Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments - Publikacja - MOST Wiedzy

Wyszukiwarka

Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments

Abstrakt

The paper presents state of the art of energy-aware high-performance computing (HPC), in particular identification and classification of approaches by system and device types, optimization metrics, and energy/power control methods. System types include single device, clusters, grids, and clouds while considered device types include CPUs, GPUs, multiprocessor, and hybrid systems. Optimization goals include various combinations of metrics such as execution time, energy consumption, and temperature with consideration of imposed power limits. Control methods include scheduling, DVFS/DFS/DCT, power capping with programmatic APIs such as Intel RAPL, NVIDIA NVML, as well as application optimizations, and hybrid methods. We discuss tools and APIs for energy/power management as well as tools and environments for prediction and/or simulation of energy/power consumption in modern HPC systems. Finally, programming examples, i.e., applications and benchmarks used in particular works are discussed. Based on our review, we identified a set of open areas and important up-to-date problems concerning methods and tools for modern HPC systems allowing energy-aware processing.

Cytowania

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 153 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Scientific Programming nr 2019, strony 1 - 19,
ISSN: 1058-9244
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Czarnul P., Proficz J., Krzywaniak A.: Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments// Scientific Programming. -Vol. 2019, (2019), s.1-19
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1155/2019/8348791
Bibliografia: test
  1. E. D'Hollander, J. Dongarra, I. Foster, L. Grandinetti, and G. Joubert, "Transition of HPC towards exascale comput- ing," in Advances in Parallel Computing, Vol. 24, IOS Press, Amsterdam, Netherlands, 2013.
  2. Y. Georgiou, D. Glesser, M. Hautreux, and D. Trystram, "Power adaptive scheduling," in Proceedings of the 2015 SLURM User Group, Edinburgh, UK, September 2015, https://slurm.schedmd.com/SLUG15/Power_Adaptive_final. pdf. otwiera się w nowej karcie
  3. C. H. Hsu, J. A. Kuehn, and S. W. Poole, "Towards efficient supercomputing: searching for the right efficiency metric," in Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE'12, pp. 157-162, ACM, Delft, Netherlands, March 2012. otwiera się w nowej karcie
  4. A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, "A taxonomy and survey of energy-efficient data centers and cloud computing systems," in Advances in Computers, vol. 82, pp. 47-111, Elsevier, Amsterdam, Netherlands, 2011. otwiera się w nowej karcie
  5. C. Cai, L. Wang, S. U. Khan, and J. Tao, "Energy-aware high performance computing: a taxonomy study," in Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, pp. 953-958, Tainan, Taiwan, De- cember 2011. otwiera się w nowej karcie
  6. S. Benedict, "Review: energy-aware performance analysis methodologies for hpc architectures-an exploratory study," Journal of Network and Computer Applications, vol. 35, no. 6, pp. 1709-1719, 2012. otwiera się w nowej karcie
  7. C. Jin, B. R. de Supinski, D. Abramson et al., "A survey on software methods to improve the energy efficiency of parallel computing," e International Journal of High Performance Computing Applications, vol. 31, no. 6, pp. 517-549, 2017. otwiera się w nowej karcie
  8. A. C. Orgerie, M. D. D. Assuncao, and L. Lefevre, "A survey on techniques for improving the energy efficiency of large- scale distributed systems," ACM Computing Surveys, vol. 46, no. 4, pp. 1-47, 2014. otwiera się w nowej karcie
  9. K. O'brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, "A survey of power and energy predictive models in hpc systems and applications," ACM Computing Surveys, vol. 50, no. 3, pp. 1-38, 2017. otwiera się w nowej karcie
  10. A. R. Surve, A. R. Khomane, and S. Cheke, "Energy awareness in hpc: a survey," International Journal of Com- puter Science and Mobile Computing, vol. 2, no. 3, pp. 46-51, 2013.
  11. J. Carretero, S. Distefano, D. Petcu et al., "Energy-efficient algorithms for ultrascale systems," Supercomputing Frontiers and Innovations, vol. 2, no. 2, pp. 77-104, 2015. otwiera się w nowej karcie
  12. S. Labasan, "Energy-efficient and power-constrained tech- niques for exascale computing," 2016, https://www.cs. uoregon.edu/reports/area-201610-labasan.pdf. otwiera się w nowej karcie
  13. D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, "Powermon: fine-grained and integrated power monitoring for commodity computer systems," in Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pp. 479-484, Concord, NC, USA, March 2010. otwiera się w nowej karcie
  14. R. Schöne and D. Molka, "Integrating performance analysis and energy efficiency optimizations in a unified environ- ment," Computer Science-Research and Development, vol. 29, no. 3, pp. 231-239, 2014. otwiera się w nowej karcie
  15. R. E. Grant, S. L. Olivier, J. H. Laros, R. Brightwell, and A. K. Porterfield, "Metrics for evaluating energy saving techniques for resilient hpc systems," in Proceedings of the 2014 IEEE International Parallel Distributed Processing Sym- posium Workshops, pp. 790-797, Cancun, Mexico, May 2014. otwiera się w nowej karcie
  16. T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. M. Pierson, and A. V. Vasilakos, "Cloud computing: survey on energy efficiency," ACM Computing Surveys, vol. 47, no. 2, pp. 1-36, 2014. otwiera się w nowej karcie
  17. F. Almeida, M. D. Assunção, J. Barbosa et al., "Energy monitoring as an essential building block towards sustain- able ultrascale systems," Sustainable Computing: Informatics and Systems, vol. 17, pp. 27-42, 2018. otwiera się w nowej karcie
  18. R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong, "Effects of dynamic voltage and frequency scaling on a k20 gpu," in Proceedings of the 2013 42nd International Conference on Parallel Processing, pp. 826-833, Lyon, France, October 2013. otwiera się w nowej karcie
  19. D. D. Sensi, P. Kilpatrick, and M. Torquati, "State-aware concurrency throttling," in Proceedings of the Parallel Computing is Everywhere, Proceedings of the International Conference on Parallel Computing, ParCo 2017, pp. 201-210, Bologna, Italy, September 2017.
  20. NVML API reference, 2018, https://docs.nvidia.com/deploy/ nvml-api/nvml-api-reference.html.
  21. D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer, "An energy efficiency feature survey of the intel haswell processor," in Proceedings of the 2015 IEEE In- ternational Parallel and Distributed Processing Symposium Workshop, pp. 896-904, Orlando, FL, USA, May 2015. otwiera się w nowej karcie
  22. M. Hähnel, M. Völp, B. Döbel, and H. Härtig, "Measuring energy consumption for short code paths using rapl," ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 3, p. 13, 2012. otwiera się w nowej karcie
  23. S. Desrochers, C. Paradis, and V. M. Weaver, "A validation of dram rapl power measurements," in Proceedings of the Second International Symposium on Memory Systems-MEMSYS'16, pp. 455-470, Alexandria, VA, USA, October 2016. otwiera się w nowej karcie
  24. B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and M. Schulz, "Beyond DVFS: a first look at performance under a hardware-enforced power bound," in Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, pp. 947- 953, IEEE, Shanghai, China, May 2012. otwiera się w nowej karcie
  25. AMD: Bios and kernel developer's guide (BKDG) for AMD family 15h models 00h-0fh processors. 2015. otwiera się w nowej karcie
  26. M. Ware, K. Rajamani, M. Floyd et al., "Architecting for power management: the ibm ® power7 TM approach," in Proceedings of the HPCA-16 2010 the Sixteenth International Symposium on High-Performance Computer Architecture, pp. 1-11, Bangalore, India, January 2010. otwiera się w nowej karcie
  27. D. Terpstra, H. Jagode, H. You, and J. Dongarra, "Collecting performance data with PAPI-C," in Tools for High Perfor- mance Computing 2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds., pp. 157-173, Springer, Berlin, Heidelberg, Germany, 2010. otwiera się w nowej karcie
  28. K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, "Rapl in action: experiences in using rapl for power mea- surements," ACM Transactions on Modeling and Perfor- mance Evaluation of Computing Systems, vol. 3, no. 2, pp. 1-26, 2018. otwiera się w nowej karcie
  29. Intel PCM (processor counter monitor), 2018, https://github. com/opcm/pcm. otwiera się w nowej karcie
  30. H. Zhang and H. Hoffmann, "Maximizing performance under a power cap: a comparison of hardware, software, and hybrid techniques," ACM SIGPLAN Notices, vol. 51, no. 4, pp. 545-559, 2016. otwiera się w nowej karcie
  31. K. Diethelm, "Tools for assessing and optimizing the energy requirements of high performance scientific computing software," PAMM, vol. 16, no. 1, pp. 837-838, 2016. otwiera się w nowej karcie
  32. Ubuntu manpage, 2018, http://manpages.ubuntu.com/ manpages/cosmic/man1/powercap-set.1.html. otwiera się w nowej karcie
  33. Z. Wang, S. Ranka, and P. Mishra, "Efficient task partitioning and scheduling for thermal management in multicore pro- cessors," in Proceedings of the International Symposium on Quality Electronic Design, Santa Clara, CA, USA, March 2015. otwiera się w nowej karcie
  34. T. Li, V. K. Narayana, and T. El-Ghazawi, "Symbiotic scheduling of concurrent gpu kernels for performance and energy optimizations," in Proceedings of the 11th ACM Conference on Computing Frontiers, CF'14, pp. 36:1-36:10, ACM, Cagliari, Italy, May 2014. otwiera się w nowej karcie
  35. A. Langer, E. Totoni, U. S. Palekar, and L. V. Kalé, "Energy- efficient computing for hpc workloads on heterogeneous 16 Scientific Programming manycore chips," in Proceedings of the Sixth International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM'15, pp. 11-19, ACM, San Francisco, CA, USA, February 2015. otwiera się w nowej karcie
  36. S. Huang, S. Xiao, and W. Feng, "On the energy efficiency of graphics processing units for scientific computing," in Proceedings of the 2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1-8, Rome, Italy, May 2009. otwiera się w nowej karcie
  37. E. D. Carreño, A. S. Sarates, and P. O. A. Navaux, "A mechanism to reduce energy waste in the post-execution of gpu applications," Journal of Physics: Conference Series, vol. 649, no. 1, article 012002, 2015. otwiera się w nowej karcie
  38. N. Fisher, J. J. Chen, S. Wang, and L. iele, " ermal-aware global real-time scheduling on multicore systems," in Pro- ceedings of the 2009 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 131-140, San Francisco, CA, USA, April 2009. otwiera się w nowej karcie
  39. P. Libuschewski, P. Marwedel, D. Siedhoff, and H. Müller, "Multi-objective, energy-aware gpgpu design space explo- ration for medical or industrial applications," in Proceedings of the 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems, pp. 637-644, Washington, DC, USA, November 2014. otwiera się w nowej karcie
  40. A. Krzywaniak, J. Proficz, and P. Czarnul, "Analyzing energy/performance trade-offs with power capping for parallel applications on modern multi and many core pro- cessors," in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 339-346, Poznań, Poland, September 2018. otwiera się w nowej karcie
  41. C. Isci, G. Contreras, and M. Martonosi, "Live, runtime phase monitoring and prediction on real systems with ap- plication to dynamic power management," in Proceedings of the 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06), pp. 359-370, IEEE, Orlando, FL, USA, December 2006. otwiera się w nowej karcie
  42. A. Haidar, H. Jagode, P. Vaccaro, A. YarKhan, S. Tomov, and J. Dongarra, "Investigating power capping toward energy- efficient scientific applications," Concurrency and Compu- tation: Practice and Experience, vol. 31, no. 6, article e4485, 2019. otwiera się w nowej karcie
  43. A. Nandamuri, A. M. Malik, A. Qawasmeh, and B. M. Chapman, "Power and energy footprint of openmp programs using openmp runtime api," in Proceedings of the 2014 Energy Efficient Supercomputing Workshop, pp. 79-88, New Orleans, LO, USA, November 2014. otwiera się w nowej karcie
  44. J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, " ermal-aware task scheduling for energy minimization in heterogeneous real-time mpsoc systems," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys- tems, vol. 35, no. 8, pp. 1269-1282, 2016. otwiera się w nowej karcie
  45. M. Sourouri, E. B. Raknes, N. Reissmann et al., "Towards fine-grained dynamic tuning of hpc applications on modern multi-core architectures," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC'17, pp. 41:1-41:12, ACM, Denver, CO, USA, November 2017. otwiera się w nowej karcie
  46. A. Tiwari, M. Schulz, and L. Carrington, "Predicting optimal power allocation for cpu and dram domains," in Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 951-959, Orlando, FL, USA, May 2015. otwiera się w nowej karcie
  47. D. Bodas, J. Song, M. Rajappa, and A. Hoffman, "Simple power-aware scheduler to limit power consumption by hpc system within a budget," in Proceedings of the 2nd In- ternational Workshop on Energy Efficient Supercomputing, E2SC'14, pp. 21-30, IEEE Press, New Orleans, LO, USA, November 2014. otwiera się w nowej karcie
  48. D. Rajagopal, D. Tafani, Y. Georgiou, D. Glesser, and M. Ott, "A novel approach for job scheduling optimizations under power cap for arm and intel hpc systems," in Proceedings of the 2017 IEEE 24th International Conference on High Per- formance Computing (HiPC), pp. 142-151, Portland, USA, June 2017. otwiera się w nowej karcie
  49. B. Unni, N. Parveen, A. Kumar, and B. S. Bindhumadhava, "An intelligent energy optimization approach for mpi based applications in hpc systems," CSI Transactions on ICT, vol. 1, no. 2, pp. 175-181, 2013. otwiera się w nowej karcie
  50. A. K. Singh, P. Dziurzanski, and L. S. Indrusiak, "Value and energy optimizing dynamic resource allocation in many-core hpc systems," in Proceedings of the 2015 IEEE 7th In- ternational Conference on Cloud Computing Technology and Science (CloudCom), pp. 180-185, Vancouver, BC, Canada, November-December 2015. otwiera się w nowej karcie
  51. C. Silvano, G. Agosta, S. Cherubin et al., " e antarex ap- proach to autotuning and adaptivity for energy efficient hpc systems," in Proceedings of the ACM International Confer- ence on Computing Frontiers, CF'16, pp. 288-293, ACM, Como, Italy, May 2016. otwiera się w nowej karcie
  52. I. Miyoshi, S. Miwa, K. Inoue, and M. Kondo, "Run-time dfs/ dct optimization for power-constrained hpc systems," in Proceedings of the HPC Asia 2018, Chiyoda, Tokyo, Japan, January 2018. otwiera się w nowej karcie
  53. G. L. Tsafack Chetsa, L. Lefèvre, J. M. Pierson, P. Stolf, and G. Da Costa, "Exploiting performance counters to predict and improve energy performance of HPC systems," Future Generation Computer Systems, vol. 36, pp. 287-298, 2014. otwiera się w nowej karcie
  54. X. Wu, V. Taylor, J. Cook, and P. J. Mucci, "Using performance-power modeling to improve energy efficiency of hpc applications," Computer, vol. 49, no. 10, pp. 20-29, 2016. otwiera się w nowej karcie
  55. J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely, "Pmac's green queue: a framework for selecting energy optimal dvfs configurations in large scale mpi ap- plications," Concurrency and Computation: Practice and Experience, vol. 28, no. 2, pp. 211-231, 2016. otwiera się w nowej karcie
  56. A. Tiwari, M. Laurenzano, J. Peraza, L. Carrington, and A. Snavely, "Green queue: customized large-scale clock frequency scaling," in Proceedings of the 2012 Second In- ternational Conference on Cloud and Green Computing, pp. 260-267, Xiangtan, China, November 2012. otwiera się w nowej karcie
  57. G. L. T. Chetsa, L. Lefevre, J. M. Pierson, P. Stolf, and G. D. Costa, "Application-agnostic framework for improving the energy efficiency of multiple hpc subsystems," in Pro- ceedings of the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 62-69, Cambridge, UK, March 2015. otwiera się w nowej karcie
  58. O. Mämmelä, M. Majanen, R. Basmadjian, H. De Meer, A. Giesler, and W. Homberg, "Energy-aware job scheduler for high-performance computing," Computer Science- Research and Development, vol. 27, no. 4, pp. 265-275, 2012. otwiera się w nowej karcie
  59. V. W. Freeh and D. K. Lowenthal, "Using multiple energy gears in MPI programs on a power-scalable cluster," in Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming-PPoPP'05, p. 164, ACM, Chicago, IL, USA, June 2005. otwiera się w nowej karcie
  60. R. R. Manumachu and A. Lastovetsky, "Bi-objective opti- mization of data-parallel applications on homogeneous multicore clusters for performance and energy," IEEE Transactions on Computers, vol. 67, no. 2, pp. 160-177, 2018. otwiera się w nowej karcie
  61. B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and M. Schulz, "Bounding energy con- sumption in large-scale mpi programs," in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC'07, pp. 49:1-49:9, ACM, Rottach-Egern, Germany, November 2007. otwiera się w nowej karcie
  62. K. Fukazawa, M. Ueda, M. Aoyagi et al., "Power con- sumption evaluation of an mhd simulation with cpu power capping," in Proceedings of the 2014 14th IEEE/ACM In- ternational Symposium on Cluster, Cloud and Grid Com- puting, pp. 612-617, Chicago, IL, USA, May 2014. otwiera się w nowej karcie
  63. D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos, "Hybrid mpi/openmp power-aware computing," in Proceedings of the 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1-12, Atlanta, GA, USA, April 2010. otwiera się w nowej karcie
  64. D. Li, B. R. de Supinski, M. Schulz, D. S. Nikolopoulos, and K. W. Cameron, "Strategies for energy-efficient resource management of hybrid programming models," IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 1, pp. 144-157, 2013. otwiera się w nowej karcie
  65. M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, "Adaptive, transparent frequency and voltage scaling of communication phases in mpi programs," in Proccedings of the SC'06: Pro- ceedings of the 2006 ACM/IEEE Conference on Super- computing, p. 14, Tampa, FL, USA, November 2006. otwiera się w nowej karcie
  66. J. Moore, J. Chase, P. Ranganathan, and R. Sharma, "Making scheduling "cool": temperature-aware workload placement in data centers," in Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC'05, p. 5, USENIX Association, Berkeley, CA, USA, April 2005. otwiera się w nowej karcie
  67. L. Wang, S. U. Khan, and J. Dayal, " ermal aware workload placement with task-temperature profiles in a data center," Journal of Supercomputing, vol. 61, no. 3, pp. 780-803, 2012. otwiera się w nowej karcie
  68. T. Patki, D. K. Lowenthal, A. Sasidharan et al., "Practical resource management in power-constrained, high perfor- mance computing," in Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC'15, pp. 121-132, ACM, Portland, OR, USA, June 2015. otwiera się w nowej karcie
  69. A. Venkatesh, A. Vishnu, K. Hamidouche et al., "A case for application-oblivious energy-efficient mpi runtime," in Pro- ceedings of the SC '15: Proceedings of the International Con- ference for High Performance Computing, Networking, Storage and Analysis, pp. 1-12, Austin, TX, USA, November 2015. otwiera się w nowej karcie
  70. O. Sarood, A. Langer, L. Kalé, B. Rountree, and B. de Supinski, "Optimizing power allocation to cpu and memory subsystems in overprovisioned hpc systems," in Proceedings of the 2013 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1-8, Heraklion, Crete, Greece, September 2013. otwiera się w nowej karcie
  71. Z. Wang, ermal-aware task scheduling on multicore pro- cessors, Ph.D. thesis, AAI3569706, University of Florida, Gainesville, FL, USA, 2012.
  72. A. Auweter, A. Bode, M. Brehm et al., "A case study of energy aware scheduling on SuperMUC," in Proceedings of the Supercomputing. 29th International Conference, ISC 2014, pp. 394-409, Springer, Leipzig, Germany, June 2014. otwiera się w nowej karcie
  73. P. Czarnul and P. Rościszewski, "Optimization of execution time under power consumption constraints in a heteroge- neous parallel system with gpus and cpus," in Distributed Computing and Networking, M. Chatterjee, J. N. Cao, K. Kothapalli, and S. Rajsbaum, Eds., pp. 66-80, Springer, Berlin, Heidelberg, Germany, 2014. otwiera się w nowej karcie
  74. J. Kołodziej, S. U. Khan, L. Wang, A. Byrski, N. Min-Allah, and S. A. Madani, "Hierarchical genetic-based grid sched- uling with energy optimization," Cluster Computing, vol. 16, no. 3, pp. 591-609, 2013. otwiera się w nowej karcie
  75. M. Pirahandeh and D. H. Kim, "Energy-aware gpu-raid scheduling for reducing energy consumption in cloud storage systems," in Computer Science and its Applications, J. J. J. H. Park, I. Stojmenovic, H. Y. Jeong, and G. Yi, Eds., pp. 705-711, Springer, Berlin, Heidelberg, Germany, 2015. otwiera się w nowej karcie
  76. M. Vasudevan, Y. C. Tian, M. Tang, and E. Kozan, "Profile- based application assignment for greener and more energy- efficient data centers," Future Generation Computer Systems, vol. 67, pp. 94-108, 2017. otwiera się w nowej karcie
  77. A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing," Future Generation Computer Systems, vol. 28, no. 5, pp. 755-768, 2012. otwiera się w nowej karcie
  78. S. Miwa, S. Aita, and H. Nakamura, "Performance estimation of high performance computing systems with energy efficient ethernet technology," Computer Science-Research and De- velopment, vol. 29, no. 3, pp. 161-169, 2014. otwiera się w nowej karcie
  79. SPEC: Standard performance evaluation corporation, 2018, http://www.spec.org/. otwiera się w nowej karcie
  80. S. Bak, M. Krystek, K. Kurowski, A. Oleksiak, W. Piatek, and J. Weglarz, "GSSIM-a tool for distributed computing ex- periments," Scientific Programming, vol. 19, no. 4, pp. 231-251, 2011.
  81. K. Kurowski, A. Oleksiak, W. Piaţek, T. Piontek, A. Przybyszewski, and J. Weglarz, "DCworms-a tool for simulation of energy efficiency in distributed computing infrastructures," Simulation Modelling Practice and eory, vol. 39, pp. 135-151, 2013. otwiera się w nowej karcie
  82. P. Czarnul, J. Kuchta, P. Rościszewski, and J. Proficz, "Modeling energy consumption of parallel applications," in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 855-864, Gdańsk, Poland, September 2016. otwiera się w nowej karcie
  83. J. Proficz and P. Czarnul, "Performance and power-aware modeling of MPI applications for cluster computing," in Proceedings of the Parallel Processing and Applied Mathe- matics-11th International Conference, PPAM 2015, R. Wyr- zykowski, E. Deelman, J. J. Dongarra, K. Karczewski, J. Kitowski, K. Wiatr, Eds., vol. 9574, pp. 199-209, Springer, Krakow, Poland, September 2015. otwiera się w nowej karcie
  84. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, "Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of re- source provisioning algorithms," Software: Practice and Experience, vol. 41, no. 1, pp. 23-50, 2011. otwiera się w nowej karcie
  85. H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, "Versatile, scalable, and accurate simulation of distributed applications and platforms," Journal of Parallel and Distributed Computing, vol. 74, no. 10, pp. 2899-2917, 2014. otwiera się w nowej karcie
  86. B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing, "Utilizing green energy prediction to schedule mixed batch and service jobs in data centers," ACM SIGOPS Operating Systems Re- view, vol. 45, no. 3, p. 53, 2012. otwiera się w nowej karcie
  87. S. K. Gupta, R. R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, and G. Varsamopoulos, "GDCSim: a tool for analyzing Green Data Center design and resource man- agement techniques," in Proceedings of the 2011 International 18 Scientific Programming otwiera się w nowej karcie
  88. Green Computing Conference and Workshops, pp. 1-8, IEEE, Orlando, FL, USA, July 2011. otwiera się w nowej karcie
  89. D. Kliazovich, P. Bouvry, and S. U. Khan, "GreenCloud: a packet-level simulator of energy-aware cloud computing data centers," Journal of Supercomputing, vol. 62, no. 3, pp. 1263-1283, 2012. otwiera się w nowej karcie
  90. Z. Zhang, M. Lang, S. Pakin, and S. Fu, "Tracsim: simulating and scheduling trapped power capacity to maximize ma- chine room throughput," Parallel Computing, vol. 57, pp. 108-124, 2016. otwiera się w nowej karcie
  91. S. Ostermann, G. Kecskemeti, and R. Prodan, "Multi-layered simulations at the heart of workflow enactment on clouds," Concurrency and Computation: Practice and Experience, vol. 28, no. 11, pp. 3180-3201, 2016. otwiera się w nowej karcie
  92. W. Piaţek, A. Oleksiak, and G. Da Costa, "Energy and thermal models for simulation of workload and resource management in computing systems," Simulation Modelling Practice and eory, vol. 58, pp. 40-54, 2015.
  93. P. Czarnul, J. Kuchta, M. Matuszek et al., "MERPSYS: an environment for simulation of parallel application execution on large scale HPC systems," Simulation Modelling Practice and eory, vol. 77, pp. 124-140, 2017. otwiera się w nowej karcie
  94. F. C. Heinrich, A. Carpen-Amarie, A. Degomme et al., "Predicting the performance and the power consumption of MPI applications with SimGrid," 2017. otwiera się w nowej karcie
  95. B. Aksanli and J. Venkatesh, "Rosing: using datacenter simulation to evaluate green energy integration," Computer, vol. 45, no. 9, pp. 56-64, 2012. otwiera się w nowej karcie
  96. M. Wieczorek, R. Prodan, and T. Fahringer, "Scheduling of scientific workflows in the askalon grid environment," ACM SIGMOD Record, vol. 34, no. 3, pp. 56-62, 2005. otwiera się w nowej karcie
  97. S. Ostermann, K. Plankensteiner, and R. Prodan, "Using a new event-based simulation framework for investigating resource provisioning in clouds," Scientific Programming, vol. 19, no. 2-3, pp. 161-178, 2011. otwiera się w nowej karcie
  98. G. Kecskemeti, "Dissect-cf: a simulator to foster energy- aware scheduling in infrastructure clouds," Simulation Modelling Practice and eory, vol. 58, pp. 188-218, 2015. otwiera się w nowej karcie
  99. F. Xhafa, J. Carretero, L. Barolli, and A. Durresi, "Re- quirements for an event-based simulation package for grid systems," Journal of Interconnection Networks, vol. 8, no. 2, pp. 163-178, 2007. otwiera się w nowej karcie
  100. T. E. Carlson, W. Heirmant, L. Eeckhout, and Sniper, "Exploring the level of abstraction for scalable and accurate parallel multi-core simulation," in Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1-12, Seattle, WA, USA, November 2011. otwiera się w nowej karcie
  101. S. Li, J. Ho Ahn, J. B. Brockman et al., "McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures," in Proceedings of the 42nd Annual IEEE/ACM International Symposium on Micro- architecture, pp. 469-480, ACM, New York, NY, USA, December 2009. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 230 razy

Publikacje, które mogą cię zainteresować

Meta Tagi