Implementation of spatial/polarization diversity for improved-performance circularly polarized multiple-input-multiple-output ultra-wideband antenna - Publikacja - MOST Wiedzy

Wyszukiwarka

Implementation of spatial/polarization diversity for improved-performance circularly polarized multiple-input-multiple-output ultra-wideband antenna

Abstrakt

In this paper, spatial and polarization diversities are simultaneously implemented in an ultra-wideband (UWB) multiple-input-multiple-output (MIMO) antenna to reduce the correlation between the parallel-placed radiators. The keystone of the antenna is systematically modified coplanar ground planes that enable excitation of circular polarization (CP). To realize one sense of circular polarization as well as ultra-wideband operation, an extended rectangular slot is etched on the left-hand-side of the coplanar waveguide (CPW) feed. This is combined with the asymmetrical ground plane geometry on the right-hand-side of the feeding line. The current flowing on the slotted ground plane forms a quasi-loop and generates CP, whereas the combination of the vertical current on the feedline and the horizontal current on the asymmetric ground plane adds to the axial ratio (AR) bandwidth. To implement the MIMO design with polarization and spatial diversity, the position of the coplanar ground planes is switched with respect to the feedline, and placed in a parallel formation with the edge-to-edge distance of 0.29λ0 . All geometrical parameters are optimized at the full-wave level of description before prototyping and experimental characterization. Simulation and measured results indicate that the proposed MIMO antenna features approximately 82% impedance bandwidth from 2.9 GHz to 7.1 GHz and 68.5% (3.1 GHz- 6.35 GHz) AR bandwidth. Moreover, the peak envelop correlation coefficient (ECC) is below 0.003, which corresponds to almost no correlation between the radiators. The antenna can be operated with either bidirectional or unidirectional characteristics, covering multiple commercial application bands including WLAN and WiMax.

Cytowania

  • 5

    CrossRef

  • 5

    Web of Science

  • 7

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 9 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 8, strony 64112 - 64119,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Ullah U., Mabrouk I., Kozieł S., Al-Hasan M.: Implementation of spatial/polarization diversity for improved-performance circularly polarized multiple-input-multiple-output ultra-wideband antenna// IEEE Access -Vol. 8, (2020), s.64112-64119
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2020.2984697
Bibliografia: test
  1. D. Muirhead, M. A. Imran, and K. Arshad, ''A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations,'' IEEE Access, vol. 4, pp. 2952-2964, 2016. otwiera się w nowej karcie
  2. F. A. Dicandia, S. Genovesi, and A. Monorchio, ''Analysis of the perfor- mance enhancement of MIMO systems employing circular polarization,'' IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4824-4835, Sep. 2017. otwiera się w nowej karcie
  3. J. Malik, A. Patnaik, and M. V. Kartikeyan, ''Novel printed MIMO antenna with pattern and polarization diversity,'' IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 739-742, 2015. otwiera się w nowej karcie
  4. S. M. Mikki and Y. M. M. Antar, ''On cross correlation in antenna arrays with applications to spatial diversity and MIMO systems,'' IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1798-1810, Apr. 2015. otwiera się w nowej karcie
  5. A. Boukarkar, X. Q. Lin, Y. Jiang, L. Y. Nie, P. Mei, and Y. Q. Yu, ''A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 134-137, Jan. 2018. otwiera się w nowej karcie
  6. M. S. Sharawi, M. Ikram, and A. Shamim, ''A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals,'' IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6679-6686, Dec. 2017. otwiera się w nowej karcie
  7. P. Wang, H. Wang, L. Ping, and X. Lin, ''On the capacity of MIMO cellular systems with base station cooperation,'' IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3720-3731, Nov. 2011. otwiera się w nowej karcie
  8. Z. Qin, M. Zhang, J. Wang, and W. Geyi, ''Printed eight-element MIMO system for compact and thin 5G mobile handest,'' Electron. Lett., vol. 52, no. 6, pp. 416-418, Mar. 2016. otwiera się w nowej karcie
  9. S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, and C. G. Parini, ''Design and performance study of a dual-element multiband printed monopole antenna array for MIMO terminals,'' IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 329-332, 2014. otwiera się w nowej karcie
  10. I. Nadeem and D.-Y. Choi, ''Study on mutual coupling reduction technique for MIMO antennas,'' IEEE Access, vol. 7, pp. 563-586, 2019. otwiera się w nowej karcie
  11. J. Deng, J. Li, L. Zhao, and L. Guo, ''A dual-band Inverted-F MIMO antenna with enhanced isolation for WLAN applications,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2270-2273, 2017. otwiera się w nowej karcie
  12. Y. Sharma, D. Sarkar, K. Saurav, and K. V. Srivastava, ''Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1163-1166, 2017. otwiera się w nowej karcie
  13. C. B. Dietrich, K. Dietze, J. R. Nealy, and W. L. Stutzman, ''Spatial, polarization, and pattern diversity for wireless handheld terminals,'' IEEE Trans. Antennas Propag., vol. 49, no. 9, pp. 1271-1281, Sep. 2001. otwiera się w nowej karcie
  14. G. Wolosinski, V. Fusco, U. Naeem, and P. Rulikowski, ''Pre-matched eigenmode antenna with polarization and pattern diversity,'' IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5145-5153, Aug. 2019. otwiera się w nowej karcie
  15. E. A. Soliman, W. De Raedt, and G. A. E. Vandenbosch, ''Reconfigurable slot antenna for polarization diversity,'' J. Biomaterials Sci., Polym. Ed., vol. 23, no. 7, pp. 905-916, May 2009. otwiera się w nowej karcie
  16. P. Kyritsi, D. C. Cox, R. A. Valenzuela, and P. W. Wolniansky, ''Effect of antenna polarization on the capacity of a multiple element system in an indoor environment,'' IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1227-1239, Aug. 2002. otwiera się w nowej karcie
  17. U. Ullah and S. Koziel, ''Design and optimization of a novel miniaturized low-profile circularly polarized wide-slot antenna,'' J. Electromagn. Waves Appl., vol. 32, no. 16, pp. 2099-2109, Nov. 2018. otwiera się w nowej karcie
  18. U. Ullah and S. Koziel, ''A geometrically simple compact wideband circu- larly polarized antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 6, pp. 1179-1183, Jun. 2019. otwiera się w nowej karcie
  19. U. Ullah, S. Koziel, and I. B. Mabrouk, ''Rapid redesign and Band- width/Size tradeoffs for compact wideband circular polarization antennas using inverse surrogates and fast EM-based parameter tuning,'' IEEE Trans. Antennas Propag., vol. 68, no. 1, pp. 81-89, Jan. 2020. otwiera się w nowej karcie
  20. K. O. Gyasi, G. Wen, D. Inserra, Y. Huang, J. Li, A. E. Ampoma, and H. Zhang, ''A compact broadband cross-shaped circularly polarized planar monopole antenna with a ground plane extension,'' IEEE Antennas Wire- less Propag. Lett., vol. 17, no. 2, pp. 335-338, Feb. 2018. otwiera się w nowej karcie
  21. M. Ain, U. Ullah, and Z. Ahmad, ''Bi-polarized dual-segment rectangular dielectric resonator antenna,'' IETE J. Res., vol. 59, no. 6, p. 739, 2013. otwiera się w nowej karcie
  22. Rashmi, A. Kumar, K. Saraswat, and A. Kumar, ''Wideband circu- larly polarized parasitic patches loaded coplanar waveguide-fed square slot antenna with grounded strips and slots for wireless communica- tion systems,'' AEU -Int. J. Electron. Commun., vol. 114, Feb. 2020, Art. no. 153011. otwiera się w nowej karcie
  23. P.-Y. Qin, Y. J. Guo, and C.-H. Liang, ''Effect of antenna polarization diversity on MIMO system capacity,'' IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1092-1095, 2010. otwiera się w nowej karcie
  24. R.-L. Li, V. F. Fusco, and H. Nakano, ''Circularly polarized open-loop antenna,'' IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2475-2477, Sep. 2003.
  25. H. T. Chattha, ''4-port 2-Element MIMO antenna for 5G portable applica- tions,'' IEEE Access, vol. 7, pp. 96516-96520, 2019. otwiera się w nowej karcie
  26. U. Ullah, I. B. Mabrouk, and S. Koziel, ''Enhanced-performance circu- larly polarized MIMO antenna with Polarization/Pattern diversity,'' IEEE Access, vol. 8, pp. 11887-11895, 2020. otwiera się w nowej karcie
  27. H. Li, S. Sun, B. Wang, and F. Wu, ''Design of compact single-layer textile MIMO antenna for wearable applications,'' IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3136-3141, Jun. 2018. otwiera się w nowej karcie
  28. ISMAIL BEN MABROUK (Senior Member, IEEE) received the B.A.Sc. and M.A.Sc. degrees in electrical engineering from the University of Lille, Lille, France, in 2006 and 2007, respectively, and the Ph.D. degree in electrical engineering from the University of Quebec, Canada, in 2012. From 2007 to 2009, he was with Huawei Technologies, Paris, France. He joined the Wireless Devices and Systems (WiDeS) Group, University of Southern California, Los Angeles, CA, USA, in 2012. He is currently an Assistant Professor with the Al Ain University of Science and Technology, Abu Dhabi, UAE. His research activities have been centered on propagation studies for multiple-input and multiple-output (MIMO) sys- tems, measurement campaigns in special environments, WBAN, and antenna design at the millimeter-wave and THz frequencies. SLAWOMIR KOZIEL (Senior Member, IEEE) received the M.Sc. and Ph.D. degrees in electronic engineering from the Gdansk University of Tech- nology, Poland, in 1995 and 2000, respectively, and the M.Sc. degree in theoretical physics and the M.Sc. and Ph.D. degrees in mathematics from the University of Gdansk, Poland, in 2000, 2002, and 2003, respectively. He is currently a Professor with the School of Science and Engineering, Reykjavík University, Iceland. His research interests include CAD and modeling of microwave and antenna structures, simulation-driven design, surrogate-based optimization, space mapping, circuit theory, analog signal processing, evolutionary computation, and numerical analysis. MUATH AL-HASAN (Senior Member, IEEE) received the B.A.Sc. degree in electrical engineer- ing from the Jordan University of Science and Technology, Jordan, in 2005, the M.A.Sc. degree in wireless communications from Yarmouk Uni- versity, Jordan, in 2008, and the Ph.D. degree in telecommunication engineering from the Institut National de la Recherche Scientifique (INRS), Université du Québec, Canada, 2015. From 2013 to 2014, he was with Planets Inc., CA, USA. He joined Concordia University, Canada, as a Postdoctoral Fellow- ship, in May 2015. He is currently an Assistant Professor with Al Ain University, United Arab Emirates. His current research interests include antenna design at millimeter-wave and Terahertz frequencies, electromag- netic bandgap (EBG) structures, and channel measurements in multiple-input and multiple-output (MIMO) systems. VOLUME 8, 2020 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 13 razy

Publikacje, które mogą cię zainteresować

Meta Tagi