Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets - Publikacja - MOST Wiedzy

Wyszukiwarka

Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets

Abstrakt

The DNA coding sequence of TaqStoffel polymer- ase was fused with the DNA-binding domain of Pyrococcus furiosus ligase. The resulting novel recombinant gene was cloned and expressed in E. coli. The recombinant enzyme was purified and its enzymatic features were studied. The fusion protein (PfuDBDlig-TaqS) was found to have enhanced processivity as a result of the conversion of the Taq DNA polymerase from a relatively low processive to a highly processive enzyme. The abovementioned processivity enhancement was about threefold as compared to the recombinant TaqStoffel DNA polymerase (TaqS), and the recombinant fusion protein was more thermostable. It had a half-life of 23 min at 99 °C as compared to 10 min for TaqS. The fusion protein also showed a significantly higher resistance to PCR inhibitors such as heparin or lactoferrin and the fusion polymerase-amplified GC-rich templates much more efficiently and was efficient even with 78% GC pairs.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 92 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY nr 102, strony 713 - 721,
ISSN: 0175-7598
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Śpibida M., Krawczyk B., Zalewska-Piątek B., Piątek R., Wysocka M., Olszewski M.: Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets// APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. -Vol. 102, nr. 2 (2018), s.713-721
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00253-017-8560-6
Bibliografia: test
  1. Al-Soud WA, Rådström P (1998) Capacity of nine thermostable DNApolymerases to mediate DNA amplification in the presence of PCR inhibiting samples. Appl Environ Microbiol 64:3748-3753
  2. Al-Soud WA, Rådström P (2000) Effect of amplification facilitators on diagnostic PCR in the presence of blood, feces and meat. J Clin Microbiol 38:4463-4470
  3. Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39: 485-493
  4. Arezi B, Xing W, Sorge JA, Hogrefe HH (2003) Amplification efficiency of thermostable DNA polymerases. Anal Biochem 321:226-235 otwiera się w nowej karcie
  5. Barski P, Piechowicz L, Galiński J, Kur J (1996) Rapid assay for detection of methicillin-resistant Staphylococcus aureus using multiplex PCR. Mol Cell Probes 10:471-475 otwiera się w nowej karcie
  6. Dabrowski S, Kur J (1998) Recombinant His-tagged DNA polymerase II. Cloning and purification of Thermus aquaticus recombinant DNA polymerase (Stoffel fragment). Acta Biochim Pol 45:661-667 otwiera się w nowej karcie
  7. Driscoll MD, Rentergent J, Hay SA (2014) Quantitative fluorescence- based steady-state assay of DNA polymerase. FEBS J 281(8): 2042-2050 otwiera się w nowej karcie
  8. Elshawadfy AM, Keith BJ, EeOoi H, Kinsman T, Heslop P, Connolly BA (2014) DNA polymerase hybrids derived from the family-B en- zymes of Pyrococcus furiosus and Thermococcus kodakarensis: im- proving performance in the polymerase chain reaction. Front Microbiol 5:224 otwiera się w nowej karcie
  9. Halley G, Prezioso V (2003) Eppendorf HotMaster-an innovative hot start/cold stop technology for better PCR* results. Tech Notes (Eppendorff-HotMaster) 76-79
  10. Hamilton SC, Farchaus JW, Davis MC (2001) DNA polymerases as engines forbiotechnology. BioTechniques 31:370-383 otwiera się w nowej karcie
  11. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM (2008) Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA am- plification from whole blood and crude soil samples. Nucleic Acids Res 37:e40 otwiera się w nowej karcie
  12. Kotłowski R (2015) A novel method of Mycobacterium tuberculosis complex strain differentiation using polymorphic GC-rich gene se- quences. Acta Biochim Pol 62:317-322 otwiera się w nowej karcie
  13. Kwona KM, Kang SG, Sokolovac TG, Chod SS, Kimb YJ, Kima CH (2016) Characterization of a family B DNA polymerase from Thermococcus barophilus CH5 and its application for long and accurate PCR. Enzyme Microb Technol 86:117-126 otwiera się w nowej karcie
  14. Lawyer FC, Stoffel S, Saiki RK, Chang SY, Landre PA, Abramson RD, Gelfand DH (1993) High-level expression, purification, and enzy- matic characterization of full-length Thermus aquaticus DNA poly- merase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl 2:275-287 otwiera się w nowej karcie
  15. Lee J II, Cho SS, Kil E-J, Kwon S-T (2010) Characterization and PCR application of a thermostable DNA polymerase from Thermococcus pacificus. Enzyme Microb Technol 47:147-152 otwiera się w nowej karcie
  16. Ma C, Tang Z, Wang K, Tan W, Li J, Li W, Li Z, Yang X, Li H, Liu L (2006) Real-time monitoring of DNA polymerase activity using molecular beacon. Anal Biochem 353(1):141-143 otwiera się w nowej karcie
  17. Oscorbin IP, Boyarskikh UA, Zakabunin AI, Khrapov EA, Filipenko ML (2015) DNA-binding domain of DNA ligase from the Thermophilic Archaeon Pyrococcus abyssi: improving long-range PCR and neu- tralization of Heparin's inhibitory effect. Appl Biochem Biotechnol 176(7):1859-1869 otwiera się w nowej karcie
  18. Terpe K (2013) Overview of thermostable DNA polymerases for clas- sical PCR applications: from molecular and biochemical funda- mentals to commercial systems. Appl Microbiol Biotechnol 97: 10243-10254 otwiera się w nowej karcie
  19. Tveit H, Kristensen T (2001) Fluorescence-based DNA polymerase as- say. Anal Biochem 289(1):96-98 otwiera się w nowej karcie
  20. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB (2004) A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32:1197-1207 otwiera się w nowej karcie
  21. Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I (1999) Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal 13:133-140 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 138 razy

Publikacje, które mogą cię zainteresować

Meta Tagi