Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants - Publikacja - MOST Wiedzy


Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants


This work aimed to compare the carbon footprint (CF) of six full-scale wastewater treatment plants (WWTPs). The CF was estimated in the range of 23–100 kg CO2e per population equivalent. In the total CF, the direct emissions held the highest share (62–74%) for the plants with energy recovery from biogas. In the plants depending entirely on the power grid, the indirect emissions due to energy consumption dominated the total CF (69–72%). The estimated CF was found highly sensitive towards the choice of N2O emission factors. A dual effect of external substrates co-digestion on the CF has been presented. After co-digestion, the overall CF decreased by 7% while increasing the biogas production by 17%. While applying the empirical model, the level of energy neutrality was strongly related to the ratio of the indirect to direct emissions.


  • 1 8


  • 1 3

    Web of Science

  • 1 6


Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
BIORESOURCE TECHNOLOGY nr 300, strony 1 - 9,
ISSN: 0960-8524
Rok wydania:
Opis bibliograficzny:
Maktabifard M., Zaborowska E., Mąkinia J.: Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants// BIORESOURCE TECHNOLOGY -Vol. 300, (2020), s.1-9
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.biortech.2019.122647
Bibliografia: test
  1. APHA, 2005. Standard Methods for the examination of Water and Wastewater, 21st ed. American Public Health Association, Washington DC, USA. otwiera się w nowej karcie
  2. Bao, Z., Sun, S., Sun, D., 2016. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. Int. Biodeterior. Biodegrad. 108, 108-114. otwiera się w nowej karcie
  3. Barberio, G., Cutaia, L., Librici, V., 2013. Treatment and disposal of sewage sludge: comparative life cycle assessment on Italian case study. Environ. Eng. Manage. J. 12, 7-10.
  4. Blomberg, K., Kosse, P., Mikola, A., Kuokkanen, A., Fred, T., Heinonen, M., Mulas, M., Lübken, M., Wichern, M., Vahala, R., 2018. Development of an extended ASM3 model for predicting the nitrous oxide emissions in a full-scale wastewater treatment plant. Environ. Sci. Technol. 52, 5803-5811. otwiera się w nowej karcie
  5. Carbon Footprint Calculator, 2019. aspx?tab=4. otwiera się w nowej karcie
  6. CFCT, 2014. Carbon Footprint Calculation Tool. carbon-footprint-calculation-tool-for-wwtps-now-available-in-english/. otwiera się w nowej karcie
  7. Chen, S., Tan, Y., Liu, Z., 2019. Direct and embodied energy-water-carbon nexus at an inter-regional scale. Appl. Energy 251, 113401. otwiera się w nowej karcie
  8. Collivignarelli, M.C., Abba, A., Frattarola, A., Miino, M.C., Padovani, S., Katsoyiannis, I., Torretta, V., 2019. Legislation for the reuse of biosolids on agricultural land in Europe: overview. Sustainability 11, 6015. otwiera się w nowej karcie
  9. de Haas, D., 2018. The energy versus nitrous oxide emissions nexus in wastewater treatment systems, in: IWA Nutrient Removal & Recovery Conference. Brisbane, Australia. otwiera się w nowej karcie
  10. Delre, A., ten Hoeve, M., Scheutz, C., 2019. Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach. J. Clean. Prod. 211, 1001-1014. otwiera się w nowej karcie
  11. EUR-Lex Directive, 2018. EU/2018/851 of the European Parliament and the Council of 30 May 2018 amending directive 2008/98/EC on waste. Off. J. Communities 150, 109-140.
  12. Foley, J., de Haas, D., Hartley, K., Lant, P.A., 2010. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res. 44, 1654-1666. otwiera się w nowej karcie
  13. Gao, H., Scherson, Y.D., Wells, G.F., 2014. Towards energy neutral wastewater treatment: methodology and state of the art. Environ. Sci. Process. Impacts 16, 1223-1246. otwiera się w nowej karcie
  14. Gherghel, A., Teodosiu, C., De Gisi, S., 2019. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 228, 244-263. otwiera się w nowej karcie
  15. Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., Joss, A., 2020.. N 2 O emission in full-scale wastewater treatment: proposing a refined monitoring strategy. Sci. Total Environ. 699, 134157. otwiera się w nowej karcie
  16. Gu, Y., Dong, Y.N., Wang, H., Keller, A., Xu, J., Chiramba, T., Li, F., 2016. Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective. Ecol. Indic. otwiera się w nowej karcie
  17. Gustavsson, D.J.I., Tumlin, S., 2013. Carbon footprints of Scandinavian wastewater treatment plants. Water Sci. Technol. 68, 887-893. otwiera się w nowej karcie
  18. Hao, X., Chen, Q., van Loosdrecht, M.C.M., Li, J., Jiang, H., 2020.. Sustainable disposal of excess sludge: incineration without anaerobic digestion. Water Res. 170, 115298. IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler].
  19. Cambridge. otwiera się w nowej karcie
  20. IPCC, 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midg]. otwiera się w nowej karcie
  21. IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme [Eggleston H. S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe K. (eds.)], (IGES), Japan. Vol. 5 Waste, Chapter 6 Wastewater Treatment and Discharge, 6.1-6.28. otwiera się w nowej karcie
  22. Islam, K.R., Ahsan, S., Barik, K., Aksakal, E.L., 2013. Biosolid impact on heavy metal accumulation and lability in solin under alternate-year no-till corn-soybean rotation. Water Air Soil Pollut. 224, 1451. otwiera się w nowej karcie
  23. Kacprzak, M., Neczaj, E., Fijalkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almas, A., Singh, B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39-46. otwiera się w nowej karcie
  24. Kosonen, H., Heinonen, M., Mikola, A., Haimi, H., Mulas, M., Corona, F., Vahala, R., 2016. Nitrous oxide production at a fully covered wastewater treatment plant: result of a long-term online monitoring campaign. Environ. Sci. Technol. 50, 5547-5554. otwiera się w nowej karcie
  25. Koutsou, O.P., Gatidou, G., Stasinakis, A.S., 2018. Domestic wastewater management in Greece: greenhouse gas emissions estimation at country scale. J. Clean. Prod. 188, 851-859. otwiera się w nowej karcie
  26. Li, Y., Wang, X., Butler, D., Liu, J., Qu, J., 2017. Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: an integrated exploration of biokinetics and life-cycle assessment. Sci. Rep. 7, 243. otwiera się w nowej karcie
  27. Lopes, A.C., Valente, A., Iribarren, D., Gonzalez-Fernandez, C., 2018. Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: a focus on alternative biogas uses. Bioresour. Technol. 270, 138-146.
  28. Maktabifard, M., Zaborowska, E., Makinia, J., 2019. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants -case studies from northern Poland. Water Sci. Technol. 79, 2211-2220. otwiera się w nowej karcie
  29. Maktabifard, M., Zaborowska, E., Makinia, J., 2018. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable en- ergy production. Rev. Environ. Sci. Biotechnol. 17, 17. otwiera się w nowej karcie
  30. Mamais, D., Noutsopoulos, C., Dimopoulou, A., Stasinakis, A., Lekkas, T.D., 2015. Wastewater treatment process impact on energy savings and greenhouse gas emis- sions. Water Sci. Technol. 71, 303-308. otwiera się w nowej karcie
  31. Mannina, G., Rebouças, T.F., Cosenza, A., Chandran, K., 2019. A plant-wide wastewater treatment plant model for carbon and energy footprint: model application and sce- nario analysis. J. Clean. Prod. 217, 244-256. otwiera się w nowej karcie
  32. Mo, W., Zhang, Q., 2012. Can municipal wastewater treatment systems be carbon neu- tral? J. Environ. Manage. 112, 360-367. otwiera się w nowej karcie
  33. Nakatsuka, N., Kishita, Y., Kurafuchi, T., Akamatsu, F., 2020.. Integrating wastewater treatment and incineration plants for energy efficient urban biomass utilization: a life cycle analysis. J. Clean. Prod. 242, 118448. otwiera się w nowej karcie
  34. NCEM, 2017. Emission Factors of CO2, SO2, NOx, CO and Total Dust for Electric Energy, on the Basis of Information Contained in the National Database on Greenhouse Gas Emissions and Other Substances for 2016. Warsaw, Poland. otwiera się w nowej karcie
  35. Nguyen, T.K.L., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Nghiem, L.D., Liu, Y., Ni, B., Hai, F.I., 2019. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci. Total Environ. 671, 1302-1313. otwiera się w nowej karcie
  36. Ødegaard, H., 2016. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR). Front. Environ. Sci. Eng. 10, 2095-2201. otwiera się w nowej karcie
  37. Pan, Y., Ye, L., van den Akker, B., Pages, R.G., Musenze, R.S., Yuan, Z., 2016. Sludge- drying lagoons: a potential significant methane source in wastewater treatment plants. Environ. Sci. Technol. 50, 1368-1375. otwiera się w nowej karcie
  38. Song, X., Luo, W., Hai, F.I., Price, W.E., Guo, W., Ngo, H.H., Nghiem, L.D., 2018. Resource recovery from wastewater by anaerobic membrane bioreactors: opportunities and challenges. Bioresour. Technol. 270, 669-677. otwiera się w nowej karcie
  39. Sun, S., Bao, Z., Li, R., Sun, D., Geng, H., Huang, X., Lin, J., Zhang, P., Ma, R., Fang, L., Zhang, X., Zhao, X., 2017. Reduction and prediction of N 2 O emission from an anoxic/ oxic wastewater treatment plant upon DO control and model simulation. Bioresour. Technol. 244, 800-809. otwiera się w nowej karcie
  40. Sweetapple, C., Fu, G., Butler, D., 2015. Does carbon reduction increase sustainability? A study in wastewater treatment. Water Res. 87, 522-530. otwiera się w nowej karcie
  41. Thakur, I.S., Medhi, K., 2019. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. Bioresour. Technol. 282, 502-513. otwiera się w nowej karcie
  42. Vuarnoz, D., Jusselme, T., 2018. Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the swiss grid. Energy 161, 573-582. otwiera się w nowej karcie
  43. Wang, H., Yang, Y., Keller, A.A.A., Li, X., Feng, S., Dong, Y., Li, F., 2016. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl. Energy 184, 873-881. otwiera się w nowej karcie
  44. Weiland, P., 2010. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849-860. otwiera się w nowej karcie
  45. Xu, J., Li, Y., Wang, H., Wu, J., Wang, X., Li, F., 2017. Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China. Energy Proc. 142, 3055-3061. otwiera się w nowej karcie
  46. Xu, X., 2013. The Carbon Footprint Analysis of Wastewater Treatment Plants and Nitrous Oxide Emissions from Full-Scale Biological Nitrogen Removal Processes in Spain (Ph.D. Thesis). Massachusetts Institute of Technology.
  47. Yoshida, H., Mønster, J., Scheutz, C., 2014. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 61, 108-118. otwiera się w nowej karcie
  48. Zhang, Q., Hua, J., Lee, D.J., Chang, Y., Lee, Y.J., 2017a. Sludge treatment: current re- search trends. Bioresour. Technol. 243, 1159-1172. otwiera się w nowej karcie
  49. Zhang, W., Lang, Q., Fang, M., Li, X., Bah, H., Dong, H., Dong, R., 2017b. Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste. Bioresour. Technol. 232, 304-312. otwiera się w nowej karcie
  50. Zhao, G., Garrido-Baserba, M., Reifsnyder, S., Xu, J.-C., Rosso, D., 2019. Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities. Sci. Total Environ. 665, 762-773. otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 93 razy

Publikacje, które mogą cię zainteresować

Meta Tagi