Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use - Publikacja - MOST Wiedzy

Wyszukiwarka

Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use

Abstrakt

The main focus of this study is the emission of monoaromatic hydrocarbons because these are the preliminary factors of potential solvent and monomer residues present in single-use plastic barbecue and kitchen utensils comprising polystyrene, polypropylene, natural cellulose, and biodegradable polymers intended for use with hot meal or beverages. Herein, the emissions of monoaromatic hydrocarbons (styrene, benzene, toluene, ethylbenzene, and xylene compounds and the total volatile organic compounds (TVOC)) fromnine types of disposable plastic utensils are reported. Seventy two samples of single-use plastic utensilswere conditioned at 40 and 80 °C using a stationary emission microchamber system. The average TVOC released from the studied polystyrene, polypropylene, and natural or biodegradable utensils were (2.3 ± 1.3), (1.01 ± 0.15), and (0.48 ± 0.37) μg g−1, respectively, at 40 °C and (11.1±1.2), (46.1±9.5), and (5.5±1.1) μg g−1, respectively, at 80 °C. Significant emissions of styrene (ranged from 3.5 up to 15.3 × 103 ng∙g−1), toluene (from 2.8 up to 0.53 × 103 ng∙g−1), and ethylbenzene (from3.7 up to 5.7 × 103 ng∙g−1) fromthe studied sampleswere observed, especially at 80 °C. Thus, elevated temperatures increase the potential emission of solvent and monomer residues fromplastics and could affect the quality of consumed meals or beverages, such as taste. Additionally, to determine the possible interactions between the measured chemical compounds in the plastic utensils, the Pearson's correlation coefficients were calculated.

Cytowania

  • 4

    CrossRef

  • 5

    Web of Science

  • 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SCIENCE OF THE TOTAL ENVIRONMENT nr 720,
ISSN: 0048-9697
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Marć M.: Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use// SCIENCE OF THE TOTAL ENVIRONMENT -Vol. 720, (2020), s.137485-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.scitotenv.2020.137485
Bibliografia: test
  1. Azimi, P., Zhao, D., Pouzet, C., Crain, N.E., Stephens, B., 2016. Emissions of ultrafine parti- cles and volatile organic compounds from commercially available desktop three- dimensional printers with multiple filaments. Environ. Sci. Technol. 50, 1260-1268. https://doi.org/10.1021/acs.est.5b04983. otwiera się w nowej karcie
  2. Böhm, M., Salem, M.Z.M., Srba, J., 2012. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 221-222, 68-79. https://doi.org/10.1016/j. jhazmat.2012.04.013. otwiera się w nowej karcie
  3. Bolgar, M., Hubball, J., Groeger, J., Meronek, S., 2008. Handbook for the Chemical Analysis of Plastic and Polymer Additives. Taylor & Francis Group, LLC. otwiera się w nowej karcie
  4. Chang, Y., Kang, K., Park, S.J., Choi, J.C., Kim, M.K., Han, J., 2019. Experimental and theoret- ical study of polypropylene: antioxidant migration with different food simulants and temperatures. J. Food Eng. 244, 142-149. https://doi.org/10.1016/j. jfoodeng.2018.09.028. otwiera się w nowej karcie
  5. Commission Regulation (EU), 2011. No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union L 12, 1-89. otwiera się w nowej karcie
  6. Davis, A.Y., Zhang, Q., Wong, J.P.S., Weber, R.J., Black, M.S., 2019. Characterization of vola- tile organic compound emissions from consumer level material extrusion 3D printers. Build. Environ. 160, 106209. https://doi.org/10.1016/j. buildenv.2019.106209. otwiera się w nowej karcie
  7. Ebadi-Dehaghani, H., Barikani, M., Borhani, S., Bolvardi, B., Khonakdar, H.A., Jafari, S.H., Aarabi, A., 2016. Biodegradation and hydrolysis studies on polypropylene/ polylactide/organo-clay nanocomposites. Polym. Bull. 73, 3287-3304. https://doi. org/10.1007/s00289-016-1655-x. otwiera się w nowej karcie
  8. Fasano, E., Bono-Blay, F., Cirillo, T., Montuori, P., Lacorte, S., 2012. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 27, 132-138. https://doi.org/10.1016/j.foodcont.2012.03.005. otwiera się w nowej karcie
  9. Gennari, O., Albrizio, S., Monteiro, M., 2012. A GC-FID method to determine styrene in polystyrene glasses. Food Anal. Method. 5, 1411-1418. https://doi.org/10.1007/ s12161-012-9395-5. otwiera się w nowej karcie
  10. Ghaffar, A., Schoenmakers, P.J., van der Wal, Sj, 2014. Methods for the chemical analysis of degradable synthetic polymeric biomaterials. Crit. Rev. Anal. Chem. 44, 23-40. https://doi.org/10.1080/10408347.2013.831729. otwiera się w nowej karcie
  11. Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental im- pact during their use, diposal and recycling. J. Hazard. Mater. 344, 179-199. https:// doi.org/10.1016/j.jhazmat.2017.10.014. otwiera się w nowej karcie
  12. Hakkarainen, M., 2010. Multiple headspace single-drop micro-extraction for quantitative determination of lactide in thermally-oxidized polylactide. Polym. Degrad. Stabil. 95, 270-273. https://doi.org/10.1016/j.polymdegradstab. 2009.11.009. otwiera się w nowej karcie
  13. Helmroth, E., Rijk, R., Dekker, M., Jongen, W., 2002. Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends Food Sci. Tech. 13, 102-109. https://doi.org/10.1016/S0924-2244(02)00031-6. otwiera się w nowej karcie
  14. Hu, L., Tian, M., Feng, W., He, H., Wang, Y., Yang, L., 2019. Sensitive detection of benzophenone-type ultraviolet filters in plastic food packaging materials by sheathless capillary electrophoresis-electrospray ionization-tandem mass spectrom- etry. J. Chromatogr. A 1604, 460-469. https://doi.org/10.1016/j.chroma.2019.460469. otwiera się w nowej karcie
  15. Ion, V.A., Pârvulescu, O.C., Dobre, T., 2015. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose. Appl. Surf. Sci. 335, 137-146. https://doi.org/ 10.1016/j.apsusc.2015.02.040. otwiera się w nowej karcie
  16. Järnström, H., Saarela, K., Kalliokoski, P., Pasanen, A.L., 2007. Reference values for structure emissions measured on site in new residential buildings in Finland. Atmos. Environ. 41, 2290-2302. https://doi.org/10.1016/j.atmosenv.2006.11.033. otwiera się w nowej karcie
  17. Jeon, H.K., 2017. Comparative toxicity related to metabolisms of benzophenone-type UV filters, potentially harmful to the environment and humans. Mol. Cell. Toxicol. 13, 337-343. https://doi.org/10.1007/s13273-017-0037-2. otwiera się w nowej karcie
  18. Kawamura, Y., Ogawa, Y., Nishimura, T., Kikuchi, Y., Nishikawa, J.I., Nishihara, T., Tanamoto, K., 2003. Estrogenic activities of UV stabilizers used in food contact plastics and benzophenone derivatives tested by the yeast two-hybrid assay. J. Health Sci. 49, 205-212. https://doi.org/10.1248/jhs.49.205. otwiera się w nowej karcie
  19. Kim, S., Choi, K., 2014. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: a mini-review. Environ. Int. 70, 143-157. https://doi.org/10.1016/j.envint.2014.05.015. otwiera się w nowej karcie
  20. Kim, Y., Yoon, C., Ham, S., Park, J., Kim, S., Kwon, O., Tsai, P.J., 2015. Emissions of nanopar- ticles and gaseous material from 3D printer operation. Environ. Sci. Technol. 49, 12044-12053. https://doi.org/10.1021/acs.est.5b02805. otwiera się w nowej karcie
  21. Marć, M., Zabiegała, B., 2017. An investigation of selected monoaromatic hydrocarbons re- leased from the surface of polystyrene lids used in coffee-to-go cups. Microchem. J. 133, 496-505. https://doi.org/10.1016/j.microc.2017.04.015. otwiera się w nowej karcie
  22. Marć, M., Zabiegała, B., Namieśnik, J., 2014. Application of passive sampling technique in monitoring research on quality of atmospheric air in the area of Tczew, Poland. Int. J. Environ. Anal. Chem. 94, 151-167. https://doi.org/10.1080/03067319.2013.791979. otwiera się w nowej karcie
  23. Marć, M., Formela, K., Klein, M., Namieśnik, J., Zabiegała, B., 2015. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products. Sci. Total Environ. 530-531, 290-296. https://doi.org/10.1016/j. scitotenv.2015.05.105. otwiera się w nowej karcie
  24. Marć, M., Namieśnik, J., Zabiegała, B., 2017. The miniaturised emission chamber system and home-made passive flux sampler studies of monoaromatic hydrocarbons emis- sions from selected commercially-available floor coverings. Build. Environ. 123, 1-13. https://doi.org/10.1016/j.buildenv.2017.06.035. otwiera się w nowej karcie
  25. Mitchell, G., Higgitt, C., Gibson, L.T., 2014a. Emissions from polymeric materials: characterised by thermal desorption-gas chromatography. Polym. Degrad. Stabil. 107, 328-340. https://doi.org/10.1016/j.polymdegradstab.2013.12.003. otwiera się w nowej karcie
  26. Mitchell, J., Vandeperre, L., Dvorak, R., Kosior, E., Tarverdi, K., Cheeseman, C., 2014b. Recycling disposable cups into paper plastic composites. Waste Manag. 34, 2113-2119. https://doi.org/10.1016/j.wasman.2014.05.020. otwiera się w nowej karcie
  27. Mofokeng, P., Luyt, A.S., Tabi, T., Kovacs, J., 2011. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. M. 25, 927-948. https://doi.org/10.1177/0892705711423291. otwiera się w nowej karcie
  28. Moreta, C., Tena, M.T., 2015. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry. J. Chromatogr. A 1414, 77-87. https://doi.org/10.1016/j.chroma.2015.08.030. otwiera się w nowej karcie
  29. Motyakin, M.V., Schlick, S., 2006. ESR imaging and FTIR study of thermally treated poly (acrylonitrile-butadiene-styrene) (ABS) containing a hindered amine stabilizer: ef- fect of polymermorphology, and butadiene and stabilizer content. Polym. Degrad. Stabil. 91, 1462-1470. https://doi.org/10.1016/j.polymdegradstab. 2005.10.011. otwiera się w nowej karcie
  30. Munteanu, S.B., Vasile, C., 2005. Spectral and thermal characterization of styrene- butadiene copolymers with different architectures. J. Optoelectron. Adv. M. 7, 3135-3148. otwiera się w nowej karcie
  31. Nekhoroshev, V.P., Popov, E.A., Nekhorosheva, A.V., Ruban, S.V., 2005. Structural features of atactic polypropylene. Plasticheskie Massy 12, 6-9. https://doi.org/10.1177/ 0307174X0603301003. otwiera się w nowej karcie
  32. Olmos, D., Martin, E.V., Gonzalez-Benito, J., 2014. New molecular-scale information on polystyrene dynamics in PS and PS-BaTiO 3 composites from FTIR spectroscopy. Phys. Chem. Chem. Phys. 16, 24339-24349. https://doi.org/10.1039/c4cp03516j. otwiera się w nowej karcie
  33. Pennequin-Cardinala, A., Plaisancea, H., Locogea, N., Ramalho, O., Kirchner, S., Galloo, J.C., 2005. Performances of the Radiello® diffusive sampler for BTEX measurements: in- fluence of environmental conditions and determination of modelled sampling rates. otwiera się w nowej karcie
  34. Atmos. Environ. 39, 2535-2544. https://doi.org/10.1016/j.atmosenv.2004.12.035. otwiera się w nowej karcie
  35. Poςas, M.F., Hogg, T., 2007. Exposure assessment of chemicals from packaging materials in foods: a review. Trends Food Sci. Tech. 18, 219-230. https://doi.org/10.1016/j. tifs.2006.12.008. otwiera się w nowej karcie
  36. Regulation (EC), 2004. No 1935/2004 of the European Parliament and of the council of 27 October 2004 on materials and articles intended to come into contact with food and repealing directives 80/590/EEC and 89/109/EEC. Off. J. Eur. Union L338, 4-17. otwiera się w nowej karcie
  37. Rubio, L., Valverde-Som, L., Sarabia, L.A., Ortiz, M.C., 2019. The behaviour of Tenax as food simulant in the migration of polymer additives from food contact materials by means of gas chromatography/mass spectrometry and PARAFAC. J. Chromatogr. A 1589, 18-29. https://doi.org/10.1016/j.chroma.2018.12.054. otwiera się w nowej karcie
  38. Salthammer, T., Mentese, S., Marutzky, R., 2010. Formaldehyde in the indoor environ- ment. Chem. Rev. 110, 2536-2572. https://doi.org/10.1021/cr800399g. otwiera się w nowej karcie
  39. Santhoskumar, A.W., Palanivelu, K., Sharma, S.K., Nayak, S.K., 2010. A new synthesis of nickel 12-hydroxy oleate formulation to improve polyolefin's degradation. J. Bioremed. Biodegr. 1, 108. https://doi.org/10.4172/2155-6199.1000108. otwiera się w nowej karcie
  40. Siracusa, V., Rocculi, P., Romani, S., Dalla Rosa, M., 2008. Biodegradable polymers for food packaging: a review. Trends Food Sci. Tech. 19, 634-643. https://doi.org/10.1016/j. tifs.2008.07.003. otwiera się w nowej karcie
  41. Steinle, P., 2016. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J. Occup. Environ. Hyg. 13, 121-132. https://doi. org/10.1080/15459624.2015.1091957. otwiera się w nowej karcie
  42. Tábi, T., Sajó, I.E., Szabó, F., Luyt, A.S., Kovács, J.G., 2010. Crystalline structure of annealed polylactic acid and its relation to processing. Express Poly. Lett. 4, 659-668. https:// doi.org/10.3144/expresspolymlett.2010.80. otwiera się w nowej karcie
  43. Tuomainen, A., Seuri, M., Sieppi, A., 2004. Indoor air quality and health problems associ- ated with damp floor coverings. Int. Arch. Occ. Env. Hea. 77, 222-226. https://doi. org/10.1007/s00420-003-0481-2. otwiera się w nowej karcie
  44. van der Harst, E., Potting, J., Kroeze, C., 2014. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Sci. Total Environ. 494-495, 129-143. https://doi.org/10.1016/j.scitotenv.2014.06.084. otwiera się w nowej karcie
  45. Van Doorn, G., Woods, A., Levitan, C.A., Wand, X., Velasco, C., Bernal-Torres, C., Spence, C., 2017. Does the shape of a cup influence coffee taste expectations? A cross cultural, online study. Food Qual. Prefer. 56, 201-211. https://doi.org/10.1016/j. foodqual.2016.10.013. otwiera się w nowej karcie
  46. Verzera, A., Condurso, C., Romeo, V., Tripodi, G., Ziino, M., 2010. Solid-phase microextraction coupled to fast gas chromatography for the determination of mi- grants from polystyrene-packaging materials into yoghurt. Food Anal. Meth. 3, 80-84. https://doi.org/10.1007/s12161-009-9088-x. otwiera się w nowej karcie
  47. Yang, F., Li, X.L., Meng, D.L., Yang, Y.L., 2017. Determination of ultraviolet absorbers and light stabilizers in food packaging bags by magnetic solid phase extraction followed by high-performance liquid chromatography. Food Anal. Meth. 10, 3247-3254. https://doi.org/10.1007/s12161-017-0896-0. otwiera się w nowej karcie
  48. Zabiegała, B., Urbanowicz, M., Szymańska, K., Namieśnik, J., 2010. Application of passive sampling technique for monitoring of BTEX concentration in urban air: field compar- ison of different types of passive samplers. J. Chromatogr. Sci. 48, 167-175. https:// doi.org/10.1093/chromsci/48.3.167. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 64 razy

Publikacje, które mogą cię zainteresować

Meta Tagi