Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings - Publikacja - MOST Wiedzy

Wyszukiwarka

Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings

Abstrakt

Seismic isolation is identified as one of the most popular and effective methods of protecting structures under strong dynamic excitations. Base isolators, such as Lead Rubber Bearings, High Damping Rubber Bearings, and Friction Pendulum Bearings, are widely used in practice in many earthquake-prone regions of the world to mitigate structural vibrations, and therefore minimize loss of life and property damage during seismic events. The present paper reports the results of the comprehensive experimental investigation designed to verify the effectiveness of a prototype base isolation system made of Polymeric Bearings in reducing structural vibrations. In order to construct seismic bearings considered in this study, a specially prepared polymeric material with improved damping properties was used. The dynamic behaviour of a single-storey and two-storey experimental model, both fixed-base and base-isolated, under a number of different ground motions, was extensively studied. The reduction in lateral response was measured by comparing the peak accelerations recorded at the top of the analyzed model structures with and without a base isolation system. The results of this research clearly demonstrate that the application of the prototype Polymeric Bearings leads to significant improvement in seismic response by reducing the lateral acceleration.

Cytowania

  • 2 3

    CrossRef

  • 2 2

    Web of Science

  • 2 6

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Applied Sciences-Basel nr 7, wydanie 8, strony 1 - 18,
ISSN: 2076-3417
Rok wydania:
2017
Opis bibliograficzny:
Falborski T., Jankowski R.: Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings// Applied Sciences-Basel. -Vol. 7, iss. 8 (2017), s.1-18
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/app7080808
Bibliografia: test
  1. Jankowski, R.; Mahmoud, S. Earthquake-Induced Structural Pounding; Springer: Cham, Switzerland, 2015. otwiera się w nowej karcie
  2. Jankowski, R.; Mahmoud, S. Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes. Bull. Earthq. Eng. 2016, 14, 3075-3097. [CrossRef] otwiera się w nowej karcie
  3. Naderpour, H.; Barros, R.C.; Khatami, S.M.; Jankowski, R. Numerical study on pounding between two adjacent buildings under earthquake excitation. Shock Vib. 2016, 1504783. [CrossRef] otwiera się w nowej karcie
  4. Jankowski, R. Pounding between superstructure segments in multi-supported elevated bridge with three-span continuous deck under 3D non-uniform earthquake excitation. J. Earthq. Tsunami 2015, 9, 1550012. [CrossRef] otwiera się w nowej karcie
  5. Ebrahimian, M.; Todorovska, M.I.; Falborski, T. Wave Method for Structural Health Monitoring: Testing Using Full-Scale Shake Table Experiment Data. J. Struct. Eng. 2016, 143. [CrossRef] otwiera się w nowej karcie
  6. Elwardany, H.; Seleemah, A.; Jankowski, R. Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels. Eng. Struct. 2017, 144, 139-150. [CrossRef] otwiera się w nowej karcie
  7. Appl. Sci. 2017, 7, 808 otwiera się w nowej karcie
  8. Booth, E.; Key, D. Earthquake Design Practice for Buildings; otwiera się w nowej karcie
  9. Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering;
  10. Prentice Hall: Englewood Cliffs, NJ, USA, 2012.
  11. Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P. Structural control: Past, present, and future. J. Eng. Mech. 1997, 123, 897-971. [CrossRef] otwiera się w nowej karcie
  12. Pasala, D.T.R.; Sarlis, A.A.; Nagarajaiah, S.; Reinhorn, A.M.; Constantinou, M.C.; Taylor, D. Adaptive negative stiffness: New structural modification approach for seismic protection. J. Struct. Eng. 2012, 193, 1112-1123. [CrossRef] otwiera się w nowej karcie
  13. Spencer, B.F.; Nagarajaiah, S. State of the Art of Structural Control. J. Struct. Eng. 2003, 129, 845-856. [CrossRef] otwiera się w nowej karcie
  14. Wolff, E.D.; Ipek, C.; Constantinou, M.C.; Tapan, M. Effect of viscous damping devices on the response of seismically isolated structures. Earthq. Eng. Struct. Dyn. 2015, 44, 185-198. [CrossRef] otwiera się w nowej karcie
  15. Buckle, I.G. Passive control of structures for seismic loads. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January-4 February 2000. otwiera się w nowej karcie
  16. Robinson, W.H. Passive control of structures: The New Zealand experience. J. Earthq. Technol. 1998, 35, 63-75. otwiera się w nowej karcie
  17. Aiken, I.D.; Nims, D.K.; Whittaker, A.S.; Kelly, J.M. Testing of passive energy dissipation systems. Earthq. Spectra 1993, 9, 335-370. [CrossRef] otwiera się w nowej karcie
  18. Symans, M.D.; Constantinou, M.C. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Eng. Struct. 1999, 21, 469-487. [CrossRef] otwiera się w nowej karcie
  19. Kelly, J.M. Base isolation: Linear theory and design. Earthq. Spectra 1990, 6, 223-244. [CrossRef] otwiera się w nowej karcie
  20. Buckle, I.G.; Mayes, R.L. Seismic isolation: History, application, and performance: A world view. Earthq. Spectra 1990, 6, 161-201. [CrossRef] otwiera się w nowej karcie
  21. Skinner, R.I.; Robinson, W.H.; McVerry, G.H. An Introduction to Seismic Isolation;
  22. John Wiley and Sons: New York, NY, USA, 1993.
  23. Komodromos, P. Seismic Isolation of Earthquake-Resistant Structures; WIT Press: Southampton, UK, 2000. otwiera się w nowej karcie
  24. Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures: From Theory to Practice; otwiera się w nowej karcie
  25. John Wiley and Sons: New York, NY, USA, 1999.
  26. Mahmoud, S.; Jankowski, R. Pounding-involved response of isolated and non-isolated buildings under earthquake excitation. Earthq. Struct. 2010, 1, 231-252. [CrossRef] otwiera się w nowej karcie
  27. Kelly, J.M. Earthquake-Resistant Design with Rubber; Springer: London, UK, 1993. otwiera się w nowej karcie
  28. Skinner, R.I.; Kelly, J.M.; Heine, A.J. Hysteretic dampers for earthquake-resistant structures. Earthq. Eng. Struct. Dyn. 1975, 3, 287-296. [CrossRef] otwiera się w nowej karcie
  29. Robinson, W.H.; Greenbank, L.R. An extrusion energy absorber suitable for the protection of structures during an earthquake. Earthq. Eng. Struct. Dyn. 1976, 4, 251-259. [CrossRef] otwiera się w nowej karcie
  30. Kumar, M.; Whittaker, A.S.; Constantinou, M.C. An advanced numerical model of elastomeric seismic isolation bearings. Earthq. Eng. Struct. Dyn. 2014, 43, 1955-1974. [CrossRef] otwiera się w nowej karcie
  31. Tyler, R.G. Rubber bearings in base-isolated structures: A summary paper. Bull. N. Z. Natl. Soc. Earthq. Eng. 1991, 24, 251-274. otwiera się w nowej karcie
  32. Mavronicola, E.; Komodromos, P. On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: Sharp vs. smooth behaviour. Earthq. Struct. 2014, 7, 1223-1240. [CrossRef] otwiera się w nowej karcie
  33. Kumar, M.; Whittaker, A.S.; Constantinou, M.C. Characterizing friction in sliding isolation bearings. Earthq. Eng. Struct. Dyn. 2015, 44, 1409-1425. [CrossRef] otwiera się w nowej karcie
  34. Mokha, A.; Constantinou, M.C.; Reinhorn, A.M.; Zayas, V.A. Experimental study of friction-pendulum isolation system. J. Struct. Eng. 1991, 117, 1201-1217. otwiera się w nowej karcie
  35. Tsopelas, P.; Constantinou, M.C.; Kim, Y.S.; Okamoto, S. Experimental study of FPS system in bridge seismic isolation. Earthq. Eng. Struct. Dyn. 1996, 25, 65-78. [CrossRef] otwiera się w nowej karcie
  36. Fenz, D.M.; Constantinou, M.C. Behaviour of the double concave friction pendulum bearing. Earthq. Eng. Struct. Dyn. 2006, 35, 1403-1424. [CrossRef] otwiera się w nowej karcie
  37. Nagarajaiah, S.; Xiaohong, S. Seismic performance of base-isolated buildings in the 1994 Northridge earthquake. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June 1996. otwiera się w nowej karcie
  38. Nagarajaiah, S.; Xiaohong, S. Response of base-isolated USC hospital building in Northridge earthquake. J. Struct. Eng. 2000, 126, 1177-1188. [CrossRef] otwiera się w nowej karcie
  39. Falborski, T.; Jankowski, R.; Kwiecień, A. Experimental study on polymer mass used to repair damaged structures. Key Eng. Mater. 2012, 488, 347-350. [CrossRef] otwiera się w nowej karcie
  40. Zembaty, Z. Rockburst induced ground motion-a comparative study. SDEE 2004, 24, 11-23. [CrossRef] © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 50 razy

Publikacje, które mogą cię zainteresować

Meta Tagi