Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies - Publikacja - MOST Wiedzy


Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies


The paper presents a synthesis of novel hydrophobic deep eutectic solvents (DESs) composed of natural components, which were used for removal of furfural (FF) and 5-hydroxymethylfurfural (HMF) from lignocellulosic hydrolysates. The main physicochemical properties of DESs were determined, followed by explanation of the DES formation mechanism, using 1H NMR, 13C NMR and FT-IR analysis and density functional theory (DFT). The most important extraction parameters were optimized. Reusability, regeneration of DES, multistage extraction, influence of FF and HMF concentration, as well as possibility of sugars loss were also investigated. The experimental studies revealed high extraction efficiency resulting in 79.2% and 87.9% removal of FF and HMF respectively from model hydrolysates and in the range of 74.2–76.1% and 87.8–82.3% from real samples in one-step extraction. The yield of bio‑hydrogen production via dark fermentation after the DES extraction was comparable to the results obtained using enzymatic hydrolysis. The theoretical studies on the extraction mechanism revealed that hydrogen bonds and van der Waals interactions were the main driving force for detoxification of lignocellulosic biomass.


  • 2 1


  • 1 9

    Web of Science

  • 2 1


Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
ISSN: 0167-7322
Rok wydania:
Opis bibliograficzny:
Makoś P., Słupek E., Gębicki J.: Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies// JOURNAL OF MOLECULAR LIQUIDS -Vol. 303, (2020), s.113101-
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.molliq.2020.113101
Bibliografia: test
  1. M. Raud, T. Kikas, O. Sippula, N.J. Shurpali, Potentials and challenges in lignocellu- losic biofuel production technology, Renew. Sust. Energ. Rev. 111 (2019) 44-56, https://doi.org/10.1016/j.rser.2019.05.020. otwiera się w nowej karcie
  2. E. Słupek, P. Makoś, K. Kucharska, J. Gębicki, Mesophilic and thermophilic dark fer- mentation course analysis using sensor matrices and chromatographic techniques, Chem. Pap. (2019) https://doi.org/10.1007/s11696-019-01010-6in press. otwiera się w nowej karcie
  3. K. Kucharska, I. Hołowacz, D. Konopacka-Łyskawa, P. Rybarczyk, M. Kamiński, Key issues in modeling and optimization of lignocellulosic biomass fermentative conver- sion to gaseous biofuels, Renew. Energy 129 (2018) 384-408, https://doi.org/10. 1016/j.renene.2018.06.018. otwiera się w nowej karcie
  4. P. Zhu, O.Y. Abdelaziz, C.P. Hulteberg, A. Riisager, New synthetic approaches to biofuels from lignocellulosic biomass, Curr. Opin. Green Sustain. Chem. 21 (2020) 16-21, https://doi.org/10.1016/j.cogsc.2019.08.005. otwiera się w nowej karcie
  5. B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current perspective on pretreatment technologies using lignocellulosic biomass : an emerging biore fi nery concept, 199 (2020) 106244-106268, https://doi.org/10.1016/j.fuproc.2019. 106244. otwiera się w nowej karcie
  6. G. Kumar, P. Sivagurunathan, B. Sen, A. Mudhoo, G. Davila-Vazquez, G. Wang, S.H. Kim, Research and development perspectives of lignocellulose-based biohydrogen production, Int. Biodeterior. Biodegrad. 119 (2017) 225-238, https://doi.org/10. 1016/j.ibiod.2016.10.030. otwiera się w nowej karcie
  7. C. Phuttaro, C. Sawatdeenarunat, K.C. Surendra, P. Boonsawang, S. Chaiprapat, S.K. Khanal, Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield, Bioresour. Technol. 284 (2019) 128-138, https://doi.org/10.1016/j.biortech. 2019.03.114. otwiera się w nowej karcie
  8. D.L. Grzenia, D.J. Schell, S. Ranil Wickramsinghe, Detoxification of biomass hydroly- sates by reactive membrane extraction, J. Memb. Sci. 348 (2010) 6-12, https://doi. org/10.1016/j.memsci.2009.10.035. otwiera się w nowej karcie
  9. D.L. Grzenia, D.J. Schell, S. Ranil Wickramasinghe, Membrane extraction for detoxifi- cation of biomass hydrolysates, Bioresour. Technol. 111 (2012) 248-254, https:// doi.org/10.1016/j.biortech.2012.01.169. otwiera się w nowej karcie
  10. L. Pan, M. He, B. Wu, Y. Wang, G. Hu, K. Ma, Simultaneous concentration and detox- ification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production, J. Clean. Prod. 227 (2019) 1185-1194, https://doi.org/10. 1016/j.jclepro.2019.04.239. otwiera się w nowej karcie
  11. T.R.K.C. Doddapaneni, R. Jain, R. Praveenkumar, J. Rintala, H. Romar, J. Konttinen, Ad- sorption of furfural from torrefaction condensate using torrefied biomass, Chem. Eng. J. 334 (2018) 558-568, https://doi.org/10.1016/j.cej.2017.10.053. otwiera się w nowej karcie
  12. G.B.M. Carvalho, S.I. Mussatto, E.J. Cândido, J.B. Almeida e Silva, Comparison of differ- ent procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes, J. Chem. Technol. Biotechnol. 81 (2006) 152-157, https://doi.org/10.1002/jctb.1372. otwiera się w nowej karcie
  13. D. Ludwig, M. Amann, T. Hirth, S. Rupp, S. Zibek, Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates, Bioresour. Technol. 133 (2013) 455-461, https://doi. org/10.1016/j.biortech.2013.01.053. otwiera się w nowej karcie
  14. L.R. Roque, G.P. Morgado, V.M. Nascimento, J.L. Ienczak, S.C. Rabelo, Liquid-liquid ex- traction: a promising alternative for inhibitors removing of pentoses fermentation, Fuel 242 (2019) 775-787, https://doi.org/10.1016/j.fuel.2018.12.130. otwiera się w nowej karcie
  15. C.H.J.T. Dietz, F. Gallucci, M. Van Sint Annaland, C. Held, M.C. Kroon, 110th anniver- sary: distribution coefficients of furfural and 5-hydroxymethylfurfural in hydropho- bic deep eutectic solvent + water systems: experiments and perturbed-chain statistical associating fluid theory predictions, Ind. Eng. Chem. Res. 58 (2019) 4240-4247, https://doi.org/10.1021/acs.iecr.8b06234. otwiera się w nowej karcie
  16. P. Cui, H. Liu, K. Xin, H. Yan, Q. Xia, Y. Huang, Q. Li, Liquid-liquid equilibria for the ter- nary system of water + furfural + solvents at 303.15 and 323.15 K under atmo- spheric pressure, J. Chem. Thermodyn. 127 (2018) 134-144, https://doi.org/10. 1016/j.jct.2018.01.027. otwiera się w nowej karcie
  17. P. Makoś, G. Boczkaj, Deep eutectic solvents based highly efficient extractive desul- furization of fuels -eco-friendly approach, J. Mol. Liq. (2019) 111916-111927, https://doi.org/10.1016/j.molliq.2019.111916. otwiera się w nowej karcie
  18. D. Smink, S.R.A. Kersten, B. Schuur, Recovery of lignin from deep eutectic solvents by liquid-liquid extraction, Sep. Purif. Technol. 235 (2019) 116127-116133, https:// doi.org/10.1016/j.seppur.2019.116127. otwiera się w nowej karcie
  19. P. Makoś, E. Słupek, J. Gębicki, Hydrophobic deep eutectic solvents in microextraction techniques-a review, Microchem. J. 152 (2020) 104384-104400, https://doi.org/10.1016/j.microc.2019.104384. otwiera się w nowej karcie
  20. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A 1570 (2018) 28-37, https://doi.org/10.1016/J.CHROMA.2018.07.070. otwiera się w nowej karcie
  21. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis, J. Chromatogr. A 1555 (2018) 10-19, https://doi.org/10.1016/J.CHROMA.2018.04.054. otwiera się w nowej karcie
  22. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/J.FLUID.2017.04.002. otwiera się w nowej karcie
  23. L.F. Zubeir, D.J.G.P. Van Osch, M.A.A. Rocha, F. Banat, M.C. Kroon, Carbon dioxide sol- ubilities in decanoic acid-based hydrophobic deep eutectic solvents, J. Chem. Eng. Data 63 (2018) 913-919, https://doi.org/10.1021/acs.jced.7b00534. otwiera się w nowej karcie
  24. E. Słupek, P. Makoś, J. Gębicki, Deodorization of model biogas by means of novel non-ionic deep eutectic solvent, Arch. Environ. Prot. 46 (2020) 41-46, https://doi. org/10.24425/aep.2020.132524. otwiera się w nowej karcie
  25. E. Słupek, P. Makoś, Absorptive desulfurization of model biogas stream using choline chloride-based deep eutectic solvents, Sustainability 12 (2020) 1619-1635, https:// doi.org/10.3390/su12041619. otwiera się w nowej karcie
  26. C.L. Boldrini, N. Manfredi, F.M. Perna, V. Capriati, A. Abbotto, Designing eco- sustainable dye-sensitized solar cells by the use of a menthol-based hydrophobic eutectic solvent as an effective electrolyte medium, Chem. -A Eur. J. 24 (2018) 17656-17659, https://doi.org/10.1002/chem.201803668. otwiera się w nowej karcie
  27. C.H.J.T. Dietz, M.C. Kroon, M. Van Sint Annaland, F. Gallucci, Thermophysical proper- ties and solubility of different sugar-derived molecules in deep eutectic solvents, J. Chem. Eng. Data 62 (2017) 3633-3641, https://doi.org/10.1021/acs.jced.7b00184. otwiera się w nowej karcie
  28. R. Łukajtis, P. Rybarczyk, K. Kucharska, D. Konopacka-Łyskawa, E. Słupek, K. Wychodnik, M. Kamiński, Optimization of saccharification conditions of lignocellu- losic biomass under alkaline pre-treatment and enzymatic hydrolysis, Energies (2018) 886-913, https://doi.org/10.3390/en11040886. otwiera się w nowej karcie
  29. K. Kucharska, R. Łukajtis, E. Słupek, H. Cieśliński, P. Rybarczyk, M. Kamiński, Hydro- gen production from energy poplar preceded by MEA pre-treatment and enzymatic hydrolysis, Molecules 23 (2018) 3029-3050, https://doi.org/10.3390/ molecules23113029. otwiera się w nowej karcie
  30. P.R. Naidu, V.R. Krishnan, Viscosities of binary liquid mixtures, Proc. Indian Acad. Sci. -Sect. A. 64 (1966) 229-236, https://doi.org/10.1007/BF03049393. otwiera się w nowej karcie
  31. N. Sudhir, P. Yadav, B.R. Nautiyal, R. Singh, H. Rastogi, H. Chauhan, Extractive desul- furization of fuel with methyltriphenyl phosphonium bromide-tetraethylene glycol-based eutectic solvents, Sep. Sci. Technol. (2019) 554-563, https://doi.org/ 10.1080/01496395.2019.1569061. otwiera się w nowej karcie
  32. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, Re- vealing noncovalent interactions, J. Am. Chem. Soc. 132 (2010) 6498-6506, https:// doi.org/10.1021/ja100936w. otwiera się w nowej karcie
  33. M. Madani-Tonekaboni, M. Kamankesh, A. Mohammadi, Determination of furfural and hydroxymethyl furfural from baby formula using dispersive liquid-liquid microextraction coupled with high performance liquid chromatography and method optimization by response surface methodology, J. Food Compos. Anal. 40 (2015) 1-7, https://doi.org/10.1016/j.jfca.2014.12.004. otwiera się w nowej karcie
  34. C. Florindo, F. Lima, L.C. Branco, I.M. Marrucho, Hydrophobic deep eutectic solvents: a circular approach to purify water contaminated with ciprofloxacin, ACS Sustain. Chem. Eng. 7 (2019) 14739-14746, https://doi.org/10.1021/acssuschemeng. 9b02658. otwiera się w nowej karcie
  35. K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using choline chloride-based deep eutec- tic solvents, Fuel 234 (2018) 1388-1400, https://doi.org/10.1016/j.fuel.2018.08.005. otwiera się w nowej karcie
  36. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review, J. Mol. Liq. 259 (2018) 319-339, https://doi.org/10.1016/J.MOLLIQ.2018.03.043. otwiera się w nowej karcie
  37. B.G. Fonseca, R.D.O. Moutta, F.D.O. Ferraz, E.R. Vieira, A.S. Nogueira, B.F. Baratella, L.C. Rodrigues, H.R. Zhang, S.S. Da Silva, Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast, J. Ind. Microbiol. Biotechnol. 38 (2011) 199-207, https://doi.org/10.1007/ s10295-010-0845-z. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 60 razy

Publikacje, które mogą cię zainteresować

Meta Tagi