Dynamic F-free Coloring of Graphs - Publikacja - MOST Wiedzy

Wyszukiwarka

Dynamic F-free Coloring of Graphs

Abstrakt

A problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well as handle any vertex recoloring requests. Our main concern is the greedy approach and characterization of graph classes for which it is possible to decide in polynomial time whether for the fixed forbidden graph F and positive integer k the greedy algorithm ever uses more than k colors in dynamic F-free coloring. For various classes of graphs we give such characterizations in terms of a finite number of minimal forbidden graphs thus solving the above-mentioned problem for the so-called F-trees when F is 2-connected, and for classical trees, when F is a path of order 3 (the latter variant is also known as subcoloring or 1-improper coloring).

Cytowania

0
CrossRef
0
Web of Science
0
Scopus

Piotr Borowiecki, Elżbieta Sidorowicz. (2018). Dynamic F-free Coloring of Graphs, 34(3), 457-475. https://doi.org/10.1007/s00373-018-1886-8

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
GRAPHS AND COMBINATORICS nr 34, strony 457 - 475,
ISSN: 0911-0119
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Borowiecki P., Sidorowicz E.: Dynamic F-free Coloring of Graphs// GRAPHS AND COMBINATORICS. -Vol. 34, nr. 3 (2018), s.457-475

wyświetlono 16 razy

Publikacje, które mogą cię zainteresować

Meta Tagi