Engineering education for smart grid systems in the quasi-industrial environment of the LINTE^2 laboratory
Abstrakt
Smart grid systems are revolutionising the electric power sector, integrating advanced technologies to enhance efficiency, reliability and sustainability. It is important for higher education to equip the prospective smart grid professional with the competencies enabling them to navigate through the related complexities and drive innovation. To achieve this, interdisciplinary education programmes are necessary, addressing inter alia integration of renewable energy sources, data analytics, AI and machine learning, cybersecurity, policies and regulatory frameworks. Hands-on experience, industrial training and research-based learning are also highly desirable components of such programmes. This article describes how Gdańsk University of Technology (Gdańsk Tech), Gdańsk, Poland, employs its unique Laboratory for Innovative Power Systems and Integration of Renewable Energy Sources (LINTE^2 Lab), to support comprehensive education in smart grids. Starting with simulation and virtualisation, students gradually extend their knowledge and competencies through project, research and challenge-based activities in the quasi-industrial environment of the LINTE^2 Lab.
Cytowania
-
9
CrossRef
-
0
Web of Science
-
9
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Global Journal of Engineering Education
nr 26,
strony 69 - 74,
ISSN: 1328-3154 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Augusiak A., Kutt F., Musznicki P., Nieznański J.: Engineering education for smart grid systems in the quasi-industrial environment of the LINTE^2 laboratory// Global Journal of Engineering Education -,iss. 26/2 (2024), s.69-74
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/nphys1170
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 75 razy
Publikacje, które mogą cię zainteresować
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
- M. Arun,
- T. T. Le,
- D. Barik
- + 6 autorów