High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification - Publikacja - MOST Wiedzy

Wyszukiwarka

High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification

Abstrakt

In this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing crystal defects. The oxidized BDD surfaces were studied by means of cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM), revealing a significant decrease in the electrode activity and local heterogeneity of areas owing to various standard rate constants. This effect was correlated with a resultant increase of surface resistance heterogeneity by scanning spreading resistance microscopy (SSRM). The X-ray photoelectron spectroscopy (XPS) confirmed the rate and heterogeneity of the oxidation process, revealing hydroxyl species to be dominant on the electrode surface. Morphological tests using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that prolonged durations of high-temperature treatment lead not only to surface oxidation but also to irreversible structural defects in the form of etch pits. Our results show that even subsequent electrode rehydrogenation in plasma is not sufficient to reverse this surface oxidation in terms of electrochemical and physico-chemical properties, and the nature of high-temperature corrosion of BDD electrodes should be considered irreversible.

Cytowania

  • 5

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 13, strony 1 - 16,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Ryl J., Cieślik M., Zieliński A., Ficek M., Dec B., Darowicki K., Bogdanowicz R.: High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification// Materials -Vol. 13,iss. 4 (2020), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma13040964
Bibliografia: test
  1. Sussmann, E.S. CVD Diamond for Electronic Devices and Sensors;
  2. Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Methods 2019, 11, 397-414. [CrossRef] otwiera się w nowej karcie
  3. Yu, S.; Yang, N.; Jiang, X.; Zhang, W.; Liu, S. Conductive Diamond for Electrochemical Energy Applications. In Nanocarbon Electrochemistry; otwiera się w nowej karcie
  4. Yang, N., Zhao, G., Foord, J., Eds.; John Wiley & Sons: New York, NY, USA, 2020; pp. 171-199. ISBN 978-1-119-46823-3.
  5. Nidheesh, P.V.; Divyapriya, G.; Oturan, N.; Trellu, C.; Oturan, M.A. Environmental Applications of Boron-Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019, 6, 2124-2142. [CrossRef] otwiera się w nowej karcie
  6. Yang, N. (Ed.) Novel Aspects of Diamond: From Growth to Applications; Springer International Publishing: Cham, Switzerland, 2019; Volume 121, ISBN 978-3-030-12468-7.
  7. Ashcheulov, P.; Taylor, A.; Mortet, V.; Poruba, A.; Le Formal, F.; Krýsová, H.; Klementová, M.; Hubík, P.; Kopeček, J.; Lorinčík, J.; et al. Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes. ACS Appl. Mater. Interfaces 2018, 10, 29552-29564. [CrossRef] otwiera się w nowej karcie
  8. Schranck, A.; Doudrick, K. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode. Water Res. 2020, 168, 115130. [CrossRef] [PubMed] otwiera się w nowej karcie
  9. Mei, R.; Zhu, C.; Wei, Q.; Ma, L.; Li, W.; Zhou, B.; Deng, Z.; Tong, Z.; Ouyang, G.; Jiang, C. The Dependence of Oxidation Parameters and Dyes' Molecular Structures on Microstructure of Boron-Doped Diamond in Electrochemical Oxidation Process of Dye Wastewater. J. Electrochem. Soc. 2018, 165, H324-H332. [CrossRef] otwiera się w nowej karcie
  10. Zhang, Y.; Teo, K.H.; Palacios, T. Beyond Thermal Management: Incorporating p-Diamond Back-Barriers and Cap Layers Into AlGaN/GaN HEMTs. IEEE Trans. Electron. Devices 2016, 63, 2340-2345. [CrossRef] otwiera się w nowej karcie
  11. Williams, G.; Calvo, J.A.; Faili, F.; Dodson, J.; Obeloer, T.; Twitchen, D.J. Thermal Conductivity of Electrically Conductive Highly Boron Doped Diamond and its Applications at High Frequencies. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May-1 June 2018; pp. 235-239. otwiera się w nowej karcie
  12. Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 2005, 51, 191-199. [CrossRef] otwiera się w nowej karcie
  13. Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965. [CrossRef] otwiera się w nowej karcie
  14. Herrmann, M.; Matthey, B.; Gestrich, T. Boron-doped diamond with improved oxidation resistance. Diam. Relat. Mater. 2019, 92, 47-52. [CrossRef] otwiera się w nowej karcie
  15. Wang, J.; Swain, G.M. Dimensionally Stable Pt/Diamond Composite Electrodes in Concentrated H 3 PO 4 at High Temperature. Electrochem. Solid State Lett. 2002, 5, E4. [CrossRef] otwiera się w nowej karcie
  16. Umezawa, H.; Nagase, M.; Kato, Y.; Shikata, S. High temperature application of diamond power device. Diam. Relat. Mater. 2012, 24, 201-205. [CrossRef] otwiera się w nowej karcie
  17. Ueda, K.; Kawamoto, K.; Soumiya, T.; Asano, H. High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diam. Relat. Mater. 2013, 38, 41-44. [CrossRef] otwiera się w nowej karcie
  18. Jiang, M.; Yu, H.; Li, X.; Lu, S.; Hu, X. Thermal oxidation induced high electrochemical activity of boron-doped nanocrystalline diamond electrodes. Electrochim. Acta 2017, 258, 61-70. [CrossRef] otwiera się w nowej karcie
  19. Pehrsson, P.E.; Mercer, T.W.; Chaney, J.A. Thermal oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 2002, 497, 13-28. [CrossRef] otwiera się w nowej karcie
  20. Zhang, J.; Nakai, T.; Uno, M.; Nishiki, Y.; Sugimoto, W. Effect of the boron content on the steam activation of boron-doped diamond electrodes. Carbon 2013, 65, 206-213. [CrossRef] otwiera się w nowej karcie
  21. Ryl, J.; Burczyk, L.; Bogdanowicz, R.; Sobaszek, M.; Darowicki, K. Study on surface termination of boron-doped diamond electrodes under anodic polarization in H 2 SO 4 by means of dynamic impedance technique. Carbon 2016, 96, 1093-1105. [CrossRef] otwiera się w nowej karcie
  22. Martínez-Huitle, C.A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M.A. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. J. Braz. Chem. Soc. 2008, 19, 150-156. [CrossRef] otwiera się w nowej karcie
  23. Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744-753. [CrossRef] otwiera się w nowej karcie
  24. Grot, S.A.; Gildenblat, G.S.; Hatfield, C.W.; Wronski, C.R.; Badzian, A.R.; Badzian, T.; Messier, R. The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film. IEEE Electron. Dev. Lett. 1990, 11, 100-102. [CrossRef] otwiera się w nowej karcie
  25. Švorc, L'.; Rievaj, M.; Bustin, D. Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sens. Actuators B Chem. 2013, 181, 294-300. [CrossRef] otwiera się w nowej karcie
  26. Yagi, I.; Notsu, H.; Kondo, T.; Tryk, D.A.; Fujishima, A. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J. Electroanal. Chem. 1999, 473, 173-178. [CrossRef] otwiera się w nowej karcie
  27. Boukherroub, R.; Wallart, X.; Szunerits, S.; Marcus, B.; Bouvier, P.; Mermoux, M. Photochemical oxidation of hydrogenated boron-doped diamond surfaces. Electrochem. Commun. 2005, 7, 937-940. [CrossRef] otwiera się w nowej karcie
  28. Geisler, M.; Hugel, T. Aging of Hydrogenated and Oxidized Diamond. Adv. Mater. 2010, 22, 398-402. [CrossRef] otwiera się w nowej karcie
  29. Vanhove, E.; de Sanoit, J.; Arnault, J.C.; Saada, S.; Mer, C.; Mailley, P.; Bergonzo, P.; Nesladek, M. Stability of H-terminated BDD electrodes: An insight into the influence of the surface preparation. Phys. Status Solidi 2007, 204, 2931-2939. [CrossRef] otwiera się w nowej karcie
  30. Zielinski, A.; Cieslik, M.; Sobaszek, M.; Bogdanowicz, R.; Darowicki, K.; Ryl, J. Multifrequency nanoscale impedance microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes. Ultramicroscopy 2019, 199, 34-45. [CrossRef] otwiera się w nowej karcie
  31. Ghodbane, S.; Haensel, T.; Coffinier, Y.; Szunerits, S.; Steinmüller-Nethl, D.; Boukherroub, R.; Ahmed, S.I.-U.; Schaefer, J.A. HREELS Investigation of the Surfaces of Nanocrystalline Diamond Films Oxidized by Different Processes. Langmuir 2010, 26, 18798-18805. [CrossRef] otwiera się w nowej karcie
  32. Girard, H.; Simon, N.; Ballutaud, D.; Herlem, M.; Etcheberry, A. Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes. Diam. Relat. Mater. 2007, 16, 316-325. [CrossRef] otwiera się w nowej karcie
  33. Ryl, J.; Bogdanowicz, R.; Slepski, P.; Sobaszek, M.; Darowicki, K. Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 2014, 161, H359-H364. [CrossRef] otwiera się w nowej karcie
  34. Ferro, S.; Dal Colle, M.; De Battisti, A. Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes. Carbon 2005, 43, 1191-1203. [CrossRef] otwiera się w nowej karcie
  35. Shpilman, Z.; Gouzman, I.; Minton, T.K.; Shen, L.; Stacey, A.; Orwa, J.; Prawer, S.; Cowie, B.C.C.; Hoffman, A. A near edge X-ray absorption fine structure study of oxidized single crystal and polycrystalline diamond surfaces. Diam. Relat. Mater. 2014, 45, 20-27. [CrossRef] otwiera się w nowej karcie
  36. Zolotukhin, A.; Kopylov, P.G.; Ismagilov, R.R.; Obraztsov, A.N. Thermal oxidation of CVD diamond. Diam. Relat. Mater. 2010, 19, 1007-1011. [CrossRef] otwiera się w nowej karcie
  37. Show, Y.; Witek, M.A.; Sonthalia, P.; Swain, G.M. Characterization and Electrochemical Responsiveness of Boron-Doped Nanocrystalline Diamond Thin-Film Electrodes. Chem. Mater. 2003, 15, 879-888. [CrossRef] otwiera się w nowej karcie
  38. Szunerits, S.; Boukherroub, R.; Downard, A.; Zhu, J.-J. (Eds.) Nanocarbon chemistry and interfaces. In Nanocarbons for Electroanalysis, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-119-24395-3. otwiera się w nowej karcie
  39. Ficek, M.; Bogdanowicz, R.; Ryl, J. Nanocrystalline CVD Diamond Coatings on Fused Silica Optical Fibres: Optical Properties Study. Acta Phys. Pol. A 2015, 127, 868-873. [CrossRef] otwiera się w nowej karcie
  40. Zieliński, A.; Bogdanowicz, R.; Ryl, J.; Burczyk, L.; Darowicki, K. Local impedance imaging of boron-doped polycrystalline diamond thin films. Appl. Phys. Lett. 2014, 105, 131908. [CrossRef] otwiera się w nowej karcie
  41. Ryl, J.; Burczyk, L.; Zielinski, A.; Ficek, M.; Franczak, A.; Bogdanowicz, R.; Darowicki, K. Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity. Electrochim. Acta 2019, 297, 1018-1027. [CrossRef] otwiera się w nowej karcie
  42. Bogdanowicz, R.; Sawczak, M.; Niedzialkowski, P.; Zieba, P.; Finke, B.; Ryl, J.; Karczewski, J.; Ossowski, T. Novel Functionalization of Boron-Doped Diamond by Microwave Pulsed-Plasma Polymerized Allylamine Film. J. Phys. Chem. C 2014, 118, 8014-8025. [CrossRef] otwiera się w nowej karcie
  43. Richard, W. Kinetic Study of Redox Probes on Glassy Carbon Electrode Functionalized by 4-nitrobenzene Diazonium. Int. J. Electrochem. Sci. 2019, 453-469. [CrossRef] otwiera się w nowej karcie
  44. Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-04372-0.
  45. Bogdanowicz, R.; Sawczak, M.; Niedzialkowski, P.; Zieba, P.; Finke, B.; Ryl, J.; Ossowski, T. Direct amination of boron-doped diamond by plasma polymerized allylamine film: Direct amination of boron-doped diamond. Phys. Status Solidi 2014, 211, 2319-2327. [CrossRef] otwiera się w nowej karcie
  46. Actis, P.; Denoyelle, A.; Boukherroub, R.; Szunerits, S. Influence of the surface termination on the electrochemical properties of boron-doped diamond (BDD) interfaces. Electrochem. Commun. 2008, 10, 402-406. [CrossRef] otwiera się w nowej karcie
  47. Velasco, J.G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880-882. [CrossRef] otwiera się w nowej karcie
  48. Konopka, S.J.; McDuffie, B. Diffusion coefficients of ferri-and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 1970, 42, 1741-1746. [CrossRef] otwiera się w nowej karcie
  49. Holt, K.B.; Bard, A.J.; Show, Y.; Swain, G.M. Scanning Electrochemical Microscopy and Conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels. J. Phys. Chem. B 2004, 108, 15117-15127. [CrossRef] otwiera się w nowej karcie
  50. Kondo, T.; Kodama, Y.; Ikezoe, S.; Yajima, K.; Aikawa, T.; Yuasa, M. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 2014, 77, 783-789. [CrossRef] otwiera się w nowej karcie
  51. Ohashi, T.; Zhang, J.; Takasu, Y.; Sugimoto, W. Steam activation of boron doped diamond electrodes. Electrochim. Acta 2011, 56, 5599-5604. [CrossRef] otwiera się w nowej karcie
  52. Ryl, J.; Zielinski, A.; Bogdanowicz, R.; Darowicki, K. Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization. Electrochem. Commun. 2017, 83, 41-45. [CrossRef] otwiera się w nowej karcie
  53. Siuzdak, K.; Bogdanowicz, R.; Sawczak, M.; Sobaszek, M. Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 2015, 7, 551-558. [CrossRef] otwiera się w nowej karcie
  54. Denhoff, M.W. An accurate calculation of spreading resistance. J. Phys. D Appl. Phys. 2006, 39, 1761-1765. [CrossRef] otwiera się w nowej karcie
  55. Dickens, L.E. Spreading Resistance as a Function of Frequency. IEEE Trans. Microw. Theory Technol. 1967, 15, 101-109. [CrossRef] otwiera się w nowej karcie
  56. Chevallier, F.G.; Fietkau, N.; del Campo, J.; Mas, R.; Muñoz, F.X.; Jiang, L.; Jones, T.G.J.; Compton, R.G. Experimental cyclic voltammetry at partially blocked electrodes: Elevated cylindrical blocks. J. Electroanal. Chem. 2006, 596, 25-32. [CrossRef] otwiera się w nowej karcie
  57. Davies, T.J.; Banks, C.E.; Compton, R.G. Voltammetry at spatially heterogeneous electrodes. J. Solid State Electrochem. 2005, 9, 797-808. [CrossRef] otwiera się w nowej karcie
  58. Ivandini, T.A.; Watanabe, T.; Matsui, T.; Ootani, Y.; Iizuka, S.; Toyoshima, R.; Kodama, H.; Kondoh, H.; Tateyama, Y.; Einaga, Y. Influence of Surface Orientation on Electrochemical Properties of Boron-Doped Diamond. J. Phys. Chem. C 2019, 123, 5336-5344. [CrossRef] otwiera się w nowej karcie
  59. Ghodbane, S.; Ballutaud, D.; Deneuville, A.; Baron, C. Influence of boron concentration on the XPS spectra of the (100) surface of homoepitaxial boron-doped diamond films. Phys. State Solid 2006, 203, 3147-3151. [CrossRef] otwiera się w nowej karcie
  60. Ballutaud, D.; Simon, N.; Girard, H.; Rzepka, E.; Bouchet-Fabre, B. Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface. Diam. Relat. Mater. 2006, 15, 716-719. [CrossRef] otwiera się w nowej karcie
  61. Girard, H.A.; Simon, N.; Ballutaud, D.; Etcheberry, A. Correlation between flat-band potential position and oxygenated termination nature on boron-doped diamond electrodes. Comptes Rendus Chim. 2008, 11, 1010-1015. [CrossRef] otwiera się w nowej karcie
  62. Catalan, F.C.I.; Hayazawa, N.; Yokota, Y.; Wong, R.A.; Watanabe, T.; Einaga, Y.; Kim, Y. Facet-Dependent Temporal and Spatial Changes in Boron-Doped Diamond Film Electrodes due to Anodic Corrosion. J. Phys. Chem. C 2017, 121, 26742-26750. [CrossRef] otwiera się w nowej karcie
  63. Pleskov, Y.V.; Evstefeeva, Y.E.; Krotova, M.D.; Varnin, V.P.; Teremetskaya, I.G. Synthetic semiconductor diamond electrodes: Electrochemical behaviour of homoepitaxial boron-doped films orientated as (111), (110), and (100) faces. J. Electroanal. Chem. 2006, 595, 168-174. [CrossRef] otwiera się w nowej karcie
  64. Wolfer, M.; Biener, J.; El-dasher, B.S.; Biener, M.M.; Hamza, A.V.; Kriele, A.; Wild, C. Crystallographic anisotropy of growth and etch rates of CVD diamond. Diam. Relat. Mater. 2009, 18, 713-717. [CrossRef] 64. zevedo, A.F.; Braga, N.A.; Souza, F.A.; Matsushima, J.T.; Baldan, M.R.; Ferreira, N.G. The effect of surface treatment on oxidation of oxalic acid at nanocrystalline diamond films. Diam. Relat. Mater. 2010, 19, 462-465. [CrossRef] © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 51 razy

Publikacje, które mogą cię zainteresować

Meta Tagi