Fabrication methods of smart composite coatings - review - Publikacja - MOST Wiedzy

Wyszukiwarka

Fabrication methods of smart composite coatings - review

Abstrakt

Postoperative bacterial infections are one of the main reasons for unsuccessful implantation of long-term implants. The development of bacterial infection requires antibiotic therapy, in extreme cases a reimplantation procedure is necessary. In order to provide materials for implants with antibacterial properties, they are subjected to modifications to create a coating that will release the drug substance, when the inflammation occurs. Significant interest is now gained by the so-called smart polymers, that react to the stimuli from the external environment such as pH change, temperature change, the influence of UV-VIS radiation or interaction of electric and magnetic fields. When designing drug delivery systems, the characteristics of the inflamed tissue may be taken into account, because they are characterized by increased temperature and reduced pH. It would, therefore, be reasonable to create biopolymer coatings that under these conditions degrade and release the drug substance. However, the problem is the controlled release of the drug substance trapped in the biopolymer matrix. This review paper presents most often used methods of smart biopolymer coatings production, which release the drug substance in a controlled manner. Methods such as electrophoretic deposition, dip-coating, spin-coating, and layer-by-layer are discussed, including process parameters, steps of the coating production, possible post-processing and examples of smart coatings produced using these methods. Each of these methods offers a wide range of process parameters, by changing these parameters it is possible to fine-tune the properties of the coatings produced to the desired values. Extensive research is needed to determine the optimal process parameters that will allow the production of coatings with the desired properties.

Cytuj jako

Pełna treść

pobierz publikację
pobrano 133 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019 by ISASDMT)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
European Journal of Medical Technologies strony 53 - 59,
ISSN: 2353-1029
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Pawłowski Ł., Bartmański M., Zieliński A.: Fabrication methods of smart composite coatings - review// European Journal of Medical Technologies. -., iss. 3(24) (2019), s.53-59
Bibliografia: test
  1. Hornberger H, Virtanen S, Boccaccini AR, Biome- dical coatings on magnesium alloys -A review, Acta Biomater 2012; 8: 2442-2455. doi:10.1016/j. actbio.2012.04.012. otwiera się w nowej karcie
  2. Zhao L, Chu PK, Zhang Y, Wu Z, Antibacterial co- atings on titanium implants, J. Biomed. Mater. otwiera się w nowej karcie
  3. Res. -Part B Appl. Biomater 2009; 91: 470-480. doi:10.1002/jbm.b.31463. otwiera się w nowej karcie
  4. Schmaljohann D, Thermo-and pH-responsive po- lymers in drug delivery, Adv. Drug Deliv. Rev. 2006; 58: 1655-1670. doi:10.1016/j.addr.2006.09.020. otwiera się w nowej karcie
  5. Świeczko-Żurek B, Bartmański M, Investigations of Titanium Implants Covered with Hydroxyapa- tite Layer, Adv. Mater. Sci. 2016; 16 . doi:10.1515/ adms-2016-0011. otwiera się w nowej karcie
  6. Corni I, Ryan MP, Boccaccini AR, Electrophoretic deposition: From traditional ceramics to nano- technology, J. Eur. Ceram. Soc. 2008; 28: 1353- 1367. doi:10.1016/j.jeurceramsoc.2007.12.011. otwiera się w nowej karcie
  7. Besra L, Liu M, A review on fundamentals and applications of electrophoretic deposition (EPD), otwiera się w nowej karcie
  8. Prog. Mater. Sci. 2007; 52: 1-61. doi:10.1016/j. pmatsci.2006.07.001. otwiera się w nowej karcie
  9. Miola M, Cordero-Arias L, Verné E, Ciraldo FE, Boc- caccini AR. , Electrophoretic Deposition of Chi- tosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr, Front. Bioeng. Biotechnol. 2015; 3: 1-13. doi:10.3389/fbioe.2015.00159. otwiera się w nowej karcie
  10. Chen Q, Cordero-Arias L, Roether J.A, Cabanas-Po- lo S, Virtanen S, Boccaccini A.R, Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electro- phoretic deposition, Surf. Coatings Technol. 2013; 233: 49-56. doi:10.1016/j.surfcoat.2013.01.042. otwiera się w nowej karcie
  11. Ma K, Gong L, Cai X, Huang P, Cai J, Huang D, Jiang T, A green single-step procedure to synthesize ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial proper- ties, Int. J. Nanomedicine. 2017; 12: 3665-3679. doi:10.2147/IJN.S130857. otwiera się w nowej karcie
  12. Qi H, Chen Q, Ren H, Wu X, Liu X, Lu T, Electropho- retic deposition of dexamethasone-loaded ge- latin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis, Colloids Surfaces B Biointerfaces. 2018; 169: 249- 256. doi:10.1016/j.colsurfb.2018.05.029. otwiera się w nowej karcie
  13. Copyright © 2019 by ISASDMT otwiera się w nowej karcie
  14. Song J, Chen Q, Zhang Y, Diba M, Kolwijck E, Shao J, Jansen JA, Yang F, Boccaccini AR, Leeuwenburgh S.C.G, Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres to Tune the Release of Antibiotics, ACS Appl. Mater. Interfaces. 2016; 8: 13785-13792. doi:10.1021/ acsami.6b03454. otwiera się w nowej karcie
  15. Livingston M, Tan A, Coating Techniques and Rele- ase Kinetics of Dru g-Eluting Stents, J. Med. Devi- ce. 2015; 10: 010801. doi:10.1115/1.4031718. otwiera się w nowej karcie
  16. Fasiku VO, Owonubi SJ, Mukwevho E, Aderibigbe B, Sadiku ER, Lemmer Y, Ibrahim ID, Mochane J, Daramola OO, Polymeric Materials in Coatings for Biomedical Applications 2019; 481-518. otwiera się w nowej karcie
  17. Li Y, Liu X, Tan L, Ren L, Wan P, Hao Y, Qu X, Yang K., Dai K, Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption, J. Mater. Sci. Technol. 2016; 32: 865-873. do- i:10.1016/j.jmst.2016.07.013. otwiera się w nowej karcie
  18. Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D, Advanced biopolymer-co- ated drug-releasing titania nanotubes (TNTs) im- plants with simultaneously enhanced osteoblast adhesion and antibacterial properties, Colloids Surfaces B Biointerfaces. 2015; 130: 255-263. do- i:10.1016/j.colsurfb.2015.04.021. otwiera się w nowej karcie
  19. Wang T, Weng Z, Liu X, Yeung KWK, Pan H, Wu S., Controlled release and biocompatibility of po- lymer/titania nanotube array system on tita- nium implants, Bioact. Mater. 2017; 2: 44-50. do- i:10.1016/j.bioactmat.2017.02.001. otwiera się w nowej karcie
  20. Dobrzanski L.A, Szindler, Sol gel TiO2 antireflec- tion coatings for silicon solar cells, J. Achiev. Mater. Manuf. Eng. 2012; 52: 7-14. otwiera się w nowej karcie
  21. Tong M, Yao, Bohm, Siva, Song, Graphene based materials and their composites as coatings, Au- stin J. Nanomedicine Nanotechnol. 2013; 1: 1003. http://austinpublishinggroup.com/nanomedici- ne-nanotechnology/fulltext/ajnn-v1-id1003.php.
  22. Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, Luo Z, Hu Y, Tang L, Fabrication of selenium-deposited and chitosan-coated titania nanotubes with antican- cer and antibacterial properties, Colloids Surfaces B Biointerfaces. 2013; 103: 149-157. doi: 10.1016/j. colsurfb.2012.10.022. otwiera się w nowej karcie
  23. Huang Y, Dan N, Dan W, Zhao W, Bai Z, Chen Y, Yang C, Facile fabrication of gelatin and polycaprolacto- ne based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties, Int. J. Biol. Macromol. 2019; 124: 699- 707. doi:10.1016/j.ijbiomac.2018.11.262. otwiera się w nowej karcie
  24. Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke D.M, Stana-Kleinschek K, Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials, Cellulose. 2015; 22: 749-761. doi:10.1007/s10570-014-0515-9. otwiera się w nowej karcie
  25. Li C, Sun Y, Bai H, Shi G, Sheng K, Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic de- vices, Polymer (Guildf ). 2011; 52: 5567-5572. doi: 10.1016/j.polymer.2011.10.001. otwiera się w nowej karcie
  26. Ariga K, Hill JP, Ji Q, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application, Phys. Chem. Chem. Phys. 2007; 9: 2319-2340. doi:10.1039/b700410a. otwiera się w nowej karcie
  27. Del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sönnichsen C, Parak W.J, LbL mul- tilayer capsules: Recent progress and future outlo- ok for their use in life sciences, Nanoscale. 2010; 2: 458-467. doi:10.1039/b9nr00341j. otwiera się w nowej karcie
  28. Sato K, Yoshida K, Takahashi S, ichi J. Anzai, PH-and sugar-sensitive layer-by-layer films and microcap- sules for drug delivery, Adv. Drug Deliv. Rev. 2011; 63: 809-821. doi:10.1016/j.addr.2011.03.015. otwiera się w nowej karcie
  29. Zhong Y, Whittington CF, Zhang L, Haynie D.T, Con- trolled loading and release of a model drug from polypeptide multilayer nanofilms, Nanomedicine Nanotechnology, Biol. Med. 2007; 3: 154-160. do- i:10.1016/j.nano.2007.03.002. otwiera się w nowej karcie
  30. Jiang B, Li B, Tunable drug loading and release from polypeptide multilayer nanofilms, Int. J. Na- nomedicine. 2009; 4: 37-53.
  31. Niu J, Shi F, Liu Z, Wang Z, Zhang X, Reversible disulfide cross-linking in layer-by-layer films: Pre- assembly enhanced loading and pH/reductant dually controllable release, Langmuir. 2007; 23: 6377-6384. doi:10.1021/la063670c. otwiera się w nowej karcie
  32. Kharlampieva E, Izumrudov VA, Sukhishvili SA, Electrostatic layer-by-layer self-assembly of po- ly(carboxybetaine)s: Role of zwitterions in film growth, Macromolecules. 2007; 40: 3663-3668. doi:10.1021/ma062811e. otwiera się w nowej karcie
  33. Copyright © 2019 by ISASDMT otwiera się w nowej karcie
  34. Wood K.C, Boedicker JQ, David A, Lynn M, Paula T. otwiera się w nowej karcie
  35. Hammond, Tunable Drug Release from Hydrolyti- cally Degradable Layer-by-Layer Thin Films, Lang- muir. 2005; 21: 1603-1609. doi:10.1021/LA0476480. otwiera się w nowej karcie
  36. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang X.J, PH-Sensitive nano-systems for drug de- livery in cancer therapy, Biotechnol. Adv. 2014; 32: 693-710. doi:10.1016/j.biotechadv.2013.11.009. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 200 razy

Publikacje, które mogą cię zainteresować

Meta Tagi