Identification of continuous systems - Practical issues of insensitivity to perturbations - Publikacja - MOST Wiedzy

Wyszukiwarka

Identification of continuous systems - Practical issues of insensitivity to perturbations

Abstrakt

In this paper the issue of continuous systems estimation, insensitive to certain perturbations, is discussed. Such an approach has rational advantages, especially when robust schemes are used to assist a target system responsible for industrial diagnostics. This requires that estimated model parameters are generated on-line, and their values are reliable and to a great extent accurate. Practical hints are suggested to challenge the consistency problem of estimates. In particular, the technique of instrumental variables can improve the asymptotic behavior of estimators. With a weighting mechanism, in turn, tracking the time-varying parameters of non-stationary processes is realistic. Yet, evident insensitivity to destructive outliers in the measurement data follows from the implemented estimation routine in the sense of the least sum of absolute errors. Finally, premises for a proper selection of excitation signals, as well as the directions of further research summarize the paper.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
13th International Conf. on Diagnostics of Processes and Systems strony 1 - 12
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Kozłowski J., Kowalczuk Z.: Identification of continuous systems - Practical issues of insensitivity to perturbations// 13th International Conf. on Diagnostics of Processes and Systems/ ed. J.M. Kościelny, M. Syfert, A. Sztyber Warszawa: , 2017, s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-319-64474-5_15
Bibliografia: test
  1. Identification of non-linear models: Existing methods are often dedicated for prac- tical industrial applications. In the literature, the Hartley modulating functions sub- ject to Hammerstein models are usually considered. For some models (differential equations with non-linear static parts, for instance), a dedicated solution involving a simple Taylor's approximation can be sufficiently effective [5]. otwiera się w nowej karcie
  2. Janiszowski, K.: To estimation in the sense of the least sum of absolute errors. In: 5th In- ternational Symposium on Methods and Models in Automation and Robotics, Międzyz- droje, Poland, vol. 2, pp. 583-588 (1998) otwiera się w nowej karcie
  3. Kowalczuk, Z.: Discrete approximation of continuous-time systems -a survey. In: IEE Proceedings-G, Circuits, Devices and Systems, vol. 140, pp. 264-278 (1993) otwiera się w nowej karcie
  4. Kowalczuk, Z., Kozłowski, J.: Continuous-time approaches to identification of continu- ous-time systems. Automatica 36, 1229-1236 (2000). doi: 10.1016/S0005-1098(00)00033- 9 otwiera się w nowej karcie
  5. Kowalczuk, Z., Kozłowski, J.: Non-quadratic quality criteria in parameter estimation of continuous-time models. IET Control Theory and Applications 5, 1494-1508 (2011). doi: 10.1049/iet-cta.2010.0310 otwiera się w nowej karcie
  6. Kozłowski, J., Kowalczuk, Z.: Robust to measurement faults, parameter estimation algori- thms in problems of systems diagnostics (In Polish: Odporne na przekłamania pomiarowe algorytmy estymacji parametrycznej w zagadnieniach diagnostyki systemów). In: Kowalczuk, Z., and Wiszniewski, B. (eds.) Intelligent information extraction for diagnos- tic purposes, pp. 221-240. Pomeranian Science and Technology Publishers, Gdańsk (2007)
  7. Kozłowski, J., Kowalczuk, Z.: Continuous-time delay system identification insensitive to measurement faults. In Kowalczuk, Z. (ed.) Diagnosis of Processes and Systems, pp. 177- 184. Pomeranian Science and Technology Publishers, Gdańsk (2009)
  8. Kozłowski, J., Kowalczuk, Z.: On-line parameter and delay estimation of continuous-time dynamic systems. Int. J. Appl. Math. Comput. Sci. 25, 223-232 (2015). doi: 10.1515/amcs-2015-0017 otwiera się w nowej karcie
  9. Ljung, L.: System identification. Theory for the user. Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA (1987)
  10. Sagara, S., Zhao, Z.Y.: Identification of system parameters in distributed parameter sys- tems. In: 11th IFAC Triennial World Congress, Tallin, Estonia, pp. 471-476 (1990) otwiera się w nowej karcie
  11. Sagara, S., Zhao, Z.Y.: Numerical integration approach to on-line identification of con- tinuous-time systems. Automatica 26, 63-74 (1990). doi: 10.1016/0005-1098(90)90158-E otwiera się w nowej karcie
  12. Söderström, T., Fan, H., Carlsson, B., Bigi, S.: Least squares parameter estimation of con- tinuous-time ARX models from discrete-time data. IEEE Trans. On Automatic Control 42, 659-673 (1997). doi: 10.1109/9.580871 otwiera się w nowej karcie
  13. Söderström, T., Stoica, P.: Comparison of some instrumental variable methods -consis- tency and accuracy aspects. Automatica 17, 101-115 (1981). doi: 10.1016/0005- 1098(81)90087-X otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 26 razy

Publikacje, które mogą cię zainteresować

Meta Tagi