~F s
∣

∣

∣ ≤
∣

∣

∣

~F n
∣

∣

∣ tanµ, (3)

where µ is the “internal” friction angle.
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Figure 5: Interaction between two spherical discrete elements with its normal ~F n, shear ~F s and
moment ~M components.

The contact moment is introduced because the representation of the roughness of grains is missing
in spherical DEM models, and is calculated using rolling stiffness Kr:

~M = Kr ~V (Åt Å
−1

t=c B̊t=c B̊
−1

t ), (4)

where Åt=c and B̊t=c are initial orientations of spheres (at the time when the contact was created)

and Åt and B̊t are current orientations of spheres (where symbol˚denotes a quaternion). The ~V (•)
function converts from quaternion representation of orientation to a vector:

~V (q̊(a, b, c, d)) =







































x = α
b

sin (α/2)

y = α
c

sin (α/2)

z = α
d

sin (α/2)

, where α = 2 arccos (a) . (5)

where q̊ is a quaternion with components a, bi , cj and dk . In the case where the rotation angle
α = 0 the axis of rotation can be anything since no rotation occurs and to avoid division by zero
the zeros are assigned to x, y and z. The contact moment ~M can be further decomposed into
“plane of contact” component and “normal of the contact” component, thus representing bending
and twisting respectively, in case different stiffnesses for bending and twisting are desired.

The rolling stiffness parameter Kr defines the level of influence that the resistant moment pro-
duces; Let us introduce a dimensionless number βr, which expresses a relationship between Kr and
Ks, such that,

βr = r2
Ks

Kr
, (6)

where r is the mean value of the two radii.
Let us also introduce ηr as a dimensionless parameter of the elastic limit of rolling, which controls

the elastic limit of the rolling behavior. If
∣

∣

∣

~F n
∣

∣

∣ represents the norm of the normal force at the contact
point, the elastic limit is given by the plastic moment vector Mplast such that:

Mplast = ηrr
∣

∣

∣

~F n
∣

∣

∣ (7)

Whereas the norm of the contact moment
∣

∣

∣

~M
∣

∣

∣ (Eq. 4) is assumed to be smaller than the plastic
limit Mplast:

∣

∣

∣

~M
∣

∣

∣ ≤Mplast (8)
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Figure 6: Typical responses obtained with triaxial tests for dense (solid lines) and loose (dashed
lines) sands.

Since various different contact laws have been developed [6, 8, 15, 34, 36, 45, 49, 54] a YADE user
will probably need to add his own law. This can be done by copying one of the existing contact laws
(eg. files ElawElasticContact.cpp and ElawElasticContact.hpp) and editing them according to
the user’s needs. Models currently implemented in YADE include the following features: moment
transfer, shear friction, moment creep, shear creep, Mohr–Coulomb contact with cohesion. New laws
are being added, eg. a capillary contact law is being developed by Scholtes [41–43], a particle fluid
interaction by Chen [9] or a contact law based on local density by Jerier [24].

Newton’s second law of motion describes the motion of each element as the sum of all forces
applied on this element. The dynamic behavior of the system is solved numerically by a time
algorithm in which the velocities and the accelerations are constant at each time step. The system
evolves and an explicit finite difference algorithm is used to reproduce this evolution. It is the key
feature of DEM, which makes it possible to follow a non–linear interaction of a large number of
particles without excessive memory requirements or the need for an iterative procedure.

5 Calibration of the local parameters

The calibration of the local properties of the numerical model to the properties of a real geo–
material is conveniently done by comparing simulated and real triaxial tests. For example [3, 39]
once calibrated, the predictive capabilities of the numerical model will be checked by simulating
other triaxial tests. For the calibration step, the selected local parameters are: Kn, Ks, Kr (or βr),
µ and ηr. Their values will be fixed to reproduce, not only the correct shapes of stress–strain and
the volumetric curves, but also the correct macroscopic values of Young’s modulus E, Poisson’s ratio
ν, the dilatancy angle ψ, the peak σpeak and the post peak strength σpost peak, see Figure 6.

To do so, one must identify the influence of each local parameter on the macroscopic response.
First it was found that the elastic parameters and the rupture parameters can be calibrated sepa-
rately, which is in agreement with previous results [7, 44].
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Figure 7: On the left, dependency of Poisson’s ratio on the ratio α = Ks

Kn
, on the right, dependency

of Young modulus on Kn.

Figure 8: Dependency on the value of local friction angle: on the left, deviator stress–strain curves,
on the right, volumetric–strain curve.

The local elastic parameters Kn and Ks play a major role in the elastic response. The other
elastic parameter βr has a lower impact (less than 10%) on Young’s modulus E and Poisson’s ratio ν.
Thus, Kn and Ks will be set first to calibrate the macroscopic elastic behavior.

For an arbitrary value of Kn, the parameter Ks is set according to chosen value of Poisson’s
ratio. Then, for a constant α = Ks

Kn
, Kn is set such that the desired value of Young’s modulus is

obtained (Fig. 7).
Once the local elastic parameters are set, the values of the other local parameters (µ, βr and ηr)

must be determined. First, the local friction angle µ has a major influence on both the peak stress
and the dilatancy angle, but a low one on the residual stress (Fig. 8). Because of the low influence of
βr on the dilatancy angle, as it will be seen, µ is chosen to control the dilatancy angle value.

Then, it is observed that βr has little influence on the dilatancy angle (Fig. 9), which confirms
that using µ to control this macroscopic parameter is an adequate choice. On the other hand, βr

highly affects the stress peak and the residual peak. Then, because of the low influence of ηr and µ
on the residual peak, as it will also be seen, β is chosen to control the residual peak value.

Finally, ηr has little influence on both the residual stress value and the dilatancy angle (Fig. 10),
so that µ and βr can be kept to set these macroscopic values. Fortunately, ηr affects the stress peak.
Consequently, ηr can be chosen to set the peak stress value.
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Figure 9: Dependency on the value of the dimensionless rolling stiffness parameter: on the left,
deviator stress–strain curves, on the right, the volumetric–strain curve.

Figure 10: Dependency on the value of the elastic limit of rolling: on the left, of deviator stress–strain
curves, on the right, the volumetric–strain curve.

6 Software overview

6.1 Running the software

The YADE software can be downloaded from website http://yade.wikia.com, by either using
the last release (currently it is version 0.11.1) or the latest subversion (SVN) snapshot. The SVN
snapshot is recommended for potential developers, because it usually contains significant changes
when compared with the release (unless there was a little time since last release). Currently YADE
works in Linux environment (Ubuntu, Debian, CentOS, RedHat) and is compiled using the Gnu
Compiler Collection (GCC, g++). For easier installation there is currently a debian package provided
on the website, for other linux distributions the respective instructions are provided.

Once the yade executable file is started, a window appears in which one can select which Gener-
ator to use for specimen generation. A dozen are available, including the GenTriaxialTest (which
uses a new implementation of DEM formulation, as in Eq. 4), GenTriaxialTestWater (which was
used for calculations in [41–43]) or GenLatticeExample (which was used to perform calculations
in [27–31]). Once the calculation begins, the results (eg. position, velocity, forces) are written to a
specified text file. Those files serve as an input for a plotting software, such as Matlab, Octave or
Gnuplot.

Alternatively all those tasks can be performed from the command line, without using a graphical
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interface, in case a supercomputer cluster is available remotely for the researcher. For more compli-
cated tasks a built–in python language interpreter can be used. If a graphical interface is used, then
OpenGL display is performed by a separate thread, which is synchronized with the simulation loop.

6.2 Simulation overview

The World class is a top–level object representing the simulated world. It contains both data and
the engines operating on it. The engines are executed by calling sequentially the activated() method
for each Engine, and if the answer was positive, then calling action(). It is up to the user to specify
what engines are inside the simulation loop.

When top–level World class is loaded from the file, its initializers are invoked, one after another.
Usually a BodySimplifiedShape is generated from provided BodyShape. BodyBoundingVolume is
generated from BodySimplifiedShape. Even BodyShape can be generated here according to some
algorithm, or by loading it from another file written in different format (eg. exported from netgen,
gmsh or some other program that can perform model discretization).

When the simulation is started, engines stored in simulationLoop are executed sequentially.
Usually this involves detecting interactions, solving them, applying solution results to bodies and
saving some data to disk.

7 YADE-OPEN DEM framework applied to Discrete Ele-

ment Method

YADE was designed in a way that new simulation models can be added easily and already defined
algorithms reused. The example below describes what had to be implemented in specialized layers to
perform simulation with DEM. The algorithms from SDEC software [15,16] were first implemented,
but other algorithms could easily be considered [18, 22, 25, 52]. In DEM the contact is described
by the radii of two spheres: r1, r2, the penetration depth d and the normal vector to the contact
plane ~n. To allow interaction between the sphere and a non–spherical object, an imaginary mirror
sphere of double radius is created (as proposed by Donzé [16]). Following this definition a new class
IstSpheresContact was added. Then two different EngineFunctor -s with algorithms to build this
contact description were added to EngineDispatcher : one to build the contact between two spheres
and the other to build the contact between a sphere and a box. This contact description can be
used only if at least one object in the contact is a sphere.

A class describing InteractionConstitutiveParameters was added with the name IcpElasticMicro
which contains information about the contact: normal stiffness, tangential stiffness and rolling
stiffness. When a contact occurs, this information is calculated by a dedicated EngineFunctor which
calculates macro–micro relationship according to the calibration procedure presented in Section 5.

Finally a simulation loop for DEM calculation was built:

• Calculating time step with elastic criterion (the EtimElasticCriterion class),
• building a BoundingVolume using an EngineDispatcher with eg. Ef2 BssSphere BbvAxisAlignedBoundingBox
• performing collision detection with a Sweep and Prune collider [11] using the previously cal-

culated bounding volumes (the EbvcSweepAndPrune is shown in Fig. 4),
• building InteractionState and InteractionConstitutiveParameters (in this case the classes Ist-

SpheresContact and IcpElasticMicro using a 2D EngineDispatcher,
• solving interactions with DEM formulation with the class ElawElasticContact which contains

Eq. 1–2,
• applying the calculated response (classes BexForce and BexMoment) to the bodies by calcu-

lating their new acceleration and angular acceleration,
• and performing the time integration of bodies according to their new acceleration (eg. using a

leapfrog or Runge–Kutta 4 integration method).
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(a) (b)

Figure 11: Distribution of forces in a two dimensional DEM sample subject to biaxial compression:
(a) results obtained from experiments by means of photoelastic analysis [14]; (b) results obtained in
YADE’s DEM implementation.

(a) (b)

Figure 12: A three dimensional DEM sample subject to triaxial compression, results obtained in
YADE’s DEM implementation: (a) view on aggregates; (b) distribution of forces
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(b)

(a)

Figure 13: A DEM specimen of concrete (aggregates connected using using cohesive law), subject
to three point bending: (a) specimen’s configuration; (b) forces in bonds between aggregates (red:
compression, blue: tension)

This loop directly implements DEM and is repeated until the calculation is terminated.
Figures 11–14 show several example simulations done using the YADE framework. The biaxial

compression in two dimensions shown in Fig. 11 is in good agreement with results by Cundall and
de Josselin [12, 14]. Figure 12 shows a similar experiment performed in three dimensions. The
distribution of forces is clearly visible. Figure 13 shows a concrete beam subjected to a three point
bending, the concrete aggregates are using a cohesive law to transfer tensile force. Figure 14 shows
a 2 × 10 cm specimen subject to shearing and the resulting change of tangential to normal force
during the process.

8 Conclusions

The task to find the underlying abstractions of numerical simulation with Discrete Element Method
has been completed and explained with examples. Each distinct part of the simulation (such as:
choice of the time step, time integration, solution of contact forces, collision detection) was put into a
separate class. With this approach it is possible for example to add different shapes (eg. ellipsoids [25]
or polyhedrons [18,52,55]) to the simulation just by adding two files with the required formulas for
contact detection and other two files (.cpp and .hpp respectively) for calculation of interaction
state, while the old contact laws can still work with the newly added ellipsoids or polyhedrons
(assuming that the contact law is still applicable). Similarly new contact laws can be added on
the basis of existing contact law — by copying the files of a selected contact law and changing
its behavior (eg. viscoplastic, viscoelastic, or capillary contact law [41–43]). Implementation of
YADE-OPEN DEM software performed by authors is open–source and can be downloaded from
http://yade.wikia.com webpage.

YADE has an already growing user base, and currently investigated are: a capillary law [41–43],
a particle–fluid interaction [8, 9], a method to generate composite materials [23, 24], a dry granular
flow [17], modelling of concrete under high impact [51] and high confinement [46, 47].

The implementation of DEM [8, 9, 12, 15, 16, 34, 36, 40, 41, 45, 49, 50, 54, 55] and possibly other
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(a)

(a)

Figure 14: YADE simulation of a granular specimen 10× 2 cm subject to shearing (Young modulus
E = 10 Mpa, Poisson’s ratio ν = 0.38, friction angle tan(φ) = 0.45): (a) distribution of forces during
the shearing process; (b) plot of tangential to normal force (T/N) to the horizontal displacement u
divided by speciment height h = 2 cm.

models such as FEM or Lattice Geometrical Model (LGM) [27–31] in a single framework makes the
task of coupling them with each other to be relatively simple. A single framework that contains
different models simplifies code exchanges. The YADE framework is flexible, which gives more power
to the user and minimizes obstacles when implementing a new kind of model.

The major idea behind DEM is to circumvent the complexity of a large assembly by considering
instead many simple elements, the behavior of which can be simulated accurately. Because of this
approach, DEM requires careful calibration and validation with real experiments in order to produce
trustworthy results. This research extends the work done by Peters [38] by making it possible to
add other models like FEM to the same Object Oriented simulation framework.
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[16] Donzé, F., Magnier, S.A., Daudeville, L., Mariotti, C. and Davenne, L. (1999) ”Numerical study
of compressive behaviour of concrete at high strain rates”, Journal for Engineering Mechanics,
Vol. 125, No. 10, pp. 1154–1163.

[17] Favier, L. and Daudon, D. (2008) ”Dry granula flow impact against an obstacle: numerical
model and laboratory measurements”, Discrete Element Group for Hazard Mitigation, annual
report 4, pp.H1–H15.

[18] Feng, Y.T. and Owen, D.R.J. ”A 2D polygon/polygon contact model: algorithmic aspects”,
Engineering Computations, Vol. 21, No. 2/3/4, pp. 265-277

[19] Ferrez, J.A. (2001), ”Dynamic triangulation for efficient 3D simulation of granular mate-
rial”(lang. eng), PhD thesis, Ecole Polytechnique Federal de Lausanne.

16

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


[20] Fincham,D., (1992), ”Leapfrog rotational algorithm”, Molecular Simulations, Vol. 8, No. 3/5,
pp 165–178.

[21] Gamma, E., Helm, R., Johnson R. and Vlissides, J. (1995), ”Design Patterns: Elements of
Reusable Object–Oriented Software”, Addison-Wesley, ISBN: 0201633612.

[22] Han, K., Feng Y.T. and Owen, D.R.J. (2007), ”Performance comparisons of tree-based and cell-
based contact detection algorithms”, Engineering Computations, Vol. 24, No. 2, pp. 165–181.

[23] Jerier, J.F., Donze, F.V. and Imbault, D. (2007) ”An Algorithm to Generate Random Dense Ar-
rangements Discs Based on the Triangulation”, Discrete Element Group for Hazard Mitigation,
annual report, Vol. 3, pp.D1–D7.

[24] Jerier, J.F., Donze, F.V., Imbault, D. and Doremus P. (2008) ”A geometric algorithm for
discrete element method to generate composite materials”, Discrete Element Group for Hazard
Mitigation, annual report, Vol. 4, pp.A1–A8.

[25] Johnson, S., Williams, J.R., Cook, B. (2004), ”Contact resolution algorithm for an ellipsoid
approximation for discrete element modeling”, Engineering Computations, Vol. 21, No. 2/3/4,
pp. 215-234

[26] Josuttis, N.M. (2000), ”The C++ Standard Library: A Tutorial and Reference”, Addison-
Wesley.

[27] Kozicki, J. and Tejchman, J. (2006) ”2D Lattice Model for Fracture in Brittle Materials”,
Archives of Hydro–Engineering and Environmental Mechanics, Vol. 53, No. 2, pp. 71–88.

[28] Kozicki, J. and Tejchman, J. (2007),”Effect of aggregate structure on fracture process in concrete
using 2D lattice model”, Archives of Mechanics, Vol. 59, No. 4/5, pp. 365–384.

[29] Kozicki, J. (2007), ”Application of discrete models to describe the fracture process in brittle
materials”, PhD thesis, Gdańsk University of Technology.
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