Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring - Publikacja - MOST Wiedzy

Wyszukiwarka

Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring

Abstrakt

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G. In this paper the problem of determinig the equitable coloring number for coronas of cubic graphs is studied. Although the problem of ordinary coloring of coronas of cubic graphs is solvable in polynomial time, the problem of equitable coloring becomes NP-hard for these graphs. We provide polynomially solvable cases of coronas of cubic graphs and prove the NP-hardness in a general case. As a by-product we obtain a simple linear time algorithm for equitable coloring of such graphs which uses at most one extra color. Our algorithm is best possible, unless P=NP. Consequently, cubical coronas seem to be the only known class of graphs for which equitable coloring is harder than ordinary coloring.

Hanna Furmańczyk, Marek Kubale. (2016). Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring, 10(2), 333-347.

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ARS Mathematica Contemporanea nr 10, strony 333 - 347,
ISSN: 1855-3966
Język:
angielski
Rok wydania:
2016
Opis bibliograficzny:
Furmańczyk H., Kubale M.: Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring// ARS Mathematica Contemporanea. -Vol. 10, nr. 2 (2016), s.333-347

wyświetlono 15 razy

Meta Tagi