How Specific Can We Be with k-NN Classifier? - Publikacja - MOST Wiedzy

Wyszukiwarka

How Specific Can We Be with k-NN Classifier?

Abstrakt

This paper discusses the possibility of designing a two stage classifier for large-scale hierarchical and multilabel text classification task, that will be a compromise between two common approaches to this task. First of it is called big-bang, where there is only one classifier that aims to do all the job at once. Top-down approach is the second popular option, in which at each node of categories’ hierarchy, there is a flat classifier that makes a local classification between categories that are immediate descendants of that node. The article focuses on evaluating the performance of a k-NN algorithm at different levels of categories’ hierarchy, aiming to test, whether it will be profitable to make a semi-big-bang step (restricted to a specified level of the hierarchy), followed by a middle-down more detailed classification. Presented empirical experiments are done on Simple English Wikipedia dataset.

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence strony 88 - 94
Język:
angielski
Rok wydania:
2014
Opis bibliograficzny:
Draszawka K., Szymański J.: How Specific Can We Be with k-NN Classifier?// Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence/ ed. Balicki Jerzy : WSEAS Press, 2014, s.88-94
Weryfikacja:
Politechnika Gdańska

wyświetlono 121 razy

Publikacje, które mogą cię zainteresować

Meta Tagi