Abstrakt
In this paper we introduce a new compactness condition — Property-(C) — for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying the this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain the E-cohomological Conley index. We formulate a continuation principle for the E-cohomological Conley index and show that all LS-flows can be continued to LS-gradient flows. We show that the Morse homology of LS-gradient flows computes the E-cohomological Conley index. We use Lyapunov functions to define the Morse–Conley–Floer cohomology in this context, and show that it is also isomorphic to the E-cohomological Conley index.
Cytowania
-
4
CrossRef
-
0
Web of Science
-
5
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuł w czasopiśmie wyróżnionym w JCR
- Opublikowano w:
-
JOURNAL OF DIFFERENTIAL EQUATIONS
nr 263,
wydanie 11,
strony 7162 - 7186,
ISSN: 0022-0396 - Język:
- angielski
- Rok wydania:
- 2017
- Opis bibliograficzny:
- Izydorek M., Rot T., Starostka M., Styborski M., Vandervorst R.: Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces// JOURNAL OF DIFFERENTIAL EQUATIONS. -Vol. 263, iss. 11 (2017), s.7162-7186
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jde.2017.08.007
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 240 razy