Fermentative Conversion of Two-Step Pre-Treated Lignocellulosic Biomass to Hydrogen - Publikacja - MOST Wiedzy

Wyszukiwarka

Fermentative Conversion of Two-Step Pre-Treated Lignocellulosic Biomass to Hydrogen

Abstrakt

Fermentative hydrogen production via dark fermentation with the application of lignocellulosic biomass requires a multistep pre-treatment procedure, due to the complexed structure of the raw material. Hence, the comparison of the hydrogen productivity potential of different lignocellulosic materials (LCMs) in relation to the lignocellulosic biomass composition is often considered as an interesting field of research. In this study, several types of biomass, representing woods, cereals and grass were processed by means of mechanical pre-treatment and alkaline and enzymatic hydrolysis. Hydrolysates were used in fermentative hydrogen production via dark fermentation process with Enterobacter aerogenes (model organism). The differences in the hydrogen productivity regarding different materials hydrolysates were analyzed using chemometric methods with respect to a wide dataset collected throughout this study. Hydrogen formation, as expected, was positively correlated with glucose concentration and total reducing sugars amount (YTRS) in enzymatic hydrolysates of LCMs, and negatively correlated with concentrations of enzymatic inhibitors i.e., HMF, furfural and total phenolic compounds in alkaline-hydrolysates LCMs, respectively. Interestingly, high hydrogen productivity was positively correlated with lignin content in raw LCMs and smaller mass loss of LCM after pre-treatment step. Besides results of chemometric analysis, the presented data analysis seems to confirm that the structure and chemical composition of lignin and hemicellulose present in the lignocellulosic material is more important to design the process of its bioconversion than the proportion between the cellulose, hemicellulose and lignin content in this material. For analyzed LCMs we found remarkable higher potential of hydrogen production via bioconversion process of woods i.e., beech (24.01 mL H2/g biomass), energetic poplar (23.41 mL H2/g biomass) or energetic willow (25.44 mL H2/g biomass) than for cereals i.e., triticale (17.82 mL H2/g biomass) and corn (14.37 mL H2/g biomass) or for meadow grass (7.22 mL H2/g biomass).

Cytowania

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 45 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Catalysts nr 9, strony 1 - 27,
ISSN: 2073-4344
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kucharska K., Cieśliński H., Rybarczyk P., Słupek E., Łukajtis R., Wychodnik K., Kamiński M.: Fermentative Conversion of Two-Step Pre-Treated Lignocellulosic Biomass to Hydrogen// Catalysts -Vol. 9,iss. 10 (2019), s.1-27
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/catal9100858
Bibliografia: test
  1. Białas, W.; Szymanowska, D.; Grajek, W. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour. Technol. 2010, 101, 3126-3131. [CrossRef] [PubMed] otwiera się w nowej karcie
  2. Graboski, M.S.; McCormick, R.L. Combustion of fat and vegetable oil derives fuels in diesel engines. Prog. Energy Combust. Sci. 1998, 24, 125-164. otwiera się w nowej karcie
  3. Randolph, K.; Studer, S.; Liu, H.; Beliaev, A.; Holladay, J. Hydrogen Production Cost from Fermentation; DOE Hydrogen and Fuel Cells Program: Washington, DC, USA, 2017.
  4. Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151-1158. [CrossRef] otwiera się w nowej karcie
  5. Nowak, P.; Kucharska, K.; Kaminski, M. Ecological and Health Effects of Lubricant Oils Emitted into the Environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. [CrossRef] otwiera się w nowej karcie
  6. Argun, H.; Kargi, F.; Kapdan, I. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. Int. J. Hydrogen Energy 2009, 34, 2195-2200. [CrossRef] otwiera się w nowej karcie
  7. Manish, S.; Banerjee, R. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 2008, 33, 279-286. otwiera się w nowej karcie
  8. Chi, C.; Chang, H.; Li, Z.; Jameel, H.; Zhang, Z. A method for rapid determination of sugars in lignocellulose prehydrolyzate. BioResources 2013, 8, 172-181. [CrossRef] otwiera się w nowej karcie
  9. Azman, N.F.; Abdeshahian, P.; Al-Shorgani, N.K.N.; Hamid, A.A.; Kalil, M.S. Production of hydrogen energy from dilute acid-hydrolyzed palm oil mill effluent in dark fermentation using an empirical model. Int. J. Hydrogen Energy 2016, 41, 16373-16384. [CrossRef] otwiera się w nowej karcie
  10. Kucharska, K.; Hołowacz, I.; Konopacka-Łyskawa, D.; Rybarczyk, P.; Kamiński, M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew. Energy 2018, 129, 384-408. [CrossRef] otwiera się w nowej karcie
  11. Zhang, Q.; Zhang, P.; Pei, Z.J.; Wang, D. Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature. Renew. Energy 2013, 60, 127-136. [CrossRef] otwiera się w nowej karcie
  12. Phummala, K.; Imai, T.; Reungsang, A.; Higuchi, T.; Sekine, M.; Yamamoto, K.; Kanno, A. Optimization of Enzymatic Hydrolysis for Pretreated Wood Waste by Response Surface Methodology in Fermentative Hydrogen Production. J. Water Environ. Technol. 2015, 13, 153-166. [CrossRef] otwiera się w nowej karcie
  13. Lo, Y.C.; Lu, W.C.; Chen, C.Y.; Chang, J.S. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol. 2010, 101, 5885-5891. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Quéméneur, M.; Bittel, M.; Trably, E.; Dumas, C.; Fourage, L.; Ravot, G.; Steyer, J.P.; Carrère, H. Effect of enzyme addition on fermentative hydrogen production from wheat straw. Int. J. Hydrogen Energy 2012, 37, 10639-10647. [CrossRef] otwiera się w nowej karcie
  15. Hendriks, A.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10-18. [CrossRef] otwiera się w nowej karcie
  16. Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1-11. [CrossRef] otwiera się w nowej karcie
  17. Mussatto, S.I.; Roberto, I.C. Optimal Experimental Condition for Hemicellulosic Hydrolyzate Treatment with Activated Charcoal for Xylitol Production. Biotechnol. Prog. 2004, 20, 134-139. [CrossRef] otwiera się w nowej karcie
  18. Bansal, P.; Hall, M.; Realff, M.J.; Lee, J.H.; Bommarius, A.S. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv. 2009, 27, 833-848. [CrossRef] otwiera się w nowej karcie
  19. Zhang, C.M.; Mao, Z.G.; Wang, X.; Zhang, J.H.; Sun, F.B.; Tang, L.; Zhang, H.J. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations. Bioprocess. Biosyst. Eng. 2010, 33, 1067-1075. [CrossRef] otwiera się w nowej karcie
  20. Gu, F.; Yang, L.; Jin, Y.; Han, Q.; Chang, H.; Jameel, H.; Phillips, R. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour. Technol. 2012, 124, 299-305. [CrossRef] otwiera się w nowej karcie
  21. Liu, T.; Williams, D.L.; Pattathil, S.; Li, M.; Hahn, M.G.; Hodge, D.B. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability. Biotechnol. Biofuels 2014, 7, 48. [CrossRef] otwiera się w nowej karcie
  22. De Vrije, T.; De Haas, G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy 2002, 27, 1381-1390. [CrossRef] otwiera się w nowej karcie
  23. Poggio, D.; Walker, M.; Nimmo, W.; Ma, L.; Pourkashanian, M. Modelling the anaerobic digestion of solid organic waste-Substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach. Waste Manag. 2016, 53, 40-54. [CrossRef] [PubMed] otwiera się w nowej karcie
  24. Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959-1966. [CrossRef] [PubMed] otwiera się w nowej karcie
  25. Nissilä, M.E.; Lay, C.H.; Puhakka, J.A. Dark fermentative hydrogen production from lignocellulosic hydrolyzates-A review. Biomass Bioenergy 2014, 67, 145-159. [CrossRef] otwiera się w nowej karcie
  26. Chookaew, T.; Prasertsan, P.; Ren, Z.J. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol. 2014, 31, 179-184. [CrossRef] otwiera się w nowej karcie
  27. Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [CrossRef] otwiera się w nowej karcie
  28. El-Ahmady, N.; Deraz, S.; Khalil, A. Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis: Current Status and Recent Developments. Biotechnology 2014, 13, 1-21. [CrossRef] otwiera się w nowej karcie
  29. Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sustain. Energy Rev. 2015, 44, 728-737. [CrossRef] otwiera się w nowej karcie
  30. Kucharska, K.; Łukajtis, R.; Słupek, E.; Cieśliński, H.; Rybarczyk, P.; Kamiński, M. Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis. Molecules 2018, 23, 3029. [CrossRef] otwiera się w nowej karcie
  31. Cao, W.; Sun, C.; Liu, R.; Yin, R.; Wu, X. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour. Technol. 2012, 111, 215-221. [CrossRef] otwiera się w nowej karcie
  32. Cao, X.; Peng, X.; Sun, S.; Zhong, L.; Wang, S.; Lu, F.; Sun, R. Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr. Polym. 2014, 111, 400-403. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Kaya, B.; Irmak, S.; Hasanoglu, A.; Erbatur, O. Evaluation of various carbon materials supported Pt catalyts for aqueous-phase reforming of lignocellulosic biomass hydrolysate. Int. J. Hydrogen Energy 2014, 39, 10135-10140. [CrossRef] otwiera się w nowej karcie
  34. Łukajtis, R.; Kucharska, K.; Hołowacz, I.; Rybarczyk, P.; Wychodnik, K.; Słupek, E.; Nowak, P.; Kamiński, M. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies 2018, 11, 639. [CrossRef] otwiera się w nowej karcie
  35. Łukajtis, R.; Rybarczyk, P.; Kucharska, K.; Konopacka-Łyskawa, D.; Słupek, E.; Wychodnik, K.; Kamiński, M. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies 2018, 11, 886. [CrossRef] otwiera się w nowej karcie
  36. Marcar, N.; Ismail, S.; Hossain, A.; Ahmad, R. Trees, Shrubs and Grasses for Saltlands: An Annotated Bibliography; otwiera się w nowej karcie
  37. The Australian Centre for International Agricultural Research: Canberra, Australia, 1999; p. 316. otwiera się w nowej karcie
  38. Cruz, J.M.; Domínguez, J.M.; Domínguez, H.; Parajó, J.C. Solvent extraction of hemicellulosic wood hydrolysates: A procedure useful for obtaining both detoxified fermentation media and polyphenols with antioxidant activity. Food Chem. 1999, 67, 147-153. [CrossRef] otwiera się w nowej karcie
  39. Ghaffar, S.H.; Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 2013, 57, 264-279. [CrossRef] otwiera się w nowej karcie
  40. Sant'Anna, C.; Souza, W. De Microscopy as a tool to follow deconstruction of lignocellulosic biomass. Curr. Microsc. Contrib. Adv. Sci. Technol. 2012, 17, 639-645.
  41. Bharathiraja, B.; Sudharsanaa, T.; Bharghavi, A.; Sri Sowmeya, G.; Balaram, G. Insights on lignocellulosic pretreatments for biofuel production-SEM and reduction of lignin analysis. Int. J. ChemTech Res. 2014, 6, 4334-4444. otwiera się w nowej karcie
  42. Wi, S.G.; Cho, E.J.; Lee, D.-S.; Lee, S.J.; Lee, Y.J.; Bae, H.-J. Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol. Biofuels 2015, 8, 228. [CrossRef] otwiera się w nowej karcie
  43. Behera, B.K.; Arora, M.; Sharma, D.K. Scanning electron microscopic (SEM) studies on structural architecture of lignocellulosic materials of Calotropis procera during its processing for saccharification. Bioresour. Technol. 1996, 58, 241-245. [CrossRef] otwiera się w nowej karcie
  44. Pronyk, C.; Mazza, G.; Tamaki, Y. Production of Carbohydrates, Lignins, and Minor Components from Triticale Straw by Hydrothermal Treatment. J. Agric. Food Chem. 2011, 59, 3788-3796. [CrossRef] [PubMed] otwiera się w nowej karcie
  45. Jung, M.Y.; Jung, H.M.; Lee, J.; Oh, M.K. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnol. Biofuels 2015, 8, 1-12. [CrossRef] [PubMed] otwiera się w nowej karcie
  46. Liu, X.; Xu, Q.; Liu, J.; Yin, D.; Su, S.; Ding, H. Hydrolysis of cellulose into reducing sugars in ionic liquids. Fuel 2016, 164, 46-50. [CrossRef] otwiera się w nowej karcie
  47. Agbogbo, F.K.; Wenger, K.S. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 2007, 34, 723-727. [CrossRef] [PubMed] otwiera się w nowej karcie
  48. Rafiqul, I.S.M.; Mimi Sakinah, A.M. Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chem. Eng. Sci. 2012, 71, 431-437. [CrossRef] otwiera się w nowej karcie
  49. Nichols, N.N.; Sharma, L.N.; Mowery, R.A.; Chambliss, C.K.; van Walsum, G.P.; Dien, B.S.; Iten, L.B. Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 2008, 42, 624-630. [CrossRef] otwiera się w nowej karcie
  50. Glinka, M.; Łukajtis, R.; Nowak, P.; Kamiński, M. Liquid chromatography techniques, used in technical analysis of hydrolysis processes, of lignocellulosic biomass. Camera Sep. 2017, 9, 92-105.
  51. Jin, Z.; Matsumoto, Y.; Tange, T.; Iiyama, K. Structural characteristics of lignin in primitive pteridophytes: Selaginella species. J. Wood Sci. 2007, 53, 412-418. [CrossRef] otwiera się w nowej karcie
  52. Towers, G.H.N.; Gibbs, R.D. Lignin chemistry and the taxonomy of higher plants. Nature 1953, 172, 25. [CrossRef] otwiera się w nowej karcie
  53. Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39-48. [CrossRef] otwiera się w nowej karcie
  54. Kucharska, K.; Słupek, E.; Cieśliński, H.; Kamiński, M. Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes. Chem. Pap. 2020, in press. otwiera się w nowej karcie
  55. Jönsson, L.J.; Martin, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103-112. [CrossRef] [PubMed] otwiera się w nowej karcie
  56. Akobi, C.; Hafez, H.; Nakhla, G. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge Furfural:sugars exerted a greater effect on H 2 inhibition than f. Bioresour. Technol. 2016, 221, 598-606. [CrossRef] [PubMed] otwiera się w nowej karcie
  57. Ghimire, A.; Frunzo, L.; Pontoni, L.; d'Antonio, G.; Lens, P.N.L.; Esposito, G.; Pirozzi, F. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J. Environ. Manag. 2015, 152, 43-48. [CrossRef] [PubMed] otwiera się w nowej karcie
  58. Xie, R.; Tu, M.; Wu, Y.; Adhikari, S. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate. Bioresour. Technol. 2011, 102, 4938-4942. [CrossRef] otwiera się w nowej karcie
  59. Rambo, M.K.D.; Schmidt, F.L.; Ferreira, M.M.C. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 2015, 144, 696-703. [CrossRef] otwiera się w nowej karcie
  60. Hernández, E.; García, A.; López, M.; Puls, J.; Parajó, J.C.; Martín, C. Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods. Ind. Crops Prod. 2013, 44, 227-231. [CrossRef] otwiera się w nowej karcie
  61. Michalska, K.; Ledakowicz, S. Alkali pre-treatment of Sorghum Moench for biogas production. Chem. Pap. 2013, 67, 1130-1137. [CrossRef] otwiera się w nowej karcie
  62. Cheng, N.; Koda, K.; Tamai, Y.; Yamamoto, Y.; Takasuka, T.E.; Uraki, Y. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour. Technol. 2017, 232, 126-132. [CrossRef] otwiera się w nowej karcie
  63. Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Holladay, J.; Zhang, Q.; Tang, J.; Ruan, R. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour. Technol. 2011, 102, 7004-7007. [CrossRef] otwiera się w nowej karcie
  64. Ishola, M.M.; Ylitervo, P.; Taherzadeh, M.J. Co-Utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes (Basel) 2015, 5, 844-856. [CrossRef] [PubMed] otwiera się w nowej karcie
  65. Monlau, F.; Aemig, Q.; Trably, E.; Hamelin, J.; Steyer, J.P.; Carrere, H. Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. Int. J. Hydrogen Energy 2013, 38, 12273-12282. [CrossRef] otwiera się w nowej karcie
  66. Daoutidis, P.; Kelloway, A.; Marvin, W.A.; Rangarajan, S.; Torres, A.I. Process systems engineering for biorefineries: New research vistas. Curr. Opin. Chem. Eng. 2013, 2, 442-447. [CrossRef] otwiera się w nowej karcie
  67. Menegazzo, F.; Ghedini, E.; Signoretto, M. 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules 2018, 23, 2201. [CrossRef] otwiera się w nowej karcie
  68. Mendonça, A.D.M.; Siqueira, P.M.; Souza, M.M.V.M.; Pereira, N. Optimization of production of 5-hydroxymethylfurfural from glucose in a water: Acetone biphasic system. Braz. J. Chem. Eng. 2015, 32, 501-508. [CrossRef] otwiera się w nowej karcie
  69. Słupek, E.; Kucharska, K.; Gębicki, J. Alternative methods for dark fermentation course analysis. SN Appl. Sci. 2019, 1, 469. [CrossRef] otwiera się w nowej karcie
  70. Thomas, L.; Joseph, A.; Gottumukkala, L.D. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Bioresour. Technol. 2014, 158, 343-350. [CrossRef] otwiera się w nowej karcie
  71. Khoshnevisan, K.; Poorakbar, E.; Baharifar, H.; Barkhi, M. Recent Advances of Cellulase Immobilization onto Magnetic Nanoparticles: An Update Review. Magnetochemistry 2019, 5, 36. [CrossRef] otwiera się w nowej karcie
  72. De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 2013, 33, 1345-1361. [CrossRef] otwiera się w nowej karcie
  73. Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2008, 11, 87-93. [CrossRef] otwiera się w nowej karcie
  74. Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A biorefinery from Nannochloropsissp. Microalga-Extraction of oilsand pigments. Production of biohydrogen from the leftover biomass. Biores. Technol. 2013, 135, 128-136. [CrossRef] [PubMed] otwiera się w nowej karcie
  75. Batista, A.P.; Gouveia, L.; Marques, P. Fermentative hydrogen production from microalgal biomass by asingle strain of bacterium Enterobacter aerogenes Effect of operational conditions, and fermentation kinetics. Renew. Energy 2018, 119, 203-209. [CrossRef] otwiera się w nowej karcie
  76. RStudio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Available online: http://www.rstudio.com/. otwiera się w nowej karcie
  77. Catalysts 2019, 9, 858 27 of 27 otwiera się w nowej karcie
  78. Beukes, N.; Pletschke, B.I. Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour. Technol. 2011, 102, 5207-5213. [CrossRef] [PubMed] otwiera się w nowej karcie
  79. Li, Q.; Gao, Y.; Wang, H.; Li, B.; Liu, C.; Yu, G.; Mu, X. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour. Technol. 2012, 125, 193-199. [CrossRef] [PubMed] otwiera się w nowej karcie
  80. Zhu, Z.; Rezende, C.A.; Simister, R.; McQueen-Mason, S.J.; Macquarrie, D.J.; Polikarpov, I.; Gomez, L.D. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 2016, 93, 269-278. [CrossRef] otwiera się w nowej karcie
  81. Minitab 17; Statistical Software Computer Software; otwiera się w nowej karcie
  82. Minitab, LLC: State College, PA, USA, 2010.
  83. Lin, R.; Cheng, J.; Ding, L.; Song, W.; Zhou, J.; Cen, K. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour. Technol. 2015, 196, 250-255. [CrossRef] [PubMed] otwiera się w nowej karcie
  84. Fernández de Simón, B.; Cadahía, E.; Conde, E.; García-Vallejo, M.C. Low Molecular Weight Phenolic Compounds in Spanish Oak Woods. J. Agric. Food Chem. 1996, 44, 1507-1511. [CrossRef] otwiera się w nowej karcie
  85. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); NREL: Golden, CO, USA, 2008; p. 18. otwiera się w nowej karcie
  86. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples (LAP); NREL: Golden, CO, USA, 2008; pp. 1-14. otwiera się w nowej karcie
  87. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 otwiera się w nowej karcie
  88. Analytical Procedure-Determination of Structural Carbohydrates and Lignin in BIOMASS (LAP); NREL: Golden, CO, USA, 2012; p. 17. otwiera się w nowej karcie
  89. Väljamäe, P.; Pettersson, G.; Johansson, G. Mechanism of substrate inhibition in cellulose synergistic degradation. Eur. J. Biochem. 2001, 268, 4520-4526. [CrossRef] otwiera się w nowej karcie
  90. Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP);
  91. Singh, A.; Sevda, S.; Abu Reesh, I.M.; Vanbroekhoven, K.; Rathore, D.; Pant, D. Biohydrogen production from lignocellulosic biomass: Technology and sustainability. Energies 2015, 8, 13062-13080. [CrossRef] otwiera się w nowej karcie
  92. Zhang, C.; Lv, F.-X.; Xing, X.-H. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production. Bioresour. Technol. 2011, 102, 8344-8349. [CrossRef] otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 185 razy

Publikacje, które mogą cię zainteresować

Meta Tagi