Hydrogen production from biomass using dark fermentation - Publikacja - MOST Wiedzy

Wyszukiwarka

Hydrogen production from biomass using dark fermentation

Abstrakt

Hydrogen applicability in the power, chemical and petrochemical industries is constantly growing. Efficientmethods of hydrogen generation from renewable sources, including waste products, are currently being de-veloped, even though hydrogen is mainly produced through steam reforming or thermal cracking of natural gasor petroleum fractions. In paper alternative methods of hydrogen production with a particular emphasis on darkfermentation are discussed. The review compiles essential information on strains of bacteria used in the pro-duction of hydrogen from waste products in the agroindustry and from lignocellulosic biomass. The effect ofsuch parameters as kind of raw material, method of processing, temperature, pH, substrate concentration, partialpressure of hydrogen, hydraulic retention time, method of inoculum preparation and the type and operatingparameters of a reactor on the yield of dark fermentation is discussed. The review aims at presentation of currentstate of knowledge on the dark fermentation process utilizing waste materials as substrates. The results of in-vestigations with emphasis on the most important issues regarding operating parameters of dark fermentationare also included.

Cytowania

  • 1 0 1

    CrossRef

  • 7 9

    Web of Science

  • 8 8

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
RENEWABLE & SUSTAINABLE ENERGY REVIEWS nr 91, strony 665 - 694,
ISSN: 1364-0321
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Łukajtis R., Hołowacz I., Kucharska K., Glinka M., Rybarczyk P., Przyjazny A., Kamiński M.: Hydrogen production from biomass using dark fermentation// RENEWABLE & SUSTAINABLE ENERGY REVIEWS. -Vol. 91, (2018), s.665-694
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.rser.2018.04.043
Bibliografia: test
  1. 2.1. Organic municipal waste ........................................................................................ 12 4.2.2. Waste of animal origin ........................................................................................... 16 4.2.3. Industrial waste and effluents ................................................................................. 18 4.2.4. Agricultural waste and energy plants ..................................................................... 22 4.3. Substrate concentration ................................................................................................. 28 5. Factors affecting dark fermentation hydrogen yield ............................................................ 30 5.1. Bacteria used in dark fermentation ................................................................................ 30 5.1.1. Obligate anaerobes ................................................................................................. 31 5.1.2. Facultative anaerobes ............................................................................................. 32 5.2. Mixed bacterial cultures. Methods of preparation and enrichment of inoculum .......... 33 otwiera się w nowej karcie
  2. Reactors used in dark fermentation ...................................................................................... 51 6.1. Continuously stirred-tank reactor ............................................................................. 51 6.2 otwiera się w nowej karcie
  3. Membrane bioreactor ................................................................................................ 53 6.3. Packed -bed bioreactors ........................................................................................... 54 6.3.1. Upflow anaerobic sludge blanket reactor .......................................................... 55
  4. Summary .............................................................................................................................. 58 otwiera się w nowej karcie
  5. Acknowledgements .................................................................................................................. 59 Bibliography ............................................................................................................................. 60 otwiera się w nowej karcie
  6. Graboski MS, McCormick RL. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci 1998;24:125-64. doi:10.1016/S0360- 1285(97)00034-8. otwiera się w nowej karcie
  7. Zajic JE, Kosaric N, Brosseau JD. Microbial production of hydrogen. Adv. Biochem. Eng., Berlin, Heidelberg: Springer Berlin Heidelberg; 1978, p. 57-109. doi:10.1007/BFb0048091. otwiera się w nowej karcie
  8. Grimes CA, Varghese OK, Ranjan S. Light, Water, Hydrogen. The solar generation of hydrogen by water photoelectrolysis. New York: Springer Science+Business Media, LLC; 2008. doi:10.1007/978-0-387-68238-9. otwiera się w nowej karcie
  9. Sinha P, Pandey A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 2011;36:7460-78. doi:10.1016/j.ijhydene.2011.03.077. otwiera się w nowej karcie
  10. Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol 2006;38:569-82. doi:10.1016/j.enzmictec.2005.09.015. otwiera się w nowej karcie
  11. Momirlan M, Veziroglu T. Current status of hydrogen energy. Renew Sustain Energy Rev 2002;6:141-79. doi:10.1016/S1364-0321(02)00004-7. otwiera się w nowej karcie
  12. Logan BE. Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 2004;38:4-8. otwiera się w nowej karcie
  13. Kato H, Kudo A. Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 2003;78:561-9. doi:10.1016/S0920-5861(02)00355-3. otwiera się w nowej karcie
  14. Givotov VK, Fridman AA, Krotov MF, Krasheninnikov EG, Patrushev BI, Rusanov VD, et al. Plasmochemical methods of hydrogen production. Int J Hydrogen Energy 1981;6:441-9. doi:10.1016/0360-3199(81)90076-8. otwiera się w nowej karcie
  15. Ghoroghchian J, Bockris JO. Use of a homopolar generator in hydrogen production from water. Int J Hydrogen Energy 1985;10:101-12. doi:10.1016/0360- 3199(85)90042-4. otwiera się w nowej karcie
  16. Crumière F, Vandenborre J, Essehli R, Blain G, Barbet J, Fattahi M. LET effects on the hydrogen production induced by the radiolysis of pure water. Radiat Phys Chem 2013;82:74-9. doi:10.1016/j.radphyschem.2012.07.010. otwiera się w nowej karcie
  17. Ohta T. A note on the gas-evolution of mechano-catalytic water-splitting system. vol. 26. 2001. doi:10.1016/S0360-3199(00)00110-5. otwiera się w nowej karcie
  18. Reith JH, Wijffels RH, Barten H. Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Hague: Dutch Biological Hydrogen Foundation -NOVEM; 2003.
  19. Pudukudy M, Yaakob Z, Mohammad M, Narayanan B, Sopian K. Renewable hydrogen economy in Asia -Opportunities and challenges: An overview. Renew Sustain Energy Rev 2014;30:743-57. doi:10.1016/j.rser.2013.11.015. otwiera się w nowej karcie
  20. Production of hydrogen by catalytic steam reforming of oxygenated model compounds on Ni-modified supported catalysts. Simulation and experimental study. Int J Hydrogen Energy 2015;40:11217-27. doi:10.1016/J.IJHYDENE.2015.05.167. otwiera się w nowej karcie
  21. Shahbaz M, yusup S, Inayat A, Patrick DO, Ammar M. The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review. Renew Sustain Energy Rev 2017;73:468-76. doi:10.1016/j.rser.2017.01.153. otwiera się w nowej karcie
  22. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev 2016;57:850- 66. doi:10.1016/J.RSER.2015.12.112. otwiera się w nowej karcie
  23. Yang L, Seshan K, Li Y. A review on thermal chemical reactions of lignin model compounds. Catal Today 2016. doi:10.1016/j.cattod.2016.11.030. otwiera się w nowej karcie
  24. Sarma SJ, Pachapur V, Brar SK, Le Bihan Y, Buelna G. Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 2015;50:942-51. doi:10.1016/j.rser.2015.04.191. otwiera się w nowej karcie
  25. Yan K, Jarvis C, Gu J, Yan Y. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew Sustain Energy Rev 2015;51:986-97. doi:10.1016/j.rser.2015.07.021. otwiera się w nowej karcie
  26. Bardhan SK, Gupta S, Gorman ME, Haider MA. Biorenewable chemicals: Feedstocks, technologies and the conflict with food production. Renew Sustain Energy Rev 2015;51:506-20. doi:10.1016/j.rser.2015.06.013. otwiera się w nowej karcie
  27. Yan K, Liu Y, Lu Y, Chai J, Sun L. Catalytic application of layered double hydroxide- derived catalysts for the conversion of biomass-derived molecules. Catal Sci Technol 2017;7:1622-45. doi:10.1039/C7CY00274B. otwiera się w nowej karcie
  28. Sen B, Aravind J, Kanmani P, Lay CH. State of the art and future concept of food waste fermentation to bioenergy. Renew Sustain Energy Rev 2016;53:547-57. doi:10.1016/j.rser.2015.08.065. otwiera się w nowej karcie
  29. Kothari R, Singh DP, Tyagi V V., Tyagi SK. Fermentative hydrogen production -An alternative clean energy source. Renew Sustain Energy Rev 2012;16:2337-46. doi:10.1016/j.rser.2012.01.002. otwiera się w nowej karcie
  30. Kumar G, Bakonyi P, Kobayashi T, Xu KQ, Sivagurunathan P, Kim SH, et al. Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen. Renew Sustain Energy Rev 2016;57:879-91. doi:10.1016/j.rser.2015.12.107. otwiera się w nowej karcie
  31. Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, et al. Fermentative hydrogen production using lignocellulose biomass: An overview of pre- treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 2017;77:28-42. doi:10.1016/j.rser.2017.03.091. otwiera się w nowej karcie
  32. Trchounian K, Sawers RG, Trchounian A. Improving biohydrogen productivity by microbial dark-and photo-fermentations: Novel data and future approaches. Renew Sustain Energy Rev 2017;80:1201-16. doi:10.1016/j.rser.2017.05.149. otwiera się w nowej karcie
  33. Wong YM, Wu TY, Juan JC. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 2014;34:471-82. doi:10.1016/j.rser.2014.03.008. otwiera się w nowej karcie
  34. Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, et al. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrogen Energy 2016. doi:10.1016/j.ijhydene.2015.12.081. otwiera się w nowej karcie
  35. Kumar G, Sivagurunathan P, Sen B, Mudhoo A, Davila-Vazquez G, Wang G, et al. Research and development perspectives of lignocellulose-based biohydrogen production. Int Biodeterior Biodegradation 2017;119:225-38. doi:10.1016/j.ibiod.2016.10.030. otwiera się w nowej karcie
  36. Rezania S, Din MFM, Taib SM, Sohaili J, Chelliapan S, Kamyab H, et al. Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. Int J Hydrogen Energy 2017;42:20955-69. doi:10.1016/j.ijhydene.2017.07.007. otwiera się w nowej karcie
  37. Hallenbeck PC. Fermentative hydrogen production: Principles, progress, and prognosis. Int J Hydrogen Energy 2009;34:7379-89. doi:10.1016/j.ijhydene.2008.12.080. otwiera się w nowej karcie
  38. Liu CM, Zheng JL, Wu SY, Chu CY. Fermentative hydrogen production potential from washing wastewater of beverage production process. Int J Hydrogen Energy 2016. doi:10.1016/j.ijhydene.2015.08.079. otwiera się w nowej karcie
  39. García CA, Betancourt R, Cardona CA. Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manage 2015;203:695-703. doi:10.1016/j.jenvman.2016.04.001. otwiera się w nowej karcie
  40. Jia S, Ning S, Ying H, Sun Y, Xu W, Yin H. High quality syngas production from catalytic gasification of woodchip char. Energy Convers Manag 2017;151:457-64. doi:10.1016/j.enconman.2017.09.008. otwiera się w nowej karcie
  41. Tijmensen MJA, Faaij APC, Hamelinck CN, Van Hardeveld MRM. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy 2002;23:129-52. doi:10.1016/S0961- 9534(02)00037-5. otwiera się w nowej karcie
  42. Effects of biochemical composition on hydrogen production by biomass gasification. Int J Hydrogen Energy 2017;42:19723-32. doi:10.1016/J.IJHYDENE.2017.06.174. otwiera się w nowej karcie
  43. Hydrogen and syngas production by catalytic biomass gasification. Energy Convers Manag 2017;135:270-3. doi:10.1016/J.ENCONMAN.2016.12.056. otwiera się w nowej karcie
  44. Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Int J Hydrogen Energy 2014;39:13128-35. doi:10.1016/J.IJHYDENE.2014.06.158. otwiera się w nowej karcie
  45. Hydrogen production through hydrothermal gasification of industrial wastewaters using transition metal oxide catalysts. J Supercrit Fluids 2016;114:32-45. doi:10.1016/J.SUPFLU.2016.03.028. otwiera się w nowej karcie
  46. Hydrogen rich gas production from catalytic gasification of biomass. Renew Energy 2016;85:1290-300. doi:10.1016/J.RENENE.2015.07.082. otwiera się w nowej karcie
  47. Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresour Technol 2016;222:232-41. doi:10.1016/J.BIORTECH.2016.09.082. otwiera się w nowej karcie
  48. Hossain MA, Ganesan P, Laxmi J, Chinna K. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers Manag 2016;133:349-62.
  49. Moud PH, Kantarelis E, Andersson KJ, Engvall K. Biomass pyrolysis gas conditioning over an iron-based catalyst for mild deoxygenation and hydrogen production. Fuel 2018;211:149-58. doi:10.1016/j.fuel.2017.09.062. otwiera się w nowej karcie
  50. Production of syngas from pyrolysis of biomass using Fe/CaO catalysts: Effect of operating conditions on the process. J Anal Appl Pyrolysis 2017;125:1-8. doi:10.1016/J.JAAP.2017.05.007. otwiera się w nowej karcie
  51. Pyrolysis/reforming of rice husks with a Ni-dolomite catalyst: Influence of process conditions on syngas and hydrogen yield. J Energy Inst 2016;89:657-67. doi:10.1016/J.JOEI.2015.05.006. otwiera się w nowej karcie
  52. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 1999;51:3-22. doi:10.1016/S0165-2370(99)00005-4. otwiera się w nowej karcie
  53. Elliott DC, Beckman D, Bridgwater A V., Diebold JP, Gevert SB, Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy & Fuels 1991;5:399-410. doi:10.1021/ef00027a008. otwiera się w nowej karcie
  54. Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, et al. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 2011;102:7004-7. doi:10.1016/j.biortech.2011.04.025. otwiera się w nowej karcie
  55. Nabgan W, Tuan Abdullah TA, Mat R, Nabgan B, Gambo Y, Ibrahim M, et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview. Renew Sustain Energy Rev 2017;79:347-57. doi:10.1016/j.rser.2017.05.069. otwiera się w nowej karcie
  56. Hosseini SE, Wahid MA, Ganjehkaviri A. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia. Energy Convers Manag 2015;94:415-29. doi:10.1016/j.enconman.2015.02.012. otwiera się w nowej karcie
  57. Yao J, Liu J, Hofbauer H, Chen G, Yan B, Shan R, et al. Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1-xCuxO3 perovskite- type catalysts. Energy Convers Manag 2016;117:343-50. doi:10.1016/j.enconman.2016.03.043. otwiera się w nowej karcie
  58. Chen G, Tao J, Liu C, Yan B, Li W, Li X. Hydrogen production via acetic acid steam reforming: A critical review on catalysts. Renew Sustain Energy Rev 2017;79:1091-8. doi:10.1016/j.rser.2017.05.107. otwiera się w nowej karcie
  59. Ma Y, Guan G, Phanthong P, Li X, Cao J, Hao X, et al. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst. otwiera się w nowej karcie
  60. Int J Hydrogen Energy 2014;39:18803-11. doi:10.1016/j.ijhydene.2014.09.062. otwiera się w nowej karcie
  61. Sharma YC, Kumar A, Prasad R, Upadhyay SN. Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev 2017;74:89-103. doi:10.1016/j.rser.2017.02.049. otwiera się w nowej karcie
  62. Nath K, Muthukumar M, Kumar A, Das D. Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 2008;33:1195-203. doi:10.1016/j.ijhydene.2007.12.011. otwiera się w nowej karcie
  63. Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T. [Fe]-hydrogenases in green algae: Photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrogen Energy 2002;27:1431-9. doi:10.1016/S0360-3199(02)00095-2. otwiera się w nowej karcie
  64. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii 1. Plant Physiol 2000;122:127-35. otwiera się w nowej karcie
  65. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 2002;66:1-20. doi:10.1128/MMBR.66.1.1-20.2002. otwiera się w nowej karcie
  66. Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 2002;27:1185-93. doi:10.1016/S0360- 3199(02)00131-3. otwiera się w nowej karcie
  67. He D, Bultel Y, Magnin JP, Roux C, Willison JC. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. J Power Sources 2005;141:19-23. doi:10.1016/j.jpowsour.2004.09.002. otwiera się w nowej karcie
  68. Chen JS, Toth J, Kasap M. Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J Ind Microbiol Biotechnol 2001;27:281-6. doi:10.1038/sj.jim.7000083. otwiera się w nowej karcie
  69. Zagrodnik R, Łaniecki M. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark-and photofermentation in repeated fed-batch reactor. Bioresour Technol 2017;224:298- 306. doi:10.1016/j.biortech.2016.10.060. otwiera się w nowej karcie
  70. Manish S, Banerjee R. Comparison of biohydrogen production processes. Int J Hydrogen Energy 2008;33:279-86. doi:10.1016/j.ijhydene.2007.07.026. otwiera się w nowej karcie
  71. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, et al. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ Sci Technol 2008;42:8630-40. doi:10.1021/es801553z. otwiera się w nowej karcie
  72. Maness PC, Huang J, Smolinski S, Tek V, Vanzin G. Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 2005;71:2870-4. doi:10.1128/AEM.71.6.2870-2874.2005. otwiera się w nowej karcie
  73. Mishra J, Khurana S, Kumar N, Ghosh AK, Das D. Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochem Biophys Res Commun 2004;324:679-85. doi:10.1016/j.bbrc.2004.09.108. otwiera się w nowej karcie
  74. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. otwiera się w nowej karcie
  75. Int J Hydrogen Energy 2007;32:172-84. doi:10.1016/j.ijhydene.2006.08.014. otwiera się w nowej karcie
  76. Hallenbeck PC. Microbial technologies in advanced biofuels production. New York: Springer Science+Business Media, LLC; 2012. doi:10.1007/978-1-4614-1208-3. otwiera się w nowej karcie
  77. Levin DB, Islam R, Cicek N, Sparling R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 2006;31:1496-503. doi:10.1016/j.ijhydene.2006.06.015. otwiera się w nowej karcie
  78. Ivanova G, Rákhely G, Kovács KL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 2009;34:3659-70. doi:10.1016/j.ijhydene.2009.02.082. otwiera się w nowej karcie
  79. Oztekin R, Kapdan IK, Kargi F, Argun H. Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. Int J Hydrogen Energy 2008;33:4083-90. doi:10.1016/j.ijhydene.2008.05.052. otwiera się w nowej karcie
  80. Argun H, Kargi F, Kapdan IK, Oztekin R. Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations. Int J Hydrogen Energy 2008;33:6109-15. doi:10.1016/j.ijhydene.2008.08.004. otwiera się w nowej karcie
  81. Kargi F, Pamukoglu MY. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int J Hydrogen Energy 2009;34:2940-6. doi:10.1016/j.ijhydene.2008.12.101. otwiera się w nowej karcie
  82. Kargi F, Eren NS, Ozmihci S. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int J Hydrogen Energy 2012;37:2260-6. doi:10.1016/j.ijhydene.2011.11.018. otwiera się w nowej karcie
  83. Azbar N, Dokgöz FT, Keskin T, Eltem R, Korkmaz KS, Gezgin Y, et al. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. Int J Green Energy 2009;6:192- 200. doi:10.1080/15435070902785027. otwiera się w nowej karcie
  84. Mars AE, Veuskens T, Budde MAW, Doeveren PFNM, Lips SJ, Bakker RR, et al. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrogen Energy 2010;35:7730-7. doi:10.1016/j.ijhydene.2010.05.063. otwiera się w nowej karcie
  85. Gómez X, Cuetos MJ, Prieto JI, Morán A. Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renew Energy 2009;34:970-5. doi:10.1016/j.renene.2008.08.011. otwiera się w nowej karcie
  86. Bartacek J, Zabranska J, Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod Biorefining 2007;1:201-14. doi:10.1002/bbb.17. otwiera się w nowej karcie
  87. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int J Hydrogen Energy 2002;27:1339-47. doi:10.1016/S0360-3199(02)00090-3. otwiera się w nowej karcie
  88. Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 1995;80:571-4. doi:10.1016/0922-338X(96)87733-6. otwiera się w nowej karcie
  89. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy 2015;144:73-95. doi:10.1016/j.apenergy.2015.01.045. otwiera się w nowej karcie
  90. Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT- BT 08. Process Biochem 2000;35:589-93. doi:10.1016/S0032-9592(99)00109-0. otwiera się w nowej karcie
  91. Oh S-E, Iyer P, Bruns MA, Logan BE. Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 2004;87:119-27. doi:10.1002/bit.20127. otwiera się w nowej karcie
  92. Morimoto M, Atsuko M, Atif AAY, Ngan MA, Fakhru'l-Razi A, Iyuke SE, et al. Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy 2004;29:709-13. doi:10.1016/j.ijhydene.2003.09.009. otwiera się w nowej karcie
  93. Lin C, Chang R-C. Fermentative hydrogen production at ambient temperature. Int J Hydrogen Energy 2004;29:715-20. doi:10.1016/j.ijhydene.2003.09.002. otwiera się w nowej karcie
  94. Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 2002;82:87-93. doi:10.1016/S0960-8524(01)00110-9. otwiera się w nowej karcie
  95. Kotsopoulos TA, Zeng RJ, Angelidaki I. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper- thermophilic temperature (70 degrees C). Biotechnol Bioeng 2006;94:296-302. doi:10.1002/bit.20844. otwiera się w nowej karcie
  96. Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 2002;27:1167-74. doi:10.1016/S0360-3199(02)00130-1. otwiera się w nowej karcie
  97. Logan BE, Oh SE, Kim IS, Van Ginkel S. Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 2002;36:2530-5. doi:10.1021/es015783i. otwiera się w nowej karcie
  98. Chen CC, Lin CY, Chang JS. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 2001;57:56-64. doi:10.1007/s002530100747. otwiera się w nowej karcie
  99. Mu Y, Yu HQ, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb Technol 2007;40:947-53. doi:10.1016/j.enzmictec.2006.07.033. otwiera się w nowej karcie
  100. Collet C, Adler N, Schwitzguébel JP, Péringer P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 2004;29:1479-85. doi:10.1016/j.ijhydene.2004.02.009. otwiera się w nowej karcie
  101. Ren N, Guo W, Liu B, Cao G, Ding J. Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Curr Opin Biotechnol 2011;22:365-70. doi:10.1016/j.copbio.2011.04.022. otwiera się w nowej karcie
  102. Zhang SC, Lai QH, Lu Y, Liu ZD, Wang TM, Zhang C, et al. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J Biosci Bioeng 2016;122:482-7. doi:10.1016/j.jbiosc.2016.03.014. otwiera się w nowej karcie
  103. Show KY, Lee DJ, Tay JH, Lin CY, Chang JS. Biohydrogen production: Current perspectives and the way forward. Int J Hydrogen Energy 2012;37:15616-31. doi:10.1016/j.ijhydene.2012.04.109. otwiera się w nowej karcie
  104. Chookaew T, Prasertsan P, Ren ZJ. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. N Biotechnol 2014;31:179-84. doi:10.1016/j.nbt.2013.12.004. otwiera się w nowej karcie
  105. Varrone C, Rosa S, Fiocchetti F, Giussani B, Izzo G, Massini G, et al. Enrichment of activated sludge for enhanced hydrogen production from crude glycerol. Int J Hydrogen Energy 2013;38:1319-31. doi:10.1016/j.ijhydene.2012.11.069. otwiera się w nowej karcie
  106. Shin HS, Youn JH, Kim SH. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 2004;29:1355-63. doi:10.1016/j.ijhydene.2003.09.011. otwiera się w nowej karcie
  107. Kim S-H, Han S-K, Shin H-S. Feasibility of biohydrogen production by anaerobic co- digestion of food waste and sewage sludge. Int J Hydrogen Energy 2004;29:1607-16. doi:10.1016/j.ijhydene.2004.02.018. otwiera się w nowej karcie
  108. Wang CC, Chang CW, Chu CP, Lee DJ, Chang B V., Liao CS. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 2003;102:83-92. doi:10.1016/S0168-1656(03)00007-5. otwiera się w nowej karcie
  109. Cai M, Liu J, Wei Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 2004;38:3195-202. doi:10.1021/es0349204. otwiera się w nowej karcie
  110. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao D xiang, et al. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 2008;99:3651-8. doi:10.1016/j.biortech.2007.07.026. otwiera się w nowej karcie
  111. Alibardi L, Cossu R. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 2015;36:147-55. doi:10.1016/j.wasman.2014.11.019. otwiera się w nowej karcie
  112. Karlsson A, Vallin L, Ejlertsson J. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 2008;33:953-62. doi:10.1016/j.ijhydene.2007.10.055. otwiera się w nowej karcie
  113. Jayalakshmi S, Joseph K, Sukumaran V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int J Hydrogen Energy 2009;34:8854-8. doi:10.1016/j.ijhydene.2009.08.048. otwiera się w nowej karcie
  114. Zahedi S, Sales D, Romero LI, Solera R. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of organic loading rate and microbial content of the solid waste. Bioresour Technol 2013;129:85-91. doi:10.1016/j.biortech.2012.11.003. otwiera się w nowej karcie
  115. Gómez X, Moran A, Cuetos MJ, Sanchez ME. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process. J Power Sources 2006;157:727-32. doi:10.1016/j.jpowsour.2006.01.006. otwiera się w nowej karcie
  116. Chu CF, Xu KQ, Li YY, Inamori Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrogen Energy 2012;37:10611-8. doi:10.1016/j.ijhydene.2012.04.048. otwiera się w nowej karcie
  117. Nathao C, Sirisukpoka U, Pisutpaisal N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int J Hydrogen Energy 2013;38:15764-9. doi:10.1016/j.ijhydene.2013.05.047. otwiera się w nowej karcie
  118. Redondas V, Gómez X, García S, Pevida C, Rubiera F, Morán A, et al. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Manag 2012;32:60-6. doi:10.1016/j.wasman.2011.09.003. otwiera się w nowej karcie
  119. Mohd Yasin NH, Rahman NA, Man HC, Mohd Yusoff MZ, Hassan MA. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hydrogen Energy 2011;36:9571-80. doi:10.1016/j.ijhydene.2011.05.048. otwiera się w nowej karcie
  120. Pan J, Zhang R, El-Mashad HM, Sun H, Ying Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 2008;33:6968-75. doi:10.1016/j.ijhydene.2008.07.130. otwiera się w nowej karcie
  121. Wang S, Ma Z, Zhang T, Bao M, Su H. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 2017;11:100-6. doi:10.1007/s11705-017-1617-3. otwiera się w nowej karcie
  122. Strik DPBTB, Domnanovich AM, Holubar P. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem 2006;41:1235-8. doi:10.1016/j.procbio.2005.12.008. otwiera się w nowej karcie
  123. Wu X, Zhu J, Dong C, Miller C, Li Y, Wang L, et al. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int J Hydrogen Energy 2009;34:6636-45. doi:10.1016/j.ijhydene.2009.06.058. otwiera się w nowej karcie
  124. Xing Y, Li Z, Fan Y, Hou H. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res 2010;17:392-9. doi:10.1007/s11356-009-0187-4. otwiera się w nowej karcie
  125. Ghimire A, Frunzo L, Pontoni L, d'Antonio G, Lens PNL, Esposito G, et al. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manage 2015;152:43-8. doi:10.1016/j.jenvman.2014.12.049. otwiera się w nowej karcie
  126. Tang G-L, Huang J, Sun Z-J, Tang Q-Q, Yan C-H, Liu G-Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 2008. doi:10.1263/jbb.106.80. otwiera się w nowej karcie
  127. Ntaikou I, Kourmentza C, Koutrouli EC, Stamatelatou K, Zampraka A, Kornaros M, et al. Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 2009;100:3724-30. doi:10.1016/j.biortech.2008.12.001. otwiera się w nowej karcie
  128. Mohammadi P, Ibrahim S, Mohamad Annuar MS, Law S. Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod 2011;19:1654-8. doi:10.1016/j.jclepro.2011.05.009. otwiera się w nowej karcie
  129. O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK. Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 2007;41:583-90. doi:10.1016/j.enzmictec.2007.05.002. otwiera się w nowej karcie
  130. Nakashimada Y, Rachman MA, Kakizono T, Nishio N. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrogen Energy 2002;27:1399-405. doi:10.1016/S0360-3199(02)00128-3. otwiera się w nowej karcie
  131. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005;100:260-5. doi:Doi 10.1263/Jbb.100.260. otwiera się w nowej karcie
  132. Silva FMS, Oliveira LB, Mahler CF, Bassin JP. Hydrogen production through anaerobic co-digestion of food waste and crude glycerol at mesophilic conditions. Int J Hydrogen Energy 2017;42:22720-9. doi:10.1016/j.ijhydene.2017.07.159. otwiera się w nowej karcie
  133. Zhu G-F, Wu P, Wei Q-S, Lin J, Gao Y-L, Liu H-N. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 2010;35:8350-6. doi:10.1016/j.ijhydene.2009.12.003. otwiera się w nowej karcie
  134. Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, et al. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 2006;31:1306-13. doi:10.1016/j.ijhydene.2005.11.018. otwiera się w nowej karcie
  135. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 2009;100:3713-7. doi:10.1016/j.biortech.2009.01.025. otwiera się w nowej karcie
  136. Vijayaraghavan K, Ahmad D. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int J Hydrogen Energy 2006;31:1284-91. doi:10.1016/j.ijhydene.2005.12.002. otwiera się w nowej karcie
  137. Dounavis AS, Ntaikou I, Lyberatos G. Production of biohydrogen from crude glycerol in an upflow column bioreactor. Bioresour Technol 2015;198:701-8. doi:10.1016/j.biortech.2015.09.072. otwiera się w nowej karcie
  138. Chu C-Y, Tung L, Lin C-Y. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. Int J Hydrogen Energy 2013;38:15849-55. doi:10.1016/j.ijhydene.2013.07.088. otwiera się w nowej karcie
  139. Kumar G, Sen B, Sivagurunathan P, Lin CY. High rate hydrogen fermentation of cello- lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system. Fuel 2016;182:131-40. doi:10.1016/j.fuel.2016.05.088. otwiera się w nowej karcie
  140. Reungsang A, Sittijunda S, O-Thong S. Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. Int J Hydrogen Energy 2013;38:6970-9. doi:10.1016/j.ijhydene.2013.03.082. otwiera się w nowej karcie
  141. Sittijunda S, Pattra S. Evaluation of different pretreatment methods to prepare an inoculum for bio-hydrogen production from cassava starch wastewater. KKU Res J 2016;21:81-92.
  142. Pierucci S, Klemeš JJ, Piazza L, Bakalis S, Kanchanasuta S, Kittipongpattana K, et al. Improvement of Biohydrogen Fermentation by Co-digestion of Crude Glycerol with Palm Oil Decanter Cake. Chem Eng Trans 2017;57. doi:10.3303/CET1757328. otwiera się w nowej karcie
  143. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi-Bakó K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew Sustain Energy Rev 2015;44:728-37. doi:10.1016/j.rser.2015.01.042. otwiera się w nowej karcie
  144. Sharma A, Arya SK. Hydrogen from algal biomass: A review of production process. Biotechnol Reports 2017;15:63-9. doi:10.1016/j.btre.2017.06.001. otwiera się w nowej karcie
  145. Ren NQ, Zhao L, Chen C, Guo WQ, Cao GL. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresour Technol 2016;215:92-9. doi:10.1016/j.biortech.2016.03.124. otwiera się w nowej karcie
  146. Jiang H, Gadow SI, Tanaka Y, Cheng J, Li YY. Improved cellulose conversion to bio- hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass and Bioenergy 2015;75:57-64. doi:10.1016/j.biombioe.2015.02.010. otwiera się w nowej karcie
  147. Talluri S, Raj SM, Christopher LP. Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 2013;139:272-9. doi:10.1016/j.biortech.2013.04.005. otwiera się w nowej karcie
  148. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 2013;6:85. doi:10.1186/1754-6834-6-85. otwiera się w nowej karcie
  149. Thomas L, Joseph A, Gottumukkala LD. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Bioresour Technol 2014;158:343-50. doi:10.1016/j.biortech.2014.01.140. otwiera się w nowej karcie
  150. Sheng T, Gao L, Zhao L, Liu W, Wang A. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Adv 2015;5:99781-8. doi:10.1039/C5RA20000H. otwiera się w nowej karcie
  151. Nguyen TAD, Kim KR, Kim MS, Sim SJ. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrogen Energy 2010;35:13392- 8. doi:10.1016/j.ijhydene.2009.11.112. otwiera się w nowej karcie
  152. Chen CC, Chuang YS, Lin CY, Lay CH, Sen B. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy 2012;37:15540-6. doi:10.1016/j.ijhydene.2012.01.036. otwiera się w nowej karcie
  153. Cao G-L, Zhao L, Wang A-J, Wang Z-Y, Ren N-Q. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuels 2014;7:82. doi:10.1186/1754-6834-7-82. otwiera się w nowej karcie
  154. Cui M, Shen J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 2012;37:1120-4. doi:10.1016/j.ijhydene.2011.02.078. otwiera się w nowej karcie
  155. Magnusson L, Islam R, Sparling R, Levin D, Cicek N. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy 2008;33:5398-403. doi:10.1016/j.ijhydene.2008.06.018. otwiera się w nowej karcie
  156. Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 2015;192:60-7. doi:10.1016/j.biortech.2015.05.034. otwiera się w nowej karcie
  157. Han H, Wei L, Liu B, Yang H, Shen J. Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrogen Energy 2012;37:13200- 8. doi:10.1016/j.ijhydene.2012.03.073. otwiera się w nowej karcie
  158. Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, et al. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 2017;233:67-73. doi:10.1016/j.biortech.2017.01.075. otwiera się w nowej karcie
  159. Cheng N, Koda K, Tamai Y, Yamamoto Y, Takasuka TE, Uraki Y. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour Technol 2017;232:126- 32. doi:10.1016/j.biortech.2017.02.018. otwiera się w nowej karcie
  160. Monlau F, Aemig Q, Trably E, Hamelin J, Steyer JP, Carrere H. Specific inhibition of biohydrogen-producing Clostridium sp. after dilute-acid pretreatment of sunflower stalks. Int J Hydrogen Energy 2013;38:12273-82. doi:10.1016/j.ijhydene.2013.07.018. otwiera się w nowej karcie
  161. Guo P, Mochidzuki K, Cheng W, Zhou M, Gao H, Zheng D, et al. Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 2011;102:7526-31. doi:10.1016/j.biortech.2011.04.083. otwiera się w nowej karcie
  162. Panagiotopoulos IA, Bakker RR, De Vrije T, Koukios EG, Claassen PAM. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy 2010;35:7738-47. doi:10.1016/j.ijhydene.2010.05.075. otwiera się w nowej karcie
  163. Cao GL, Guo WQ, Wang AJ, Zhao L, Xu CJ, Zhao QL, et al. Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. Int J Hydrogen Energy 2012;37:13161-6. doi:10.1016/j.ijhydene.2012.03.137. otwiera się w nowej karcie
  164. Feng X, Wang H, Wang Y, Wang X, Huang J. Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int J Hydrogen Energy 2010;35:3058-64. doi:10.1016/j.ijhydene.2009.07.015. otwiera się w nowej karcie
  165. Wu J, Ein-Mozaffari F, Upreti S. Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol 2013;144:344-9. doi:10.1016/j.biortech.2013.07.001. otwiera się w nowej karcie
  166. Zhao L, Cao GL, Wang AJ, Ren HY, Dong D, Liu ZN, et al. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour Technol 2012;114:365-9. doi:10.1016/j.biortech.2012.03.076. otwiera się w nowej karcie
  167. Zhao L, Cao GL, Wang AJ, Guo WQ, Ren HY, Ren NQ. Simultaneous saccharification and fermentation of fungal pretreated cornstalk for hydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Bioresour Technol 2013;145:103-7. doi:10.1016/j.biortech.2013.01.144. otwiera się w nowej karcie
  168. Saritha M, Arora A, Lata. Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J Microbiol 2012;52:122-30. doi:10.1007/s12088-011-0199-x. otwiera się w nowej karcie
  169. Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 2014;42:35-53. doi:10.1016/j.pecs.2014.01.001. otwiera się w nowej karcie
  170. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 2011;29:675-85. doi:10.1016/j.biotechadv.2011.05.005. otwiera się w nowej karcie
  171. Eskicioglu C, Monlau F, Barakat A, Ferrer I, Kaparaju P, Trably E, et al. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production. Water Res 2017;120:32-42. doi:10.1016/j.watres.2017.04.068. otwiera się w nowej karcie
  172. Gonzales RR, Kim S-H. Dark fermentative hydrogen production following the sequential dilute acid pretreatment and enzymatic saccharification of rice husk. Int J Hydrogen Energy 2017:1-7. doi:10.1016/j.ijhydene.2017.08.185. otwiera się w nowej karcie
  173. Xu J, Deshusses MA. Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int J Hydrogen Energy 2015;40:7028-36. doi:10.1016/j.ijhydene.2015.03.166. otwiera się w nowej karcie
  174. Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour Technol 2015;196:250-5. doi:10.1016/j.biortech.2015.07.097. otwiera się w nowej karcie
  175. Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 2017;4:7. doi:10.1186/s40643-017-0137-9. otwiera się w nowej karcie
  176. Khan MI, Lee MG, Shin JH, Kim JD. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express 2017;7:19. doi:10.1186/s13568-016-0320-y. otwiera się w nowej karcie
  177. Gonzales RR, Sivagurunathan P, Parthiban A, Kim SH. Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int Biodeterior Biodegrad 2016;113:22-7. doi:10.1016/j.ibiod.2016.04.016. otwiera się w nowej karcie
  178. Zhi Z, Wang H. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: Simultaneous saccharification and fermentation. Bioprocess Biosyst Eng 2014;37:1447-58. doi:10.1007/s00449-013- 1117-x. otwiera się w nowej karcie
  179. Pattra S, Sangyoka S, Boonmee M, Reungsang A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 2008;33:5256-65. doi:10.1016/j.ijhydene.2008.05.008. otwiera się w nowej karcie
  180. De Vrije T, De Haas G, Tan GB, Keijsers ERP, Claassen PAM. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 2002;27:1381-90. doi:10.1016/S0360-3199(02)00124-6. otwiera się w nowej karcie
  181. Nguyen TAD, Han SJ, Kim JP, Kim MS, Oh YK, Sim SJ. Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int J Hydrogen Energy 2008;33:5161-8. doi:10.1016/j.ijhydene.2008.05.019. otwiera się w nowej karcie
  182. Wu KJ, Chang JS. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem 2007;42:279-84. doi:10.1016/j.procbio.2006.07.021. otwiera się w nowej karcie
  183. Xing D, Ren N, Wang A, Li Q, Feng Y, Ma F. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. Int J Hydrogen Energy 2008;33:1489-95. doi:10.1016/j.ijhydene.2007.09.038. otwiera się w nowej karcie
  184. Liu GGZ, Shen JJQ. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 2004;98:251-256. doi:10.1016/S1389-1723(04)00277-4. otwiera się w nowej karcie
  185. Akutsu Y, Li Y-Y, Harada H, Yu H-Q. Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy 2009;34:2558-66. doi:10.1016/j.ijhydene.2009.01.048. otwiera się w nowej karcie
  186. Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy 2007;31:250-4. doi:10.1016/j.biombioe.2006.08.004. otwiera się w nowej karcie
  187. Yu H, Zhu Z, Hu W, Zhang H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 2002;27:1359-65. doi:10.1016/S0360-3199(02)00073-3. otwiera się w nowej karcie
  188. Slezak R, Grzelak J, Krzystek L, Ledakowicz S. The effect of initial organic load of the kitchen waste on the production of VFA and H 2 in dark fermentation. Waste Manag 2017;68:610-7. doi:10.1016/j.wasman.2017.06.024. otwiera się w nowej karcie
  189. Eker S, Sarp M. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. Int J Hydrogen Energy 2017;42:2562-8. doi:10.1016/j.ijhydene.2016.04.020. otwiera się w nowej karcie
  190. Liu Y, Chen T, Yang M, Wang C, Huo W, Yan D, et al. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth. J Chromatogr A 2014;1323:66-72. doi:10.1016/j.chroma.2013.10.094. otwiera się w nowej karcie
  191. Nandi R, Sengupta S, Zajic J, Kosaric N, Brosseau J, Nandi R, et al. Microbial production of hydrogen: an overview. Crit Rev Microbiol 1998;24:61-84. doi:10.1080/10408419891294181. otwiera się w nowej karcie
  192. Hallenbeck PC. Fundamentals of the fermentative production of hydrogen. Water Sci Technol 2005;52:21-9. otwiera się w nowej karcie
  193. Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Crit Rev Microbiol 1998;24:61-84. doi:10.1080/10408419891294181. otwiera się w nowej karcie
  194. Kim SH, Han SK, Shin HS. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 2006;41:199-207. doi:10.1016/j.procbio.2005.06.013. otwiera się w nowej karcie
  195. Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, et al. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J Biosci Bioeng 2000. doi:10.1016/S1389-1723(00)80063-8. otwiera się w nowej karcie
  196. Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrogen Energy 1994. doi:10.1016/0360- 3199(94)90197-X. otwiera się w nowej karcie
  197. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 2001. doi:10.1016/S1389-1723(01)80112-2. otwiera się w nowej karcie
  198. Van Niel EWJ, Budde MAW, De Haas G, Van der Wal FJ, Claassen PAM, Stams AJM. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 2002;27:1391-8. doi:10.1016/S0360-3199(02)00115-5. otwiera się w nowej karcie
  199. Sparling R. Hydrogen production from inhibited anaerobic composters. Int J Hydrogen Energy 1997. doi:10.1016/S0360-3199(96)00137-1. otwiera się w nowej karcie
  200. Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 1999. doi:Doi 10.1016/S0043- 1354(98)00483-7. otwiera się w nowej karcie
  201. Iannotti EL, Kafkewit D, Wolin MJ, Bryant MP. Glucose Fermentation Products of Ruminococcus-Albus Grown in Continuous Culture with Vibrio-Succinogenes - Changes Caused by Interspecies Transfer of H2. J Bacteriol 1973;114:1231-40. otwiera się w nowej karcie
  202. Brosseau JD, Zajic JE. Hydrogen-gas production with Citrobacter intermedim and Clostridium pasteurianum. J Chem Technol Biotechnol 2007;32:496-502. doi:10.1002/jctb.5030320310. otwiera się w nowej karcie
  203. Li C, Fang HHP. Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures. Crit Rev Environ Sci Technol 2007;37:1-39. doi:10.1080/10643380600729071. otwiera się w nowej karcie
  204. Valdez-Vazquez I, Ríos-Leal E, Esparza-García F, Cecchi F, Poggi-Varaldo HM. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int J Hydrogen Energy 2005;30:1383- 91. doi:10.1016/j.ijhydene.2004.09.016. otwiera się w nowej karcie
  205. Wang J, Wan W. Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 2008;33:5392-7. doi:10.1016/j.ijhydene.2008.07.010. otwiera się w nowej karcie
  206. Singh L, Wahid ZA. Methods for enhancing bio-hydrogen production from biological process: A review. J Ind Eng Chem 2015;21:70-80. doi:10.1016/j.jiec.2014.05.035. otwiera się w nowej karcie
  207. Valdez-Vazquez I, Poggi-Varaldo HM. Hydrogen production by fermentative consortia. Renew Sustain Energy Rev 2009;13:1000-13. doi:10.1016/j.rser.2008.03.003. otwiera się w nowej karcie
  208. Kraemer JT, Bagley DM. Improving the yield from fermentative hydrogen production. Biotechnol Lett 2007;29:685-95. doi:10.1007/s10529-006-9299-9. otwiera się w nowej karcie
  209. Pandu K, Joseph S. Comparisons and Limitations of Biohydrogen Production Processes: a Review. Int J Adv Eng Technol 2012;2:2231-1963. otwiera się w nowej karcie
  210. Yasin NHM, Mumtaz T, Hassan MA, Abd Rahman N. Food waste and food processing waste for biohydrogen production: A review. J Environ Manage 2013;130:375-85. doi:10.1016/j.jenvman.2013.09.009. otwiera się w nowej karcie
  211. Chaganti SR, Kim DH, Lalman JA. Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renew Energy 2012;48:117-21. doi:10.1016/j.renene.2012.04.015. otwiera się w nowej karcie
  212. Cai JL, Wang GC, Li YC, Zhu DL, Pan GH. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora. Chinese Sci Bull 2009;54:2656-61. doi:10.1007/s11434-009-0399-5. otwiera się w nowej karcie
  213. Liu H, Wang G, Zhu D, Pan G. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods. Int J Hydrogen Energy 2009;34:9696-701. doi:10.1016/j.ijhydene.2009.10.025. otwiera się w nowej karcie
  214. Pendyala B, Chaganti SR, Lalman JA, Shanmugam SR, Heath DD, Lau PCK. Pretreating mixed anaerobic communities from different sources: Correlating the hydrogen yield with hydrogenase activity and microbial diversity. Int J Hydrogen Energy 2012;37:12175-86. doi:10.1016/j.ijhydene.2012.05.105. otwiera się w nowej karcie
  215. O-Thong S, Prasertsan P, Birkeland NK. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 2009;100:909-18. doi:10.1016/j.biortech.2008.07.036. otwiera się w nowej karcie
  216. Ren NQ, Guo WQ, Wang XJ, Xiang WS, Liu BF, Wang XZ, et al. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrogen Energy 2008;33:4318-24. doi:10.1016/j.ijhydene.2008.06.003. otwiera się w nowej karcie
  217. Argun H, Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrogen Energy 2009;34:8543-8. doi:10.1016/j.ijhydene.2009.08.049. otwiera się w nowej karcie
  218. Wang JL, Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 2008;33:2934-41. doi:10.1016/j.ijhydene.2008.03.048. otwiera się w nowej karcie
  219. Madigan MT, Martinko J, Parker J. Brock. Biology of microorganisms. Upper Saddle River NJ: Prentice Hall; 2000.
  220. Zhu H, Béland M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 2006;31:1980-8. doi:10.1016/j.ijhydene.2006.01.019. otwiera się w nowej karcie
  221. Kotay SM, Das D. Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrogen Energy 2009;34:7489-96. doi:10.1016/j.ijhydene.2009.05.109. otwiera się w nowej karcie
  222. Chang S, Li JZ, Liu F. Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew Energy 2011;36:1517-22. doi:10.1016/j.renene.2010.11.023. otwiera się w nowej karcie
  223. Deublein D, Steinhauser A. Biogas from Waste and Renevable Resources: an Introduction. Weinheim: Wiley-VCH; 2008. otwiera się w nowej karcie
  224. Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy 2007;32:3266-73. doi:10.1016/j.ijhydene.2007.03.005. otwiera się w nowej karcie
  225. Venkata Mohan S, Lalit Babu V, Sarma PN. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 2008;99:59-67. doi:10.1016/j.biortech.2006.12.004. otwiera się w nowej karcie
  226. Liu H, Wang J, Wang A, Chen J. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 2011;89:1333-40. doi:10.1007/s00253-010- 3066-5. otwiera się w nowej karcie
  227. Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD. Assessing the impact of palmitic, myristic and lauric acids on hydrogen production from glucose fermentation by mixed anaerobic granular cultures. Int J Hydrogen Energy 2012;37:18761-72. doi:10.1016/j.ijhydene.2012.09.116. otwiera się w nowej karcie
  228. Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J Environ Manage 2015;157:20-48. doi:10.1016/j.jenvman.2015.04.006. otwiera się w nowej karcie
  229. Guo Y, Kim S, Sung S, Lee P. Effect of ultrasonic treatment of digestion sludge on bio-hydrogen production from sucrose by anaerobic fermentation. Int J Hydrogen Energy 2010;35:3450-5. doi:10.1016/j.ijhydene.2010.01.090. otwiera się w nowej karcie
  230. Wang H, Fang M, Fang Z, Bu H. Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Bioresour Technol 2010;101:8731-5. doi:10.1016/j.biortech.2010.06.131. otwiera się w nowej karcie
  231. Kim JH, Lee JW, Kim JH, Seo JH, Han SB, Chung HJ, et al. Effect of gamma irradiation on Listeria ivanovii inoculated to iceberg lettuce stored at cold temperature. Food Control 2006;17:397-401. doi:10.1016/j.foodcont.2005.01.008. otwiera się w nowej karcie
  232. Song ZX, Dai Y, Fan QL, Li XH, Fan YT, Hou HW. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int J Hydrogen Energy 2012;37:5631-6. doi:10.1016/j.ijhydene.2012.01.010. otwiera się w nowej karcie
  233. Chan ASK, Parkin TB. Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil. Soil Biol Biochem 2000;32:1581-90. doi:10.1016/S0038-0717(00)00071-7. otwiera się w nowej karcie
  234. Chidthaisong A, Conrad R. Pattern of non-methanogenic and methanogenic degradation of cellulose in anoxic rice field soil. FEMS Microbiol Ecol 2000;31:87-94. doi:doi:10.1111/j.1574-6941.2000.tb00674.x. otwiera się w nowej karcie
  235. Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Energy 2004;29:173-85. doi:10.1016/S0360- 3199(03)00094-6. otwiera się w nowej karcie
  236. Zhang T, Liu H, Fang HHP. Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 2003;69:149-56. doi:10.1016/S0301- 4797(03)00141-5. otwiera się w nowej karcie
  237. Pakarinen O, Lehtomäki A, Rintala J. Batch dark fermentative hydrogen production from grass silage: The effect of inoculum, pH, temperature and VS ratio. Int J Hydrogen Energy 2008;33:594-601. doi:10.1016/j.ijhydene.2007.10.008. otwiera się w nowej karcie
  238. Guo XM, Trably E, Latrille E, Carrre H, Steyer JP. Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energy 2010;35:10660-73. doi:10.1016/j.ijhydene.2010.03.008. otwiera się w nowej karcie
  239. Jung KW, Kim DH, Kim SH, Shin HS. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 2011;102:8612-20. doi:10.1016/j.biortech.2011.03.056. otwiera się w nowej karcie
  240. Lee KS, Lin PJ, Chang JS. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 2006;31:465-72. doi:10.1016/j.ijhydene.2005.04.024. otwiera się w nowej karcie
  241. Foglia D, Wukovits W, Friedl A, Vrije T De, Pieternel a M. Fermentative Hydrogen Production : Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances. Energy 2006;2:815-20.
  242. Zhang Y, Shen J. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 2006;31:441-6. doi:10.1016/j.ijhydene.2005.05.006. otwiera się w nowej karcie
  243. Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 2007;74:474-83. doi:10.1007/s00253-006-0647-4. otwiera się w nowej karcie
  244. Dȩbowski M, Korzeniewska E, Filipkowska Z, Zieliński M, Kwiatkowski R. Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. Int J Hydrogen Energy 2014;39:1972-8. doi:10.1016/j.ijhydene.2013.11.082. otwiera się w nowej karcie
  245. Lu L, Ren NQ, Zhao X, Wang HA, Wu D, Xing DF. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single- chamber microbial electrolysis cells. Energy Environ Sci 2011;4:1329-36. doi:10.1039/c0ee00588f. otwiera się w nowej karcie
  246. Kotay SM, Das D. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 2007;98:1183-90. doi:10.1016/j.biortech.2006.05.009. otwiera się w nowej karcie
  247. O-Thong S, Prasertsan P, Karakashev D, Angelidaki I. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 2008;33:1204-14. doi:10.1016/j.ijhydene.2007.12.015. otwiera się w nowej karcie
  248. Lin CY, Lay CH, Sen B, Chu CY, Kumar G, Chen CC, et al. Fermentative hydrogen production from wastewaters: A review and prognosis. Int J Hydrogen Energy 2012;37:15632-42. doi:10.1016/j.ijhydene.2012.02.072. otwiera się w nowej karcie
  249. Jiunn-Jyi L, Yu-You L, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 1997. doi:10.1016/S0043-1354(96)00413-7. otwiera się w nowej karcie
  250. Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985;50:1165-70. otwiera się w nowej karcie
  251. Li D, Chen H. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy 2007;32:1742- 8. doi:10.1016/j.ijhydene.2006.12.011. otwiera się w nowej karcie
  252. Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy 2009;34:799-811. doi:10.1016/j.ijhydene.2008.11.015. otwiera się w nowej karcie
  253. Alshiyab H, Kalil MS, Hamid AA, Yusoff W. Effect of some environmental parameters on hydrogen production using C. acetobutylicum. Pakistan J Biol Sci 2008;11:2073-82. otwiera się w nowej karcie
  254. Tapia-Venegas E, Ramirez JE, Donoso-Bravo A, Jorquera L, Steyer JP, Ruiz-Filippi G. Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor. Int J Hydrogen Energy 2013;38:2185-90. doi:10.1016/j.ijhydene.2012.11.077. otwiera się w nowej karcie
  255. Won SG, Baldwin SA, Lau AK, Rezadehbashi M. Optimal operational conditions for biohydrogen production from sugar refinery wastewater in an ASBR. Int J Hydrogen Energy 2013;38:13895-906. doi:10.1016/j.ijhydene.2013.08.071. otwiera się w nowej karcie
  256. Ginkel S V, Sung S, Lay JJ. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 2001;35:4726-30. doi:10.1021/es001979r. otwiera się w nowej karcie
  257. Temudo MF, Kleerebezem R, van Loosdrecht M. Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 2007;98:69-79. doi:10.1002/bit.21412. otwiera się w nowej karcie
  258. Wang Y, Mu Y, Yu HQ. Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrogen Energy 2007;32:1086-94. doi:10.1016/j.ijhydene.2006.07.016. otwiera się w nowej karcie
  259. Masset J, Hiligsmann S, Hamilton C. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen- production Clostridium butyricum CWBI 1009. Int J Hydrogen Energy 2010;35:3371- 8. otwiera się w nowej karcie
  260. Dabrock B, Bahl H, Gottschalk G. Parameters Affecting Solvent Production by Clostridium pasteurianum. Appl Environ Microbiol 1992;58:1233-9. doi:0099- 2240/92/041233-07$02.00/0. otwiera się w nowej karcie
  261. Chen CC, Chen HP, Wu JH, Lin CY. Fermentative hydrogen production at high sulfate concentration. Int J Hydrogen Energy 2008;33:1573-8. doi:10.1016/j.ijhydene.2007.09.042. otwiera się w nowej karcie
  262. Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K. Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew Sustain Energy Rev 2014. doi:10.1016/j.rser.2014.08.014. otwiera się w nowej karcie
  263. Wu SY, Lin CN, Chang JS. Hydrogen production with immobilized sewage sludge in three phase fluidized bed bioreactors. Biotechnol Prog 2003;19:828-32. doi:10.1021/bp0201354. otwiera się w nowej karcie
  264. Massanet-Nicolau J, Guwy A, Dinsdale R, Premier G, Esteves S. Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. Int J Hydrogen Energy 2010. doi:10.1016/j.ijhydene.2009.10.076. otwiera się w nowej karcie
  265. Ottaviano LM, Ramos LR, Botta LS, Am??ncio Varesche MB, Silva EL. Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. Int J Hydrogen Energy 2017. doi:10.1016/j.ijhydene.2016.11.168. otwiera się w nowej karcie
  266. Veeravalli SS, Chaganti SR, Lalman JA, Heath DD. Fermentative H2 production using a switchgrass steam exploded liquor fed to mixed anaerobic cultures: Effect of hydraulic retention time, linoleic acid and nitrogen sparging. Int J Hydrogen Energy 2014. doi:10.1016/j.ijhydene.2014.04.114. otwiera się w nowej karcie
  267. Rosa PRF, Santos SC, Sakamoto IK, Varesche MBA, Silva EL. Hydrogen production from cheese whey with ethanol-type fermentation: Effect of hydraulic retention time on the microbial community composition. Bioresour Technol 2014. doi:10.1016/j.biortech.2014.03.020. otwiera się w nowej karcie
  268. Zhu J, Li Y, Wu X, Miller C, Chen P, Ruan R. Swine manure fermentation for hydrogen production. Bioresour Technol 2009;100:5472-7. doi:10.1016/j.biortech.2008.11.045. otwiera się w nowej karcie
  269. Antonopoulou G, Gavala HN, Skiadas I V., Angelopoulos K, Lyberatos G. Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 2008;99:110-9. doi:10.1016/j.biortech.2006.11.048. otwiera się w nowej karcie
  270. Chen C., Lin C. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Adv Environ Res 2003;7:695-9. doi:10.1016/S1093-0191(02)00035-7. otwiera się w nowej karcie
  271. Lee KS, Lo YC, Lin PJ, Chang JS. Improving biohydrogen production in a carrier- induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int J Hydrogen Energy 2006;31:1648-57. doi:10.1016/j.ijhydene.2005.12.020. otwiera się w nowej karcie
  272. Wu T, Zhu G, Jha AK, Zou R, Liu L, Huang X, et al. Hydrogen production with effluent from an anaerobic baffled reactor (ABR) using a singlechamber microbial electrolysis cell (MEC). Int J Hydrogen Energy 2013;38:11117-23. doi:10.1016/j.ijhydene.2013.03.029. otwiera się w nowej karcie
  273. Gavala HN, Skiadas I V., Ahring BK. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 2006;31:1164- 75. doi:10.1016/j.ijhydene.2005.09.009. otwiera się w nowej karcie
  274. Chou CH, Wang CW, Huang CC, Lay JJ. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energy 2008;33:1550-8. doi:10.1016/j.ijhydene.2007.09.031. otwiera się w nowej karcie
  275. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 2000;73:59-65. doi:10.1016/S0960-8524(99)00130-3. otwiera się w nowej karcie
  276. Kim DH, Han SK, Kim SH, Shin HS. Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 2006;31:2158-69. doi:10.1016/j.ijhydene.2006.02.012. otwiera się w nowej karcie
  277. Lee K, Tseng T, Liu Y, Hsiao Y. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrog … 2012;37:15556-62. doi:10.1016/j.ijhydene.2012.04.039. otwiera się w nowej karcie
  278. Mandal B, Nath K, Das D. Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 2006;28:831-5. doi:10.1007/s10529-006-9008-8. otwiera się w nowej karcie
  279. Teplyakov V V., Gassanova LG, Sostina EG, Slepova E V., Modigell M, Netrusov AI. Lab-scale bioreactor integrated with active membrane system for hydrogen production: Experience and prospects. Int J Hydrogen Energy 2002;27:1149-55. doi:10.1016/S0360-3199(02)00093-9. otwiera się w nowej karcie
  280. Nielsen a T, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl LG, et al. Hydrogen production from organic waste. Int J Hydrogen Energy 2001;26:547-50. doi:10.1016/S0360-3199(00)00125-7. otwiera się w nowej karcie
  281. Balachandar G, Khanna N, Das D. Biohydrogen Production from Organic Wastes by Dark Fermentation. 1st ed. Elsevier B.V.; 2013. doi:10.1016/B978-0-444-59555- 3.00006-4. otwiera się w nowej karcie
  282. Krishnan S, Singh L, Sakinah M, Thakur S, Nasrul M, Otieno A, et al. An investigation of two-stage thermophilic and mesophilic fermentation process for the production of hydrogen and methane from palm oil mill effluent. Environ Prog Sustain Energy 2017. doi:10.1002/ep.12537. otwiera się w nowej karcie
  283. Palazzi E, Fabiano B, Perego P. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 2000;22:0205-13. doi:10.1007/s004490050721. otwiera się w nowej karcie
  284. Wu KJ, Chang CF, Chang JS. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochem 2007;42:1165-71. doi:10.1016/j.procbio.2007.05.012. otwiera się w nowej karcie
  285. Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 2001;29:280-7. doi:10.1016/S0141-0229(01)00394-5. otwiera się w nowej karcie
  286. Jung KW, Kim DH, Shin HS. Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrogen Energy 2010;35:13370-8. doi:10.1016/j.ijhydene.2009.11.120. otwiera się w nowej karcie
  287. Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M. Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. Int J Hydrogen Energy 2013;38:2221-9. doi:10.1016/j.ijhydene.2012.12.004. otwiera się w nowej karcie
  288. Intanoo P, Chaimongkol P, Chavadej S. Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrogen Energy 2016. doi:10.1016/j.ijhydene.2015.10.125. otwiera się w nowej karcie
  289. Zhang ZP, Tay JH, Show KY, Yan R, Tee Liang D, Lee DJ, et al. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energy 2007;32:185-91. doi:10.1016/j.ijhydene.2006.08.017. otwiera się w nowej karcie
  290. Lin CY, Cheng CH. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 2006. doi:10.1016/j.ijhydene.2005.08.010. otwiera się w nowej karcie
  291. Han S-K, Shin H-S. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manage Assoc 2004;54:242-9. doi:10.1080/10473289.2004.10470895. otwiera się w nowej karcie
  292. Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 2008;47:5227-33. doi:10.1021/ie071622x. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 77 razy

Publikacje, które mogą cię zainteresować

Meta Tagi