Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method - Publikacja - MOST Wiedzy

Wyszukiwarka

Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method

Abstrakt

Plasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated. For the surface morphology studies, chemical composition analysis and nanograin structure, Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDS) and High-Resolution Transmission Electron Microscopy (HR TEM) measurements were performed. The position of the resonance band was successfully tuned in the 100 nm range. The EDS together with the XPS analysis confirmed the formation of an alloy with the aspect ratio of individual metals in a single nanoisland similar to the ratio of the thicknesses of the initially sputtered layers. The experimental research was complemented by the neural network model, which enables the calculation of the absorbance peak depending on the thickness of Au and Ag layers and the annealing time. The proposed model of machine learning makes it possible to fine-tune the desired position of the plasmon resonance.

Cytowania

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
APPLIED SURFACE SCIENCE nr 567,
ISSN: 0169-4332
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Kozioł R., Łapiński M., Syty P., Sadowski W., Sienkiewicz J., Nurek B., Maraloiu V., Kościelska B.: Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method// APPLIED SURFACE SCIENCE -Vol. 567, (2021), s.150802-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.apsusc.2021.150802
Weryfikacja:
Politechnika Gdańska

wyświetlono 285 razy

Publikacje, które mogą cię zainteresować

Meta Tagi