Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid - Publikacja - MOST Wiedzy

Wyszukiwarka

Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid

Abstrakt

Mycophenolic acid (MPA) was coupled with amino acids and biologically active peptides including derivatives of tuftsin to modify its immunosuppressive properties. Both amino acid unit in the case of simple MPA amides and modifications within peptide moiety of MPA - tuftsin conjugates influenced the observed activity. Antiproliferative potential of the obtained conjugates was investigated in vitro and MPA amides with threonine methyl ester and conjugate of MPA with retro-tuftisin occurred to be more selective against PBMC in comparison to parent MPA. Both amino acid and peptide derivatives of MPA acted as inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors.

Cytowania

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 29 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY nr 189, strony 1 - 17,
ISSN: 0223-5234
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Siebert A., Cholewiński G., Trzonkowski P., Rachoń J.: Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid// EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY -Vol. 189, (2020), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ejmech.2020.112091
Bibliografia: test
  1. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.06 (e), 14.98 (f), 18.98 (γ-T4), 22.31 (d), 24.66 (γ-K4), 28.30 (γ-P4), 29.22 (γ-R4), 31.00 (β-R3), 31.96 (β-A3), 33.95 (δ-K5), 35.06 (β-P3), 36.06 (α-A2), 38.66 (β-K3), 40.56 (h), 42.151 (g), 46.868 (ε-K6), 48.332 (δ-R5) 50.85 (δ-P5), 51.48 (α-R2), 53.29 (OMe), 56.93 (α-K2), 57.81 (α-T2), 60.18 (c), 67.01 (β-T3), 69.37 (b), 106.37 (o), 116.03 (l), 122.37 (r), 123.12 (a), 133.63 (j), 145.31 (m), 159.56 (p), 163.42 (k), 170.96 (n), 170.99 (T1), 172.51 (P1), 172.98 (i) 173.26 (K1), 174.24 (R1,A1); otwiera się w nowej karcie
  2. 2.2.2.5. Compound MPA-Arg(NO2)-Pro-Lys(Val)-Thr-OMe 3l: Product 3l was obtained with yield 79% as white powder. otwiera się w nowej karcie
  3. MPA-RT-Val 3l: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.807 (d, J=6.9 Hz, 3H, γ-V4), 0.858 (d, J=6.8 Hz, 3H, δ-V5), 1.026 (d, J=4.2 Hz, 3H, γ-T4), 1.279 (m, 2H, γ-K4), 1.369 (m, 3H, δ-K5, β-R3b), 1.461 (m, 3H, β-K3b, γ-R4), 1.627 (m, 2H, β-K3a, β-R3a), 1.714 (s, 3H, f), 1.792 (m, 2H, γ-P4b, β-P3b), 1.861 (m, 2H, γ-P4a, β-V3), 1.977 (m, 1H, β-P3a), 2.061 (s, 3H, e), 2.114 (m, 2H, g), 2.183 (m, 2H, h), 3.005 (m, 5H, α-V2, ε-K6, δ-R5), 3.262 (d, J=6.7 Hz, 2H, d), 3.502 (m, 1H, δ-P5b), 3.604 (m, 1H, δ-P5a), 3.625 (s, 3H, COOMe), 3.676 (s, 3H, c), 4.096 (m, 1H, β-T3), 4.252 (m, 1H, α-T2), 4.269 (m, 1H, α-K2), 4.3 (m, 1H, α-P2), 4.437 (m, 1H, α-R2), 5.096 (t, J=6,5 Hz, 1H, a), 5.222 (s, 2H, b), 7.803 (d, J=8.4 Hz, 1H, α-TNH), 8.022 (m, 3H, α-RNH, α-KNH, ε-KNH);
  4. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.05 (e), 14.96 (f), 16.99 (δ-V5), 18.22 (γ-V4), 18.97 (γ-T4), 22.28 (d), 24.65 (γ-K4), 28.49 (γ-P4), 29.22 (γ-R4), 31.05 (β-R3), 31.56 (β-V3), 33.96 (δ-K5), 35.07 (β-P3), 38.68 (β-K3), 40.53 (h), 42.16 (g), 46.648 (ε-K6), 47.904 (δ-R5) 50.74 (δ-P5), 51.46 (α-R2), 53.33 (OMe), 56.93 (α-T2), 57.80 (α-V2), 60.1 (α-P2), 60.18 (c), 67.01 (β-T3), 69.39 (b), 106.35 (o), 116.26 (l), 122.3 (r), 123.08 (a), 133.67 (j), 145.28 (m), 159.57 (p), 163.42 (k), 170.98 (n), 171.12 (T1), 172.43 (P1), 172.97 (i) 173.22 (K1), 173.41 (R1), 174.21 (V1); otwiera się w nowej karcie
  5. 2.2.2.6. Compound MPA-Arg(NO2)-Pro-Lys(Leu)-Thr-OMe 3m: Product 3m was obtained with yield 91% as white powder. otwiera się w nowej karcie
  6. MPA-RT-Leu 3m: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.77 (m, 6H, δ -L5, ε-L6), 1.014 (m, 3H, γ-T4), 1.22 (m, 10H, γ-K4, β-L3b, β-L3a, δ-K5, β-R3b, β-K3b, γ-R4), 1.59 (m, 3H, β-K3a, β-R3a, γ-L4b), 1.69 (s, 3H, f), 1.79 (m, 3H, γ-P4b, β-P3b, γ-L4a), 1.98 (m, 1H, γ-P4a), 2.05 (s, 3H, e), 2.11 (m, 4H, g, h), 3.03 (m, 2H, ε-K6), 3.11 (m, 2H, δ-R5), 3.25 (d, 2H, J=6.2
  7. Hz, d), 3.32 (m, 1H, α-L2), 3.52 (m, 2H, δ-P5b, δ-P5a), 3.60 (s, 3H, COOMe), 3.67 (s, 3H, c), 4.09 (m, 1H, β-T3), 4.24 (m, 2H, α-T2, α-K2), 4.32 (m, 1H, α-P2), 4.43 (m, 1H, α-R2), 5.10 (t, J=6.6 Hz, 1H, a), 5.21 (s, 2H, b), 7.82 (d, J=8.4 Hz, 1H, α-TNH), 8.08 (m, 2H, α-RNH, α-KNH), 8.12 (m, 1H, ε-KNH);
  8. CNMR (400 MHz,CD3OD-d4) δ ppm: 11.49 (e), 16.44 (f), 20.48 (γ-T4), 23.39 (d/γ-K4), 23.35 (δ-L5), 24.41 (γ-L4), 24.87 (γ-P4/γ-R4), 28.83 (β-R3), 29.17 (δ-K5), 29.52 (β-P3), 31.81 (β-K3), 34.25 (h), 35.48 (g), 38.81 (ε-K6), 40.54 (δ-R5) 43.17 (β-L3), 47.18 (δ-P5), 50.26 (α-R2), 52.28 (OMe), 52.74 (α-L2) 52.85 (α-K2), 58.13 (α-T2), 59.58 (α-P2), 60.95 (c), 66.76 (β-T3), 68.98 (b), 122.94 (o/a), 146.11 (m), 159.72 (p), 162.98 (k), 170.48 (n), 171.43 (T1), 171.82 (P1), 172.14 (i) 172.59 (K1); otwiera się w nowej karcie
  9. 2.2.2.7. Compound MPA-Arg(NO2)-Pro-Lys(Ile)-Thr-OMe 3n: Product 3n was obtained with yield 84% as white powder. otwiera się w nowej karcie
  10. MPA-RT-Ile 3n: 1 HNMR (400 MHz, DMSO-d6) δ ppm: 0.806 (m, 6H, δ-I5, ε-I6), 1.041 (d, J=6.3 Hz, 3H, γ-T4), 1.078 (m, 2H, γ-I4), 1.273 (m, 2H, γ-K4), 1.393 (m, 3H, δ-K5, β-R3b), 1.459 (m, 3H, β-K3b, γ-R4), 1.634 (m, 3H, β-K3a, β-R3a, β-I3), 1.727 (s, 3H, f), 1.804 (m, 2H, γ-P4b, β-P3b), 1.894 (m, 2H, γ-P4a, β-T3), 1.995 (m, 1H, β-P3a), 2.071 (s, 3H, e), 2.129 (m, 4H, g, h), 3.007 (m, 5H, α-I2, ε-K6, δ-R5), 3.272 (d, J=6.5 Hz, 2H, d), 3.515 (m, 1H, δ-P5b), 3.617 (m, 1H, δ-P5a), 3.625 (s, 3H, COOMe), 3.687 (s, 3H, c), 4.103 (m, 1H, β-T3), 4.25 (m, 2H, α-T2, α-K2), 4.339 (m, 1H, α-P2), 4.444 (m, 1H, α-R2), 5.142 (t, J=6.7 Hz, 1H, a), 5.228 (s, 2H, b), 7.817 (d, J=8.2 Hz, 1H, α-TNH), 8.018 (m, 3H, α-RNH, α-KNH, ε-KNH);
  11. CNMR (400 MHz,CD3OD-d4) δ ppm: 10.07 (e), 10.45 (δ-I5), 14.45 (ε-I6), 14.93 (f), 18.97 (γ-T4), 22.29 (d), 24.22 (γ-I4), 24.66 (γ-K4), 28.48 (γ-P4), 29.22 (γ-R4), 31.04 (β-R3), 33.97 (δ-K5), 35.08 (β-P3), 38.24 (β-I3), 38.69 (β-K3), 40.53 (h), 42.16 (g), 46.894 (ε-K6), 48.357 (δ-R5) 50.76 (δ-P5), 51.47 (α-R2), 53.35 (OMe), 56.93 (α-T2), 57.81 (α-I2), 59.08 (α-K2), 60.11 (α-P2), 60.18 (c), 67.02 (β-T3), 69.39 (b), 106.35 (o), 116.2 (l), 122.32 (r), 123.09 (a), 133.66 (j), 145.29 (m), 159.56 (p), 163.42 (k), 170.99 (n), 171.14 (T1), 172.45 (P1), 172.97 (i) 173.23 (K1), 173.42 (R1), 174.21 (I1); otwiera się w nowej karcie
  12. R. Bentley, Mycophenolic acid: a one hundred year odyssey from antibiotic to immuno- suppressant, Chem. Rev. 100 (2000) 3801-3826. otwiera się w nowej karcie
  13. G. Cholewiński, M. Małachowska, K. Dzierzbicka, The chemistry of mycophenolic acid - synthesis and modifications towards desired biological activity, Curr. Med. Chem. 17 (2010) 1926-1941. otwiera się w nowej karcie
  14. L. Hedstrom, IMP Dehydrogenase: structure, mechanism and inhibition, Chem. Rev. 109 (2009) 2903-2928. otwiera się w nowej karcie
  15. G. Cholewiński, D. Iwaszkiewicz-Grześ, M. Prejs, A. Głowacka, K. Dzierzbicka, Synthesis of the inosine 5'-monophosphate dehydrogenase (IMPDH) Inhibitors, J. Enzyme Inhib. Med. Chem. 30 (2015) 550-563. otwiera się w nowej karcie
  16. M.D. Sintchak, M.A. Fleming, O. Futer, S.A. Raybuck, S.P. Chambers, P.R. Caron, M.A. otwiera się w nowej karcie
  17. Murcko, K.P. Wilson, Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid, Cell 85 (1996) 921-930.
  18. S. Mitsuhashi, J. Takenaka, K. Iwamori, N. Nakajima, M. Ubukata, Structure-activity rela- tionships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives, Bioorg. Med. Chem. 18 (2010) otwiera się w nowej karcie
  19. G. Lai, W.K. Anderson, Synthesis of Novel Indole Analogues of Mycophenolic Acid as Potential Antineoplastic Agents, Tetrahedron 56, (2000) 2583-2590. otwiera się w nowej karcie
  20. L. Chen, D. Wilson, H.N. Jayaram, K.W. Pankiewicz, Dual inhibitors of IMP-dehydrogen- ase and histone deacetylases for cancer treatment, J. Med. Chem. 50 (2007) 6685-6691. otwiera się w nowej karcie
  21. Ch.P. Shah, P.S. Kharkar, Newer human inosine 5′-monophosphatedehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents, J. Enzyme Inhib. Med. Chem. 33 (2018), 972-977.
  22. Ch.P. Shah, P.S. Kharkar, Discovery of novel human inosine 5′-monophosphate dehydro- genase 2 (hIMPDH2) inhibitors as potential anticancer agents, Eur. J.Med. Chem. 158 (2018) 286-301.
  23. K. Felczak, R. Vince, K.W. Pankiewicz, NAD-based inhibitors with anticancer potential, Bioorg. Med. Chem. Lett. 24 (2014) 332-336. otwiera się w nowej karcie
  24. G. Cholewiński, D. Iwaszkiewicz-Grześ, P. Trzonkowski, K. Dzierzbicka, Synthesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as poten- tial immunosuppressive agents, J. Enzyme Inhib. Med. Chem. 31 (2016) 974-982. otwiera się w nowej karcie
  25. A. Siebert, M. Prejs, G. Cholewiński, K. Dzierzbicka, New analogues of mycophenolic acid, Mini Rev. Med. Chem. 17 (2017) 734-745. otwiera się w nowej karcie
  26. K. Sunohara, S. Mitsuhashi, K. Shigetomi, M. Ubukata, Discovery of N-(2,3,5-tri- azoyl)mycophenolic amide and mycophenolic epoxyketone as novel inhibitors of human IMPDH, Bioorg. Med. Chem. Lett. 23 (2013) 5140-5144. otwiera się w nowej karcie
  27. W.J. Watkins, J.M. Chen, A. Cho, L. Chong, N. Collins, M. Fardis, W. Huang, M. Hung, T. Kirschberg, W.A. Lee, X. Liu, W. Thomas, X. Xu, A. Zeynalzadegan, J. Zhang, Phosphonic acid-containing analogues of mycophenolic acid as inhibitors of IMPDH, Bioorg. Med. Chem. Lett. 16 (2006) 3479-3483. otwiera się w nowej karcie
  28. N. Yang, Q. Wang, W. Wang, J. Wang, F. Li, S. Tan, M. Cheng, The synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives, Bioorg. Med. Chem. Lett. 22 (2012) 53-56. otwiera się w nowej karcie
  29. L. Guazelli, F. D'Andrea, F. Giorgelli, G. Catelani, A. Panattoni, A. Luvisi, Synthesis of PAMAM Dendrimers Loaded with Mycophenolic Acid to Be Studied as New Potential Immu- nosuppressants. J. Chem. (2015). http://dx.doi.org/10.1155/2015/263072. otwiera się w nowej karcie
  30. P.H. Nelson, S.F. Carr, B.H. Devens, E.M. Eugui, F.Franco, C. Gonzalez, R.C. Havley, D.G. Loughhead, D.J. Milan, E. Papp, J.W. Patterson, S. Rouhafza, E.B. Sjogren, D.B. Smith, R.A. Stephenson, F.X. Talamas, A-N. Waltos, R.J. Weikert, J.C. Wu Structure-Activity Rela- tionships for Inhibition of Inosine Monophosphate Dehydrogenase by Nuclear Variants of My- cophenolic Acid, J. Med. Chem. 39 (1996) 4181-4196. otwiera się w nowej karcie
  31. A. Siebert, G. Cholewiński, D. Garwolińska, A. Olejnik, J. Rachoń, J. Chojnacki, The synthesis and structure of a potential immunosuppressant: N-mycophenoylmalonic acid dime- thyl ester, J. Mol. Struct. 1151 (2018) 218-222. otwiera się w nowej karcie
  32. D. Iwaszkiewicz-Grześ, G. Cholewiński, A. Kot-Wasik, P. Trzonkowski P., K. otwiera się w nowej karcie
  33. Dzierzbicka, Synthesis and biological activity of mycophenolic acid-amino acid derivatives, Eur. J. Med. Chem. 69 (2013) 863-871.
  34. M.D. Sintchak, E. Nimmesgern, The structure of inosine 5'-monophosphate dehydrogen- ase and the design of novel inhibitors, Immunopharmacol. 47 (2000) 163-184. otwiera się w nowej karcie
  35. K. Dzierzbicka, Synthesis of conjugates of muramyl dipeptide and nor-muramyldipeptide with retro-tuftsin (Arg-Pro-Lys-ThrOMe) as potential immunostimulants, Pol. J. Chem. 78 (2004) 409-416.
  36. K. Dzierzbicka, P. Sowiński, A.M. Kołodziejczyk, Synthesis of analogues of anthraqui- nones linked to tuftsin or retro-tuftsin residues as potential topoisomerase inhibitors, J. Pept. Sci. 12 (2006) 670-678. otwiera się w nowej karcie
  37. K. Dzierzbicka, A. Wardowska, M. Rogalska, P. Trzonkowski, New conjugates of mu- ramyl dipeptide and nor-muramyl dipeptide linked to tuftsin and retro-tuftsin derivatives sig- nificantly influence their biological activity, Pharmacol. Rep. 64 (2012) 217-223.
  38. A. Siebert, M. Wysocka, B. Krawczyk, G. Cholewiński, J. Rachoń, Synthesis and antimi- crobial activity of amino acid and peptide derivatives of mycophenolic acid, Eur. J. Med. Chem. 143 (2018) 646-655. otwiera się w nowej karcie
  39. A. Siebert, M. Gensicka-Kowalewska, G. Cholewiński, K. Dzierzbicka, Tuftsin -Proper- ties and Analogs, Curr. Med. Chem. 24 (2017) 3711-3727. otwiera się w nowej karcie
  40. Y. Peng, Y. Dong, R.I. Mahato, Synthesis and Characterization of a Novel Mycophenolic Acid -Quinic Acid Conjugate Serving as Immunosuppressant with Decreased Toxicity, Mol. Pharmaceutics 12 (2015) 4445-4453. otwiera się w nowej karcie
  41. H. Wu, J. Pagadala, C.R. Yates, D. Miller, R.I. Mahato, Synthesis and characterization of an anti-apoptotic immunosuppressive compound for improving the outcome of islet transplan- tation, Bioconjugate Chem. 24 (2013) 2036−2044. otwiera się w nowej karcie
  42. L. Chen, D.J. Wilson, Y. Xu, C.C. Aldrich, K. Felczak, Y.Y. Sham, K.W. Pankiewicz, Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and myco- bacterium tuberculosis. J. Med. Chem. 53 (2010) 4768-4778. otwiera się w nowej karcie
  43. X. Wang, Y. Lin, Y. Zeng, X. Sun, T. Gong, Z. Zhang, Effects of mycophenolic acid- glucosamine conjugates on the base of kidney targeted drug delivery, Inter. J. Pharma. 456 (2013) 223-234. otwiera się w nowej karcie
  44. K.W. Pankiewicz, K.B. Lesiak-Watanabe, K.A. Watanabe, S.E. Patterson, H.N. Jayaram, J.A. Yalowitz, M.D. Miller, M. Seidman, A. Majumdar, G. Prehna, B.M. Goldstein, Novel My- cophenolic Adenine Bis(phosphonate) Analogues As Potential Differentiation Agents against Human Leukemia, J. Med. Chem. 45 (2002) 703-712. otwiera się w nowej karcie
  45. M. Prejs, G. Cholewiński, P. Trzonkowski, A. Kot-Wasik, K. Dzierzbicka, Synthesis and antiproliferative activity of new mycophenolic acid conjugates with adenosine derivatives, J. Asian Nat. Prod. Res. 21 (2019) 178-185. otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 159 razy

Publikacje, które mogą cię zainteresować

Meta Tagi