Finite element modelling of a historic church structure in the context of a masonry damage analysis - Publikacja - MOST Wiedzy


Finite element modelling of a historic church structure in the context of a masonry damage analysis


The paper includes a case study of modelling a real historic church using the finite element method (FEM) based on laser scans of its geometry. The main goal of the study was the analysis of the causes of cracking and crushing of masonry walls. An FEM model of the structure has been defined in ABAQUS. A non-linear dynamic explicit analysis with material model including damage plasticity has been performed. A homogenization procedure has been applied to obtain the material parameters used in the modelling of masonry. In the numerical analysis, the interactions between the church structure, the foundations and the ground were taken into account. The obtained results match well with the damaged area of the entire structure from the in-situ survey, and it should be highlighted that the proposed FEM model allows for a rather precise identification of the causes and effects of cracking walls in a qualitative sense. Also a brief research summary is presented.


  • 1 0


  • 7

    Web of Science

  • 1 2


Cytuj jako

Pełna treść

pobierz publikację
pobrano 22 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
ISSN: 1350-6307
Rok wydania:
Opis bibliograficzny:
Kujawa M., Lubowiecka I., Szymczak C.: Finite element modelling of a historic church structure in the context of a masonry damage analysis// ENGINEERING FAILURE ANALYSIS -Vol. 107 , (2020), s.1-18
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.engfailanal.2019.104233
Bibliografia: test
  1. M. Valente, G. Milani, Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy, Eng. Struct. 114 (2016) 241-270. otwiera się w nowej karcie
  2. L. Binda, A. Saisi, C. Tiraboschi, Investigation procedures for the diagnosis of historic masonries, Constr. Build. Mater. 14 (4) (2000) 199-233. otwiera się w nowej karcie
  3. D. Laefer, L. Truong-Hong, H. Carr, M. Singh, International crack detection limits in unit based masonry with terrestrial laser scanning, NDT & E Int. 62 (2014) 66-76. otwiera się w nowej karcie
  4. A. Tomaszewska, Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature, Comput. Struct. 88 (2010) 154-164. otwiera się w nowej karcie
  5. A. Tomaszewska, C. Szymczak, Identification of the Vistula Mounting tower model using measured modal data, Eng. Struct. 42 (2012) 342-348. otwiera się w nowej karcie
  6. N. Grillanda, A. Chiozzi, F. Bondi, A. Tralli, F. Manconi, F. Stochino, A. Cazzani, Numerical insights on the structural assessment of historical masonry stellar vaults: the case of Santa Maria del Monte in Cagliari, Continuum Mech. Thermodyn. (2019) 1-24, otwiera się w nowej karcie
  7. L. Engel, Expertise of technical condition with the indication of causes of damage and assessment of already completed renovation work of gothic church of saints Simon and Jude in Gnojewo, Tech. rep., The Ministry of Culture and National Heritage, 2013.
  8. P. Besl, N. McKay, A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14 (2) (1992) 239-256. otwiera się w nowej karcie
  9. I. Lubowiecka, J. Armesto, P. Arias, H. Lorenzo, Historic bridge modelling using laser scanning, ground penetrating radar and finite element methods in the context of structural dynamics, Eng. Struct. 31 (11) (2009) 2667-2676. otwiera się w nowej karcie
  10. G. Milani, A. Tralli, A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures, Int. J. Solid Struct. 49 (5) (2012) 808-834. otwiera się w nowej karcie
  11. J. Toti, V. Gattulli, E. Sacco, Nonlocal damage propagation in the dynamics of masonry elements, Comput. Struct. 152 (2015) 215-227. otwiera się w nowej karcie
  12. C. Tesei, G. Ventura, A unilateral nonlocal tensile damage model for masonry structures, Procedia Struct. Integr. 2 (2016) 2690-2697. otwiera się w nowej karcie
  13. I. Marzec, J. Tejchman, Enhanced coupled elasto-plastic-damage models to describe concrete behaviour in cyclic laboratory tests: comparison and improvement, Arch. Mech. 64 (3) (2012) 227-259. otwiera się w nowej karcie
  14. B. Riveiro, P. Morer, P. Arias, I. de Arteaga, Terrestrial laser scanning and limit analysis of masonry arch bridges, Constr. Build. Mater. 25 (4) (2011) 1726-1735. otwiera się w nowej karcie
  15. I. Lubowiecka, P. Arias, B. Riveiro, M. Solla, Multidisciplinary approach to the assessment of historic structures based on the case of a masonry bridge in Galicia (Spain), Comput. Struct. 89 (17-18) (2011) 1615-1627. otwiera się w nowej karcie
  16. A. Ayensa, B. Beltrán, E. Ibarz, L. Gracia, Application of a new methodology based on eurocodes and finite element simulation to the assessment of a romanesque church, Constr. Build. Mater. 101 (Part 1) (2015) 287-297. otwiera się w nowej karcie
  17. C. Modena, M. Valluzzi, R.T. Folli, L. Binda, Design choices and intervention techniques for repairing and strengthening of the Monza cathedral bell-tower, Constr. Build. Mater. 16 (2002) 385-395. otwiera się w nowej karcie
  18. G. Milani, M. Valente, Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: non-linear dynamic analyses vs conventional static approaches, Eng. Fail. Anal. 54 (2015) 13-56. otwiera się w nowej karcie
  19. B. Zimnowoda-Krajewska, R. Paszkowski, et al., Architectural study -Gnojewo, district Malbork, gothic church of saints Simon and Jude, Tech. rep., Nicolaus Copernicus University in Toruń, 2004.
  20. A. Pestka, P. Klosowski, I. Lubowiecka, M. Krajewski, Influence of wood moisture on strength and elastic modulus for pine and fir wood subjected to 4-point bending tests, in: Materials Science and Engineering, vol. 471, IOP Publishing, 2018, p. 032033. doi: otwiera się w nowej karcie
  21. M. Solla, H. González-Jorge, M. Álvarez, P. Arias, Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall, Constr. Build. Mater. 36 (2012) 14-19. otwiera się w nowej karcie
  22. M. Szyłański, Geotechnical documentation and engineering-geological documentation -the geotechnical evaluation of foundation conditions, Tech. rep., 2012.
  23. J. Bowles, Foundation Analysis and Design, The McGraw-Hill Companies Inc., 1997.
  24. J. Lopez, S. Oller, E. Oñate, J. Lubliner, A homogeneous constitutive model for masonry, Int. J. Numer. Meth. Eng. 46 (10) (1999) 1651-1671. otwiera się w nowej karcie
  25. R. Quinteros, S. Oller, L. Nallim, Nonlinear homogenization techniques to solve masonry structures problems, Compos. Struct. 94 (2) (2012) 724-730. otwiera się w nowej karcie
  26. P. Matysek, Remarks about estimating the strength of historic walls based on the strength of bricks and mortar, Mater. Budowlane 457 (9) (2010) 44-51.
  27. A. Cecchi, G. Milani, A. Tralli, Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method, J. Eng. Mech. ASCE 131 (2) (2005) 185-198. otwiera się w nowej karcie
  28. G. Milani, P. Lourenço, A. Tralli, Homogenised limit analysis of masonry walls, Part I: failure surfaces, Comput. Struct. 84 (3) (2019) 166-180. otwiera się w nowej karcie
  29. G. Milani, Simple lower bound limit analysis homogenization model for in-and out-of-plane loaded masonry walls, Constr. Build. Mater. 25 (12) (2011) 4426-4443. otwiera się w nowej karcie
  30. E. Bertolesi, G. Milani, P. Lourenço, Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry, Comput. Struct. 176 (C) (2016) 13-33. otwiera się w nowej karcie
  31. G. Milani, E. Bertolesi, Quasi-analytical homogenization approach for the non-linear analysis of in-plane loaded masonry panels, Constr. Build. Mater. 146 (2017) 723-743. otwiera się w nowej karcie
  32. G. Milani, P. Lourenço, A simplified homogenized limit analysis model for randomly assembled blocks out-of-plane loaded, Comput. Struct. 88 (2010) 690-717. otwiera się w nowej karcie
  33. S. Tiberti, M. Acito, G. Milani, Comprehensive FE numerical insight into Finale Emilia Castle behaviour under 2012 Emilia Romagna seismic sequence: damage causes and seismic vulnerability mitigation hypothesis, Eng. Struct. 117 (2016) 397-421. otwiera się w nowej karcie
  34. S. Tiberti, G. Milani, 2D pixed homogenized limit analysis of non-periodic masonry walls, Comput. Struct. 219 (2019) 16-57. otwiera się w nowej karcie
  35. O. Zienkiewicz, R. Taylor, The Finite Element Method, McGraw-Hill Book Company, 1989.
  36. D. Habbit, B. Karlsson, P. Sorensen, ABAQUS Analysis User's Manual, Hibbit, Karlsson, Sorensen Inc., 1997.
  37. A. Hillerborg, M. Modeer, P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res. 6 (6) (1976) 773-782. otwiera się w nowej karcie
  38. J. Lubliner, J. Oliver, S. Oller, E. Oñate, A plastic-damage model for concrete, Int. J. Solids Struct. 25 (1998) 299-329. otwiera się w nowej karcie
  39. J. Lee, G. Fenves, Plastic-damage model for cyclic loading of concrete structures, J. Eng. Mech. 124 (8) (1998) 892-900. otwiera się w nowej karcie
  40. B. Alfarah, F. López-Almansa, S. Oller, New methodology for calculating damage variables evolution in plastic damage for RC structures, Eng. Struct. 132 (2017) 70-85. otwiera się w nowej karcie
  41. M. Resta, A. Fiore, P. Monaco, Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model, Adv. Struct. Eng. 16 (5) (2013) 791-803. otwiera się w nowej karcie
  42. B. Blackard, B. Kim, C. Citto, K. Willam, S. Mettupalayam, Failure issues of brick masonry, Proceedings of the Sixth International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007.
  43. J. Przewłócki, M. Zielińska, K. Grebowski, Numerical modelling of connections between stones in foundations of histrical buildings, WMESS, IOP Conf. Series, Earth and Environmental Science vol. 95, (2017). otwiera się w nowej karcie
  44. N. Augenti, F. Parisi, Constitutive models for tuff masonry under uniaxial compression, J. Mater. Civ. Eng. ASCE 22 (11) (2010) 119-122. otwiera się w nowej karcie
  45. P. Matysek, M. Witkowski, A study on the strength and deformability of XIX century brick masonry, in: XXVI Konferencja Naukowo-Techniczna, Awarie Budowlane, 2013, pp. 183-190. otwiera się w nowej karcie
  46. M. Gołebiewski, I. Lubwiecka, M. Kujawa, Strength parameters of masonry walls in modelling historic constructions. Civil and Environmental Engineering Reports, vol. 18, 2015, pp. 55-63. otwiera się w nowej karcie
  47. T. Jankowiak, T. Łodygowski, Identification of parameters of concrete damage plasticity constitutive model, Foundations of Civil and Environmental Engineering vol. 6, Publishing House of Poznań University of Technology, 2005. otwiera się w nowej karcie
  48. J. Tejchman, J. Bobiński, Continuous and discontinuous modelling of fracture in concrete using FEM, Geomechanics & Geoengineering, Springer, 2013. otwiera się w nowej karcie
  49. M. Kujawa, et al. Engineering Failure Analysis 107 (2020) 104233 otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 99 razy

Publikacje, które mogą cię zainteresować

Meta Tagi