Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties - Publikacja - MOST Wiedzy

Wyszukiwarka

Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties

Abstrakt

In this study, a non-probabilistic approach based Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM) in term of double parametric form has been proposed to investigate the buckling behavior of Euler-Bernoulli nonlocal beam under the framework of the Eringen's nonlocal elasticity theory, considering the structural parameters as imprecise or uncertain. The uncertainties in Young’s modulus and diameter of the beam are modeled in terms of Triangular Fuzzy Numbers (TFN). The critical buckling loads are calculated for Hinged-Hinged (HH), Clamped-Hinged (CH), and Clamped-Clamped (CC) boundary conditions and these results are compared with the deterministic model in special cases, demonstrating robust agreement. Further, a random sampling technique based method namely, Monte Carlo Simulation Technique (MCST) has been implemented to compute the critical buckling loads of uncertain systems. Also, the critical buckling loads obtained from the uncertain model in terms of Lower Bound (LB) and Upper Bound (UB) by the non-probabilistic methods, viz. Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM), are again verified with the Monte Carlo Simulation Technique (MCST) with their time periods, demonstrating the efficacy, accuracy, and effectiveness of the proposed uncertain model. A comparative study is also carried out among the non-probabilistic methods and Monte Carlo Simulation Technique (MCST) to demonstrate the effectiveness of methods with respect to time. Additionally, a parametric study has been performed to display the propagation of uncertainties into the nonlocal system in the form of critical buckling loads.

Cytowania

  • 1 8

    CrossRef

  • 2 1

    Web of Science

  • 1 9

    Scopus

Autorzy (3)

  • Zdjęcie użytkownika PhD Subrat Kumar Subrat

    Subrat Kumar Subrat PhD

    • National Institute of Technology Rourkela, 769008, India Department of Mathematics
  • Zdjęcie użytkownika Pofessor S. Chakraverty

    S. Chakraverty Pofessor

    • National Institute of Technology Rourkela, 769008, India Department of Mathematics

Cytuj jako

Pełna treść

pobierz publikację
pobrano 54 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 Springer Nature Switzerland AG)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ENGINEERING WITH COMPUTERS nr 37, strony 2957 - 2969,
ISSN: 0177-0667
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Kumar Subrat S., Chakraverty S., Malikan M.: Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties// ENGINEERING WITH COMPUTERS -Vol. 37, (2021), s.2957-2969
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00366-020-00987-z
Bibliografia: test
  1. Liu H, Zhang W, Yuan H (2016) Structural stability analysis of single-layer reticulated shells with stochastic imperfections. Engineering Structures 124:473-479 otwiera się w nowej karcie
  2. Liu H, Lv Z (2018) Vibration and instability analysis of flow-conveying carbon nanotubes in the presence of material uncertainties. Physica A: Statistical Mechanics and its Applications 511:85-103 otwiera się w nowej karcie
  3. Alon N, Spencer JH (2000) The probabilistic method. John Wiley & Sons, New York otwiera się w nowej karcie
  4. Malikan M, Nguyen VB, Tornabene F (2018) Damped forced vibration analysis of single- walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal 21:778-786 otwiera się w nowej karcie
  5. Malikan M (2019) On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory. Journal of Applied and Computational Mechanics 5:103-112 28 otwiera się w nowej karcie
  6. Malikan M, Dimitri R, Tornabene F (2019) Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering 158:198-205 otwiera się w nowej karcie
  7. Sobhy M (2015) Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations. International Journal of Applied Mechanics 7(06):1550082 otwiera się w nowej karcie
  8. Karami B, Janghorban M, Tounsi A (2019) Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Engineering with Computers 35(4):1297-1316 otwiera się w nowej karcie
  9. Salvetat JP, Briggs GA, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Physical review letters 82:944 otwiera się w nowej karcie
  10. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MM (1998) Young's modulus of single-walled nanotubes. Physical review B 58:14013 otwiera się w nowej karcie
  11. He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets-A molecular dynamics study. Carbon 75:124-32 otwiera się w nowej karcie
  12. Radebe IS, Adali S (2014) Buckling and sensitivity analysis of nonlocal orthotropic nanoplates with uncertain material properties. Composites Part B: Engineering 56:840-886 otwiera się w nowej karcie
  13. Lv Z, Liu H (2017) Nonlinear bending response of functionally graded nanobeams with material uncertainties. International Journal of Mechanical Sciences 134:123-135 otwiera się w nowej karcie
  14. Lv Z, Liu H (2018) Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment. Composite Structures 184:1165-1176 otwiera się w nowej karcie
  15. Liu H, Lv Z (2018) Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Composite Structures 202:615-624 otwiera się w nowej karcie
  16. Liu H, Lv Z (2018) Vibration and instability analysis of flow-conveying carbon nanotubes in the presence of material uncertainties. Physica A: Statistical Mechanics and its Applications 511: 85-103 otwiera się w nowej karcie
  17. Liu H, Lv Z (2018) Uncertainty analysis for wave dispersion behavior of carbon nanotubes embedded in Pasternak-type elastic medium. Mechanics Research Communications 92:92-100 29 otwiera się w nowej karcie
  18. Jena SK, Chakraverty S, Jena RM (2019) Propagation of uncertainty in free vibration of otwiera się w nowej karcie
  19. Euler-Bernoulli nanobeam. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41:436
  20. Gironacci E, Nezhad MM, Rezania M, Lancioni G (2018) A non-local probabilistic method for modeling of crack propagation. International Journal of Mechanical Sciences 144:897-908 otwiera się w nowej karcie
  21. Zhu J, Lv Z, Liu H (2019) Thermo-electro-mechanical vibration analysis of nonlocal piezoelectric nanoplates involving material uncertainties. Composite Structures 208:771-783 otwiera się w nowej karcie
  22. Karami B, Shahsavari D (2020) On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets. otwiera się w nowej karcie
  23. Computer Methods in Applied Mechanics and Engineering 359:112767 otwiera się w nowej karcie
  24. Karami B, Janghorban M, Rabczuk T (2020) Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering 182:107622 otwiera się w nowej karcie
  25. Karami B, Janghorban M, Tounsi A (2020) Novel study on functionally graded anisotropic doubly curved nanoshells. The European Physical Journal Plus 135(1):103 otwiera się w nowej karcie
  26. Karami B, Janghorban M, Tounsi A (2019) On pre-stressed functionally graded anisotropic nanoshell in magnetic field. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(11):495 otwiera się w nowej karcie
  27. Karami B, Shahsavari D, Janghorban M, Li L (2019) On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. International Journal of Engineering Science 144:103143 otwiera się w nowej karcie
  28. Karami B, Janghorban M, Rabczuk T (2019) Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Composite Structures 227:111249 otwiera się w nowej karcie
  29. Lyu Z, Yang Y, Liu H (2020) High-accuracy hull iteration method for uncertainty propagation in fluid-conveying carbon nanotube system under multi-physical fields. Applied Mathematical Modelling 79:362-80 30 otwiera się w nowej karcie
  30. Liu H, Lv Z, Wu H (2019) Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory. Composite Structures 214:47-61 otwiera się w nowej karcie
  31. Liu H, Wu H, Lyu Z (2020) Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerospace Science and Technology 105702 otwiera się w nowej karcie
  32. Malikan M, Eremeyev VA (2020) Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method. Materials Research Express 7(2): 025005 otwiera się w nowej karcie
  33. Malikan M, Krasheninnikov M, Eremeyev VA (2020) Torsional stability capacity of a nano- composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. International Journal of Engineering Science 148:103210 otwiera się w nowej karcie
  34. Jena SK, Chakraverty S, Malikan M (2020) Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach. The European Physical Journal Plus 135(2):164 otwiera się w nowej karcie
  35. Jena SK, Chakraverty S, Malikan M, Tornabene F (2019) Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory. Mechanics Based Design of Structures and Machines 1-5 otwiera się w nowej karcie
  36. Jena SK, Chakraverty S (2019) Dynamic Behavior of Electro-Magnetic Nanobeam Using Haar Wavelet Method (HWM) and Higher Order Haar Wavelet Method (HOHWM). The European Physical Journal Plus 134(10):538 otwiera się w nowej karcie
  37. Jena SK, Chakraverty S, Tornabene F (2019) Buckling Behavior of Nanobeam Placed in an Electro-Magnetic Field Using Shifted Chebyshev polynomials Based Rayleigh-Ritz Method. Nanomaterials 9(9): 1326 otwiera się w nowej karcie
  38. Jena SK, Chakraverty S, Malikan M (2019) Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal otwiera się w nowej karcie
  39. Jena SK, Chakraverty S, Jena RM, Tornabene F (2019) A novel fractional nonlocal model and its application in buckling analysis of Euler-Bernoulli nanobeam. Materials Research Express 6:055016 otwiera się w nowej karcie
  40. Jena SK, Chakraverty S, Tornabene F (2019) Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express 6:085051 otwiera się w nowej karcie
  41. Jena SK, Chakraverty S, Tornabene F (2019) Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using First-Order nonlocal strain gradient model. Materials Research Express 6:0850f2 otwiera się w nowej karcie
  42. Jena SK, Chakraverty S (2018) Free vibration analysis of variable cross-section single layered graphene nano-ribbons (SLGNRs) using differential quadrature method. Frontiers in Built Environment 4:63 otwiera się w nowej karcie
  43. Jena SK, Chakraverty S (2018) Free vibration analysis of single walled carbon nanotube with exponentially varying stiffness. Curved and Layered Structures 5:201-212 otwiera się w nowej karcie
  44. Jena SK, Chakraverty S (2018) Free vibration analysis of Euler-Bernoulli Nano beam using differential transform method. International Journal of Computational Materials Science and Engineering 7:1850020 otwiera się w nowej karcie
  45. Chakraverty S, Jena SK (2018) Free vibration of single walled carbon nanotube resting on exponentially varying elastic foundation. Curved and Layered Structures 5:260-272 otwiera się w nowej karcie
  46. Wang CM, Zhang YY, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 39: 3904 otwiera się w nowej karcie
  47. Jena SK, Chakraverty S (2019) Differential Quadrature and Differential Transformation Methods in Buckling Analysis of Nanobeams. Curved and Layered Structures 6:68-76 otwiera się w nowej karcie
  48. Jena SK, Chakraverty S (2019) Dynamic Analysis of Single-Layered Graphene Nano- Ribbons (SLGNRs) with Variable Cross-Section Resting on Elastic Foundation. Curved and Layered Structures 6(1):132-145 32 otwiera się w nowej karcie
  49. Jena SK, Chakraverty S (2020) Vibration Analysis of Nonuniform Single-Walled Carbon Nanotube Resting on Winkler Elastic Foundation Using DQM. In Recent Trends in Wave Mechanics and Vibrations 371-391. Springer, Singapore otwiera się w nowej karcie
  50. Jena RM, Chakraverty S, Jena SK (2019) Dynamic response analysis of fractionally damped beams subjected to external loads using Homotopy Analysis Method. Journal of Applied and Computational Mechanics 5:355-366
  51. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338-353 otwiera się w nowej karcie
  52. Cherki A, Plessis G, Lallemand B, Tison T, Level (2000) P. Level, Fuzzy behavior of mechanical systems with uncertain boundary conditions. Computer Methods in Applied Mechanics and Engineering 189 :863-873 otwiera się w nowej karcie
  53. Wasfy TM, Noor AK (1998) Application of fuzzy sets to transient analysis of space structures. Finite Elements in Analysis and Design 29:153-171 otwiera się w nowej karcie
  54. Akpan UO, Koko TS, Orisamolu IR, Gallant BK (2000) Fuzzy finite-element analysis of smart structures. Smart Materials and Structures 10:273 otwiera się w nowej karcie
  55. Tapaswini S, Chakraverty S (2014) Dynamic response of imprecisely defined beam subject to various loads using Adomian decomposition method. Appl Soft Comput 24:249-263 otwiera się w nowej karcie
  56. Michael H (2005) Applied fuzzy arithmetic an introduction with engineering applications otwiera się w nowej karcie
  57. Chakraverty S, Tapaswini S, Behera D (2016) Fuzzy differential equations and applications for engineers and scientists. CRC Press, Boca Raton otwiera się w nowej karcie
  58. Chakraverty S, Tapaswini S, Behera D (2016) Fuzzy arbitrary order system: fuzzy fractional differential equations and applications. Wiley, Hoboken otwiera się w nowej karcie
  59. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45: 288-307 otwiera się w nowej karcie
  60. Eringen AC (1972) Nonlocal polar elastic continua. Internat. J. Engrg. Sci. 10: 1-16 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 41 razy

Publikacje, które mogą cię zainteresować

Meta Tagi