Emotion monitoring system for drivers - Publikacja - MOST Wiedzy

Wyszukiwarka

Emotion monitoring system for drivers

Abstrakt

This article describes a new approach to the issue of building a driver monitoring system. Actual systems focus, for example, on tracking eyelid and eyebrow movements that result from fatigue. We propose a different approach based on monitoring the state of emotions. Such a system assumes that by using the emotion model based on our own concept, referred to as the reverse Plutchik’s paraboloid of emotions, the recognition of emotions is carried out by means of a video camera and an external algorithm that recognizes real/internal emotions based on facial expressions. The final emotion is estimated by the Kalman filter, where the emotion is treated as measurement data. The aim of our future work is to determine the impact of the driver’s emotional state on driving safety.

Cytowania

  • 1 3

    CrossRef

  • 1 0

    Web of Science

  • 1 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 241 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IFAC-PapersOnLine nr 52, strony 200 - 205,
ISSN: 2405-8963
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kowalczuk Z., Czubenko M., Merta T.: Emotion monitoring system for drivers// IFAC-PapersOnLine -Vol. 52,iss. 8 (2019), s.200-205
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ifacol.2019.08.071
Bibliografia: test
  1. Akrout, B. and Mahdi, W. (2014). Spatio-temporal fea- tures for the automatic control of driver drowsiness state and lack of concentration. Machine Vision and Applications, 26(1), 1-13. otwiera się w nowej karcie
  2. Arun, S., Murugappan, M., and Sundaraj, K. (2011). Hy- povigilance warning system: A review on driver alerting techniques. In IEEE Control and System Graduate Research Colloquium, 65-69. Shah Alam, Malaysia. otwiera się w nowej karcie
  3. Ashwin, D.V., Kumar, A., and Manikandan, J. (2018). Design of a Real-Time Human Emotion Recognition System. In N. Kumar and A. Thakre (eds.), Ubiquitous communications and network computing, volume 218 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineer- ing, 177-188. Springer, Cham. otwiera się w nowej karcie
  4. Becker-Asano, C. (2008). WASABI: Affect Simulation for Agents With Believable Interactivity. Ph.D. thesis, Faculty of Technology, University of Bielefeld. otwiera się w nowej karcie
  5. Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., and Lopez, M.E. (2006). Real-time system for monitor- ing driver vigilance. IEEE Transactions on Intelligent Transportation Systems, 7(1), 63-77. otwiera się w nowej karcie
  6. Cai, H., Lin, Y., and Mourant, R. (2007). Study on driver emotion in driver-vehicle-environment systems using multiple networked driving simulators. In Driving Simulation Conference, North America 2007, 1-9.
  7. Christopher Brill, J., Hancock, P., and D Gilson, R. (2005). Driver fatigue: Is something missing? 138-142. Rockport, Maine, USA. otwiera się w nowej karcie
  8. Damasio, A. (1994). Descartes' Error: Emotion, Reason, and the Human Brain. Gosset/Putnam, New York.
  9. Dong, Y., Hu, Z., Uchimura, K., and Murayama, N. (2011). Driver inattention monitoring system for intelligent ve- hicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2), 596-614. otwiera się w nowej karcie
  10. Ekman, P., Friesen, W.V., and Ellsworth, P. (2013). What emotion categories or dimensions can observers judge from facial behavior? In A.P. Goldstein and L. Kras- ner (eds.), Emotion in the human face: guidelines for research and an integration of findings, 57-67. Elsevier Science. otwiera się w nowej karcie
  11. Ekman, P. and Friesen, W.V. (1978). Facial Action Coding System: A technique for the measurement of facial action. otwiera się w nowej karcie
  12. El-Nasr, M.S., Yen, J., and Ioerger, T.R. (2000). Flame -fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-Agent Systems, 3(3), 219-257. otwiera się w nowej karcie
  13. Gratch, J. and Marsella, S. (2004). A domain-independent framework for modeling emotion. Cognitive Systems Research, 5(4), 269-306. otwiera się w nowej karcie
  14. Gudi, A., Tasli, H.E., den Uyl, T.M., and Maroulis, A. (2015). Deep learning based FACS Action Unit occur- rence and intensity estimation. In 11th IEEE interna- tional conference and workshops on automatic face and gesture recognition (FG), 1-5. IEEE. otwiera się w nowej karcie
  15. Gupta, S. (2018). Facial emotion recognition in real-time and static images. In 2nd international conference on inventive systems and control (ICISC), 553-560. IEEE. otwiera się w nowej karcie
  16. Iyer, A.V., Pasad, V., Sankhe, S.R., and Prajapati, K. (2017). Emotion based mood enhancing music recom- mendation. In 2nd IEEE International Conference on Recent Trends in Electronics, Information Communica- tion Technology (RTEICT), 1573-1577. otwiera się w nowej karcie
  17. Jiang, R., Ho, A.T., Cheheb, I., Al-Maadeed, N., Al- Maadeed, S., and Bouridane, A. (2017). Emotion recog- nition from scrambled facial images via many graph embedding. Pattern Recognition, 67, 245-251. otwiera się w nowej karcie
  18. Kanluan, I., Grimm, M., and Kroschel, K. (2008). Audio- visual emotion recognition using an emotion space con- cept. In 16th European Signal Processing Conference, 1-5. Lausanne, Switzerland.
  19. Knapton, S. (2016). Which emotion raises the risk of a car crash by nearly 10 times? otwiera się w nowej karcie
  20. Kowalczuk, Z. and Czubenko, M. (2017). Emotions em- bodied in the SVC of an autonomous driver system. IFAC-PapersOnLine, 50(1), 3744--3749. otwiera się w nowej karcie
  21. Kowalczuk, Z. and Chudziak, P. (2018). Identification of Emotions Based on Human Facial Expressions Using a Color-Space Approach. In Springer, 291-303. otwiera się w nowej karcie
  22. Kowalczuk, Z. and Czubenko, M. (2010). Model of hu- man psychology for controlling autonomous robots. In 15th international conference on methods and models in automation and robotics, 31-36. otwiera się w nowej karcie
  23. Kowalczuk, Z. and Czubenko, M. (2011). Intelligent decision-making system for autonomous robots. Inter- national Journal of Applied Mathematics and Computer Science, 21(4), 621-635. otwiera się w nowej karcie
  24. Kowalczuk, Z. and Czubenko, M. (2016). Computational approaches to modeling artificial emotion-an overview of the proposed solutions. Frontiers in Robotics and AI, 3(21), 1-12. otwiera się w nowej karcie
  25. Kowalczuk, Z. and Czubenko, M. (2019). Qualia -A note on personal emotions representing as the temporal form of impressions. Transactions on Affective Computing, x(x), xx-xx. In review. otwiera się w nowej karcie
  26. Kowalczuk, Z., Czubenko, M., and Merta, T. (2019). In- terpretation and modeling of emotions managing au- tonomous robots, based on the paradigm of scheduling variable control. Engineering Applications of AI, x(x). In review. otwiera się w nowej karcie
  27. Lazarus, R.S. (1991). Emotion and Adaptation. Oxford University Press, USA, New York.
  28. Lövheim, H. (2012). A new three-dimensional model for emotions and monoamine neurotransmitters. Medical Hypotheses, 78(2), 341-8. otwiera się w nowej karcie
  29. Mishra, P.P. and Ratnaparkhi, P.S. (2018). Hmm based emotion detection in games. In 3rd International Con- ference for Convergence in Technology (I2CT), 1-4. Pune, India. otwiera się w nowej karcie
  30. Mollahosseini, A., Chan, D., and Mahoor, M.H. (2016). Going deeper in facial expression recognition using deep neural networks. In IEEE winter conference on applica- tions of computer vision (WACV), 1-10. IEEE. otwiera się w nowej karcie
  31. Ng, H.W., Nguyen, V.D., Vonikakis, V., and Winkler, S. (2015). Deep Learning for Emotion Recognition on Small Datasets using Transfer Learning. In Proceedings of the 2015 ACM on international conference on mul- timodal interaction -ICMI '15, 443-449. ACM Press, New York, New York, USA. otwiera się w nowej karcie
  32. Oatley, K., Keltner, D., and Jenkins, J. (2012). Under- standing Emotions. Blackwell Publishing, 2nd edition.
  33. Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In R. Plutchik and H. Kellerman (eds.), Emotion: theory, research, and experience, volume 1, 3 -33. Academic, New York. otwiera się w nowej karcie
  34. Plutchik, R. (2001). The nature of emotions. American Scientist, 89, 344. otwiera się w nowej karcie
  35. Posner, J., Russell, J.A., and Peterson, B.S. (2005). The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), 715-34. otwiera się w nowej karcie
  36. Russell, J.A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. otwiera się w nowej karcie
  37. Singh, H., Bhatia, J.S., and Kaur, J. (2011). Eye tracking based driver fatigue monitoring and warning system. In India International Conference on Power Electronics 2010 (IICPE2010), 1-6. New Delhi, India. otwiera się w nowej karcie
  38. Ursulescu, O., Ilie, B., and Simion, G. (2018). Driver drowsiness detection based on eye analysis. In 13th International Symposium on Electronics and Telecom- munications (ISETC), 1-4. Timisoara, Romania. otwiera się w nowej karcie
  39. Wan, W.H., Tsang, Y.T., Zhu, H., Koo, C.H., Liu, Y., and Lee, C.C.T. (2018). A real-time drivers' status monitoring scheme with safety analysis. In IECON 2018 -44th Annual Conference of the IEEE Industrial Electronics Society, 5137-5140. Washington DC, USA. otwiera się w nowej karcie
  40. Wundt, W. (1897). Outlines of Psychology. In Classics in the history of psychology. York University 2010.
  41. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353. otwiera się w nowej karcie
  42. Zajonc, R.B., Murphy, S.T., and Inglehart, M. (1989). Feeling and facial efference: implications of the vascular theory of emotion. Psychological Review, 96(3), 395-416. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 57 razy

Publikacje, które mogą cię zainteresować

Meta Tagi