Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy - Publikacja - MOST Wiedzy

Wyszukiwarka

Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy

Abstrakt

Titanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition (EPD) of nanohydroxyapatite (nanoHAp) coatings decorated with silver nanoparticles (nanoAg) and to investigate the mechanical and chemical properties of these coatings as determined by EPD voltage and the presence of nanoAg. The deposition of nanoHAp was carried out at two voltage values, 15 and 30 V. The decoration of nanoHAp coatings with nanoAg was carried out using the EPD process at a voltage value of 60 V and a deposition time of 5 min. The thickness of the undecorated coatings was found to be 2.16 and 5.14 μm for applied EPD voltages of 15- and 30-V, respectively. The release rate of silver nanoparticles into an artificial saliva solution increased with exposure time and EPD voltage. The corrosion current, between 1 and 10 nA/cm2, was significantly higher for undecorated nanoHAp coatings and close to that of the substrate for decorated nanoHAp coatings. The hardness of the undecorated nanoHAp coatings obtained at 15 and 30 V of EPD voltage attained 0.2245 ± 0.036 and 0.0661 ± 0.008 GPa, respectively. Resistance to nanoscratching was higher for thicker coatings. The wettability angle was lower for coatings decorated with nanoAg.

Cytowania

  • 3 7

    CrossRef

  • 3 6

    Web of Science

  • 3 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 336 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CERAMICS INTERNATIONAL nr 43, wydanie 15, strony 1 - 9,
ISSN: 0272-8842
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Bartmański M., Cieślik B., Głodowska J., Kalka P., Pawłowski Ł., Pieper M., Zieliński A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy// CERAMICS INTERNATIONAL. -Vol. 43, iss. 15 (2017), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ceramint.2017.06.026
Bibliografia: test
  1. C. Oldani, A. Dominguez, Titanium as a biomaterial for implants, Recent Adv. Arthroplast. (2012) 149-162. http://dx.doi.org/10.5772/1445. otwiera się w nowej karcie
  2. S.S.A. El-Rahman, Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacol. Res. 47 (2003) 189-194. http://dx.doi.org/ 10.1016/S1043-6618(02)00336-5. otwiera się w nowej karcie
  3. A. Smołka, G. Dercz, K. Rodak, B. Łosiewicz, Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution / Ocena Odporności Korozyjnej Nanotubularnych Struktur Tlenkowych Na Stopie Ti13Zr13Nb W Środowisku Płynów Ustrojowych", Arch. Metall. Mater. 60 (2015) 8-13. http://dx.doi.org/10.1515/amm-2015-0432. otwiera się w nowej karcie
  4. L.M. Elias, S.G. Schneider, S. Schneider, H.M. Silva, F. Malvisi, Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys, Mater. Sci. Eng. A 432 (2006) 108-112. http://dx.doi.org/10.1016/j.msea.2006.06.013. otwiera się w nowej karcie
  5. A. Zielinski, S. Sobieszczyk, T. Seramak, W. Serbinski, B. Swieczko-Zurek, A. Ossowska, Biocompatibility and bioactivity of load-bearing metallic implants, Adv. Mater. Sci. 10 (2011) 21-31. http://dx.doi.org/10.2478/v10077-010-0013-1. otwiera się w nowej karcie
  6. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants -a review, Progress. Mater. Sci. 54 (2009) 397-425. http://dx.doi.org/10.1016/j.pmatsci.2008.06.004. otwiera się w nowej karcie
  7. N. Eliaz, S. Shmueli, I. Shur, D. Benayahu, D. Aronov, G. Rosenman, The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomater. 5 (2009) 3178-3191. http://dx.doi.org/10.1016/j.act- bio.2009.04.005. otwiera się w nowej karcie
  8. M. Szklarska, G. Dercz, W. Simka, B. Łosiewicz, A.c. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution, Surf. Interface Anal. 46 (2014) 698-701. http://dx.doi.org/10.1002/ sia.5383. otwiera się w nowej karcie
  9. S.F. Lamolle, M. Monjo, M. Rubert, H.J. Haugen, S.P. Lyngstadaas, J.E. Ellingsen, The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells, Biomaterials 30 (2009) 736-742. http://dx.doi.org/10.1016/j.biomaterials.2008.10.052. otwiera się w nowej karcie
  10. J.W. Park, Y.J. Kim, J.H. Jang, T.G. Kwon, Y.C. Bae, J.Y. Suh, Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces, Acta Biomater. 6 (2010) 1661-1670. http://dx.doi.org/ 10.1016/j.actbio.2009.10.011. otwiera się w nowej karcie
  11. A. Ossowska, S. Sobieszczyk, M. Supernak, A. Zielinski, Morphology and properties of nanotubular oxide layer on the "Ti-13Zr-13Nb" alloy, Surf. Coat. Technol. 258 (2014) 1239-1248. http://dx.doi.org/10.1016/j.surfcoat.2014.06.054. otwiera się w nowej karcie
  12. V. Dumas, A. Guignandon, L. Vico, C. Mauclair, X. Zapata, M.T. Linossier, W. Bouleftour, J. Granier, S. Peyroche, J.-C. Dumas, H. Zahouani, A. Rattner, Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment, Biomed. Mater. 10 (2015) 55002. http:// dx.doi.org/10.1088/1748-6041/10/5/055002. otwiera się w nowej karcie
  13. T.R. Rautray, R. Narayanan, K.H. Kim, Ion implantation of titanium based biomaterials, Progress. Mater. Sci. 56 (2011) 1137-1177. http://dx.doi.org/ 10.1016/j.pmatsci.2011.03.002. otwiera się w nowej karcie
  14. B. Majkowska, M. Jazdzewska, E. Wolowiec, W. Piekoszewski, L. Klimek, A. Zielinski, The possibility of use of laser-modified Ti6Al4V alloy in friction Pairs in endoprostheses, Arch. Metall. Mater. 60 (2015) 6-9. http://dx.doi.org/10.1515/ amm-2015-0202. otwiera się w nowej karcie
  15. D. Wang, G. Wu, X. Lin, Y. Liu, Coatings for osseointegration of metallic biomaterials, Surf. Coat. Modif. Met. Biomater. (2015) 345-358. http://dx.doi.org/ 10.1016/B978-1-78242-303-4.00011-9. otwiera się w nowej karcie
  16. V. Ozhukil Kollath, Q. Chen, R. Closset, J. Luyten, K. Traina, S. Mullens, A.R. Boccaccini, R. Cloots, AC vs. DC electrophoretic deposition of hydroxyapatite on titanium, J. Eur. Ceram. Soc. 33 (2013) 2715-2721. http://dx.doi.org/10.1016/ j.jeurceramsoc.2013.04.030. otwiera się w nowej karcie
  17. R. Drevet, N. Ben Jaber, J. Fauré, A. Tara, A. Ben Cheikh Larbi, H. Benhayoune, Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates, Surf. Coat. Technol. 301 (2015) 94-99. http://dx.doi.org/10.1016/j.surfcoat.2015.12.058. otwiera się w nowej karcie
  18. A. Araghi, M.J. Hadianfard, Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications, Ceram. Int. 41 (2015) 12668-12679. http://dx.doi.org/10.1016/ j.ceramint.2015.06.098. otwiera się w nowej karcie
  19. H. Farnoush, A. Sadeghi, A. Abdi Bastami, F. Moztarzadeh, J. Aghazadeh Mohandesi, An innovative fabrication of nano-HA coatings on Ti-CaP nanocom- posite layer using a combination of friction stir processing and electrophoretic deposition, Ceram. Int. 39 (2013) 1477-1483. http://dx.doi.org/10.1016/j.cera- mint.2012.07.092. otwiera się w nowej karcie
  20. H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari, F. Moztarzadeh, Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti-6Al-4V substrates, Ceram. Int. 38 (2012) 4885-4893. http://dx.doi.org/10.1016/j.ceramint.2012.02.079. otwiera się w nowej karcie
  21. K. Dudek, T. Goryczka, Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy, Ceram. Int. 42 (2016) 19124-19132. http://dx.doi.org/10.1016/j.ceramint.2016.09.074. otwiera się w nowej karcie
  22. M. Bartmanski, A. Berk, A. Wojcik, The determinants of morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb alloy by electro- phoretic technique, Adv. Mater. Sci. 16 (2016) 56-66. http://dx.doi.org/10.1515/ adms-2016-0017. otwiera się w nowej karcie
  23. H.J. Kim, Y.H. Jeong, H.C. Choe, W.A. Brantley, Surface characteristics of hydroxyapatite coatings on nanotubular Ti-25Ta-xZr alloys prepared by electro- chemical deposition, Surf. Coat. Technol. 259 (2014) 274-280. http://dx.doi.org/ 10.1016/j.surfcoat.2014.03.013. otwiera się w nowej karcie
  24. P. Strakowska, R. Beutner, M. Gnyba, A. Zielinski, D. Scharnweber, Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films -coating characterization and first cell biological results, Mater. Sci. Eng. C 59 (2016) 624-635. http://dx.doi.org/10.1016/ j.msec.2015.10.063. otwiera się w nowej karcie
  25. Y. Huang, X. Zhang, H. Zhang, H. Qiao, X. Zhang, T. Jia, S. Han, Y. Gao, H. Xiao, H. Yang, Fabrication of silver-and strontium-doped hydroxyapatite/TiO2 nano- tube bilayer coatings for enhancing bactericidal effect and osteoinductivity, Ceram. Int. 43 (2017) 992-1007. http://dx.doi.org/10.1016/j.ceramint.2016.10.031. otwiera się w nowej karcie
  26. Y. Huang, X. Zhang, H. Qiao, M. Hao, H. Zhang, Z. Xu, X. Zhang, X. Pang, H. Lin, Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxya- patite nanocomposite coatings on titanium implant, Ceram. Int. 42 (2016) 1903-1915. http://dx.doi.org/10.1016/j.ceramint.2015.09.160. otwiera się w nowej karcie
  27. Y. Huang, Y. Yan, X. Pang, Electrolytic deposition of fluorine-doped hydroxyapa- tite/ZrO 2 films on titanium for biomedical applications, Ceram. Int. 39 (2013) 245-253. http://dx.doi.org/10.1016/j.ceramint.2012.06.017. otwiera się w nowej karcie
  28. B. Trybus, A. Zielinski, R. Beuter, T. Seramak, D. Scharnweber, Deposition of phosphate coatings on titanium within scaffold structure, Acta Bioeng. Biomech. (2016) 1-22. http://dx.doi.org/10.5277/ABB-00631-2016-03. otwiera się w nowej karcie
  29. P.C. Rath, L. Besra, B.P. Singh, S. Bhattacharjee, Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: characterization and corrosion studies, Ceram. Int. 38 (2012) 3209-3216. http://dx.doi.org/10.1016/j.cera- mint.2011.12.026. otwiera się w nowej karcie
  30. Y.E. Greish, A.S. Al Shamsi, K. Polychronopoulou, A.I. Ayesh, Structural evaluation, preliminary in vitro stability and electrochemical behavior of apatite coatings on Ti6Al4V substrates, Ceram. Int. 42 (2016) 18204-18214. http://dx.doi.org/ 10.1016/j.ceramint.2016.08.141. otwiera się w nowej karcie
  31. M. Badea, M. Braic, A. Kiss, M. Moga, E. Pozna, I. Pana, A. Vladescu, Influence of Ag content on the antibacterial properties of SiC doped hydroxyapatite coatings, Ceram. Int. 42 (2016) 1801-1811. http://dx.doi.org/10.1016/j.cera- mint.2015.09.143. otwiera się w nowej karcie
  32. F.A. Azem, A. Kiss, I. Birlik, V. Braic, C. Luculescu, A. Vladescu, The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications, Ceram. Int. 40 (2014) 15881-15887. http://dx.doi.org/10.1016/j.ceramint.2014.07.116. otwiera się w nowej karcie
  33. D. Liu, K. Savino, M.Z. Yates, Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition, Surf. Coat. Technol. 205 (2011) 3975-3986. http://dx.doi.org/10.1016/j.surfcoat.2011.02.008. otwiera się w nowej karcie
  34. K. Suchanek, A. Bartkowiak, A. Gdowik, M. Perzanowski, S. Kąc, B. Szaraniec, M. Suchanek, M. Marszałek, Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates, Mater. Sci. Eng. C 51 (2015) 57-63. http://dx.doi.org/10.1016/j.msec.2015.02.029. otwiera się w nowej karcie
  35. S. Mudenda, K.L. Streib, D. Adams, J.W. Mayer, R. Nemutudi, T.L. Alford, Effect of substrate patterning on hydroxyapatite sol-gel thin film growth, Thin Solid Films 519 (2011) 5603-5608. http://dx.doi.org/10.1016/j.tsf.2011.02.067. otwiera się w nowej karcie
  36. P. Usinskas, Z. Stankeviciute, A. Beganskiene, A. Kareiva, Sol-gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate, Surf. Coat. Technol. 307 (2016) 935-940. http://dx.doi.org/10.1016/j.surf- coat.2016.10.032. otwiera się w nowej karcie
  37. I.V. Pylypchuk, A.L. Petranovskaya, P.P. Gorbyk, A.M. Korduban, P.E. Markovsky, O.M. Ivasishin, Biomimetic hydroxyapatite growth on functionalized surfaces of Ti- 6Al-4V and Ti-Zr-Nb alloys, Nanoscale Res. Lett. 10 (2015) 1-8. http://dx.doi.org/ 10.1186/s11671-015-1017-x. otwiera się w nowej karcie
  38. L. Guo, H. Li, Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium, Surf. Coat. Technol. 185 (2004) 268-274. http://dx.doi.org/ 10.1016/j.surfcoat.2004.01.013. otwiera się w nowej karcie
  39. X. Pang, I. Zhitomirsky, Electrodeposition of hydroxyapatite-silver-chitosan na- nocomposite coatings, Surf. Coat. Technol. 202 (2008) 3815-3821. http:// dx.doi.org/10.1016/j.surfcoat.2008.01.022. otwiera się w nowej karcie
  40. X. Hu, H. Shen, Y. Cheng, X. Xiong, S. Wang, J. Fang, S. Wei, One-step modification of nano-hydroxyapatite coating on titanium surface by hydrothermal method, Surf. Coat. Technol. 205 (2010) 2000-2006. http://dx.doi.org/10.1016/ j.surfcoat.2010.08.088. otwiera się w nowej karcie
  41. J. Xiong, Y. Li, P.D. Hodgson, C. Wen, Acta biomaterialia nanohydroxyapatite coating on a titanium -niobium alloy by a hydrothermal process, Acta Biomater. 6 (2010) 1584-1590. http://dx.doi.org/10.1016/j.actbio.2009.10.016. otwiera się w nowej karcie
  42. A. Bral, M.Y. Mommaerts, In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review, J. Cranio-Maxillofac. Surg. 44 (2016) 400-412. http:// dx.doi.org/10.1016/j.jcms.2015.12.004. otwiera się w nowej karcie
  43. L.H. Lee, J.S. Ha, Deposition behavior and characteristics of hydroxyapatite coatings on Al2O3, Ti, and Ti6Al4V formed by a chemical bath method, Ceram. Int. 40 (2014) 5321-5326. http://dx.doi.org/10.1016/j.ceramint.2013.10.109. otwiera się w nowej karcie
  44. A. Mo, J. Liao, W. Xu, S. Xian, Y. Li, S. Bai, Preparation and antibacterial effect of silver-hydroxyapatite/titania nanocomposite thin film on titanium, Appl. Surf. Sci. 255 (2008) 435-438. http://dx.doi.org/10.1016/j.apsusc.2008.06.083. otwiera się w nowej karcie
  45. Y. Chen, X. Zheng, Y. Xie, H. Ji, C. Ding, H. Li, K. Dai, Silver release from silver- containing hydroxyapatite coatings, Surf. Coat. Technol. 205 (2010) 1892-1896. http://dx.doi.org/10.1016/j.surfcoat.2010.08.073. otwiera się w nowej karcie
  46. J. Qu, X. Lu, D. Li, Y. Ding, Y. Leng, J. Weng, S. Qu, B. Feng, F. Watari, Silver/ hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method, J. Biomed. Mater. Res. -Part B Appl. Biomater. 97 B (2011) 40-48. http:// dx.doi.org/10.1002/jbm.b.31784. otwiera się w nowej karcie
  47. I.Y. Grubova, M.A. Surmeneva, A.A. Ivanova, K. Kravchuk, O. Prymak, M. Epple, V. Buck, R.A. Surmenev, The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings, Surf. Coat. Technol. 276 (2015) 595-601. http://dx.doi.org/10.1016/j.surfcoat.2015.06.010. otwiera się w nowej karcie
  48. C. Fu, X. Zhang, K. Savino, P. Gabrys, Y. Gao, W. Chaimayo, B.L. Miller, M.Z. Yates, Antimicrobial silver-hydroxyapatite composite coatings through two-stage electro- chemical synthesis, Surf. Coat. Technol. 301 (2016) 13-19. http://dx.doi.org/ 10.1016/j.surfcoat.2016.03.010. otwiera się w nowej karcie
  49. Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, L. Ma, Z. Cui, S. Zhu, Y. Liang, Y. Liu, H. Bao, X. Li, Q. Huo, Z. Liu, X. Yang, Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biolo- gical properties, Mater. Sci. Eng. C 71 (2017) 852-861. http://dx.doi.org/10.1016/ j.msec.2016.10.079. otwiera się w nowej karcie
  50. Y. Huang, M. Hao, X. Nian, H. Qiao, X. Zhang, X. Zhang, G. Song, J. Guo, X. Pang, H. Zhang, Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposi- tion, Ceram. Int. 42 (2016) 11876-11888. http://dx.doi.org/10.1016/j.cera- mint.2016.04.110. otwiera się w nowej karcie
  51. F. Technique, R. Metals, T. Alloys, T. Alloys, Q. Program, Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130) 1Annual Book of ASTM Standards (2011), 2011, pp. 4-8. http://dx.doi.org/10.1520/F1713-08.2. otwiera się w nowej karcie
  52. L. Mohan, D. Durgalakshmi, M. Geetha, T.S.N. Sankara Narayanan, R. Asokamani, Electrophoretic deposition of nanocomposite (HAp + TiO 2) on titanium alloy for biomedical applications, Ceram. Int. 38 (2012) 3435-3443. http://dx.doi.org/ 10.1016/j.ceramint.2011.12.056. otwiera się w nowej karcie
  53. J. Loch, H. Krawiec, Corrosion behaviour of cobalt alloys in artifical salvia solution, Arch. Foundry Eng. 13 (2013) 101-106. otwiera się w nowej karcie
  54. A. Tahmasbi Rad, M. Solati-Hashjin, N.A.A. Osman, S. Faghihi, Improved bio- physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage, Ceram. Int. 40 (2014) 12681-12691. http:// dx.doi.org/10.1016/j.ceramint.2014.04.116. otwiera się w nowej karcie
  55. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials, J. R. Soc., Interface / R. Soc. 7 (2010) 581-613. http://dx.doi.org/ 10.1098/rsif.2010.0156.focus. otwiera się w nowej karcie
  56. M. Farrokhi-Rad, T. Shahrabi, Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceram. Int. 40 (2014) 3031-3039. http://dx.doi.org/10.1016/j.cera- mint.2013.10.004. otwiera się w nowej karcie
  57. A.A. Abdeltawab, M.A. Shoeib, S.G. Mohamed, Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surf. Coat. Technol. 206 (2011) 43-50. http://dx.doi.org/10.1016/j.surf- coat.2011.06.034. otwiera się w nowej karcie
  58. B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast, Biomaterials 24 (2003) 4663-4670. http://dx.doi.org/10.1016/S0142-9612(03)00366-1. otwiera się w nowej karcie
  59. K.A. Gross, M. Babovic, Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings, Biomaterials 23 (2002) 4731-4737. http://dx.doi.org/10.1016/S0142-9612(02)00222-3. otwiera się w nowej karcie
  60. B.D. Boyan, T.W. Hummert, D.D. Dean, Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response, Biomaterials 17 (1996) 137-146. http://dx.doi.org/10.1016/0142-9612(96)85758-9. otwiera się w nowej karcie
  61. X. Chen, H.J. Schluesener, Nanosilver: a nanoproduct in medical application, Toxicol. Lett. (2008). http://dx.doi.org/10.1016/j.toxlet.2007.10.004. otwiera się w nowej karcie
  62. W. Lesniak, A.U. Blelinska, K. Sun, K.W. Janczak, X. Shi, J.R. Baker, L.P. Balogh, Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection, Nano Lett. 5 (2005) 2123-2130. http:// dx.doi.org/10.1021/nl051077u. otwiera się w nowej karcie
  63. B. Reidy, A. Haase, A. Luch, K.A. Dawson, I. Lynch, Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications, Materials 6 (2013) 2295-2350. http://dx.doi.org/10.3390/ma6062295. otwiera się w nowej karcie
  64. R.D. Glover, J.M. Miller, J.E. Hutchison, Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment, ACS Nano 5 (2011) 8950-8957. http:// dx.doi.org/10.1021/nn2031319. otwiera się w nowej karcie
  65. M. Mirzaee, M. Vaezi, Y. Palizdar, Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid, Mater. Sci. Eng. C 69 (2016) 675-684. http://dx.doi.org/10.1016/j.msec.2016.07.057. otwiera się w nowej karcie
  66. C.T. Kwok, P.K. Wong, F.T. Cheng, H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Appl. Surf. Sci. 255 (2009) 6736-6744. http://dx.doi.org/10.1016/ j.apsusc.2009.02.086. otwiera się w nowej karcie
  67. M. Sankar, S. Suwas, S. Balasubramanian, G. Manivasagam, Surface & coatings technology comparison of electrochemical behavior of hydroxyapatite coated onto WE43 Mg alloy by electrophoretic and pulsed laser deposition, SCT 309 (2017) 840-848. http://dx.doi.org/10.1016/j.surfcoat.2016.10.077. otwiera się w nowej karcie
  68. Y. Yan, X. Zhang, Y. Huang, Q. Ding, X. Pang, Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium, Appl. Surf. Sci. 314 (2014) 348-357. http://dx.doi.org/10.1016/j.apsusc.2014.07.027. otwiera się w nowej karcie
  69. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, N.R. Bandyopadhyay, Nanoindentation study of microplasma sprayed hydroxya- patite coating, Ceram. Int. 35 (2009) 2295-2304. http://dx.doi.org/10.1016/ j.ceramint.2009.01.002. otwiera się w nowej karcie
  70. A. Dey, A.K. Mukhopadhyay, Evaluation of residual stress in microplasma sprayed hydroxyapatite coating by nanoindentation, Ceram. Int. 40 (2014) 1263-1272. otwiera się w nowej karcie
  71. http://dx.doi.org/10.1016/j.ceramint.2013.06.073. otwiera się w nowej karcie
  72. S. Saber-Samandari, K.A. Gross, Nanoindentation on the surface of thermally sprayed coatings, Surf. Coat. Technol. 203 (2009) 3516-3520. http://dx.doi.org/ 10.1016/j.surfcoat.2009.05.033. otwiera się w nowej karcie
  73. C.Y. Tang, P.S. Uskokovic, C.P. Tsui, D. Veljovic, R. Petrovic, D. Janackovic, Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite, Ceram. Int. 35 (2009) 2171-2178. http://dx.doi.org/10.1016/j.ceramint.2008.11.028. otwiera się w nowej karcie
  74. S. Saber-Samandari, K.A. Gross, Nanoindentation reveals mechanical properties within thermally sprayed hydroxyapatite coatings, Surf. Coat. Technol. 203 (2009) 1660-1664. http://dx.doi.org/10.1016/j.surfcoat.2008.12.025. otwiera się w nowej karcie
  75. K. Polychronopoulou, C. Rebholz, M.A. Baker, L. Theodorou, N.G. Demas, S.J. Hinder, A.A. Polycarpou, C.C. Doumanidis, K. Böbel, Nanostructure, me- chanical and tribological properties of reactive magnetron sputtered TiCx coatings, Diam. Relat. Mater. 17 (2008) 2054-2061. http://dx.doi.org/10.1016/j.dia- mond.2008.07.007. otwiera się w nowej karcie
  76. A. Fomin, M. Fomina, V. Koshuro, I. Rodionov, A. Zakharevich, A. Skaptsov, Structure and mechanical properties of hydroxyapatite coatings produced on titanium using plasma spraying with induction preheating, Ceram. Int. (2017) 0-1. http://dx.doi.org/10.1016/j.ceramint.2017.05.168. otwiera się w nowej karcie
  77. R.M. Kumar, K. Kumar, S. Singh, P. Gupta, B. Bhushan, P. Gopinath, D. Lahiri, Surface and coatings technology electrophoretic deposition of hydroxyapatite coating on Mg -3Zn alloy for orthopaedic application, Surf. Coat. Technol. 287 (2016) 82-92. http://dx.doi.org/10.1016/j.surfcoat.2015.12.086. otwiera się w nowej karcie
  78. L. Clèries, J. Fernández-Pradas, J. Morenza, Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation, Biomaterials 21 (2000) 1861-1865. http://dx.doi.org/10.1016/S0142-9612(00)00060-0. otwiera się w nowej karcie
  79. S. Heise, M. Höhlinger, Y. Torres, J. José, P. Palacio, J. Antonio, R. Ortiz, V. Wagener, S. Virtanen, A.R. Boccaccini, Electrochimica acta electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochim. Acta 232 (2017) 456-464. http://dx.doi.org/ 10.1016/j.electacta.2017.02.081. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 354 razy

Publikacje, które mogą cię zainteresować

Meta Tagi