Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations - Publikacja - MOST Wiedzy

Wyszukiwarka

Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations

Abstrakt

The research presents the methodology of improving the accuracy in sentiment classification in the light of modelling the latent semantic relations (LSR). The objective of this methodology is to find ways of eliminating the limitations of the discriminant and probabilistic methods for LSR revealing and customizing the sentiment classification process (SCP) to the more accurate recognition of text tonality. This objective was achieved by providing the possibility of the joint usage of the following methods: (1) retrieval and recognition of the hierarchical semantic structure of the text and (2) development of the hierarchical contextually-oriented sentiment dictionary in order to perform the context-sensitive SCP. The main scientific contribution of this research is the set of the following approaches: at the phase of LSR revealing (1) combination of the discriminant and probabilistic models while applying the rules of adjustments to obtain the final joint result; at all SCP phases (2) considering document as a complex structure of topically completed textual components (paragraphs) and (3) taking into account the features of persuasive documents’ type. The experimental results have demonstrated the enhancement of the SCP accuracy, namely significant increase of average values of recall and precision indicators and guarantee of sufficient accuracy level.

Cytowania

  • 2

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Opublikowano w:
Information nr 9, strony 1 - 24,
ISSN: 2078-2489
Język:
polski
Rok wydania:
2018
Opis bibliograficzny:
Rizun N., Waloszek W., Yurii T.. Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations. Information, 2018, Vol. 9, nr. 12, s.1-24
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/info9120307
Bibliografia: test
  1. Furnas, G.W.; Deerwester, S.; Dumais, S.T.; Landauer, T.K.; Harshman, R.A.; Streeter, L.A.; Lochbaum, K.E. Information retrieval using a singular value decomposition model of latent semantic structure. In Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Grenoble, France, 13-15 June 1998; pp. 465-480. otwiera się w nowej karcie
  2. Anaya, L.H. Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers; Doctor of Philosophy (Management Science);
  3. ProQuest LLC: Ann Arbor, MI, USA, 2011; 226p. otwiera się w nowej karcie
  4. Papadimitrious, C.H.; Raghavan, P.; Tamaki, H.; Vempala, S. Latent semantic indexing: A probabilistic analysis. J. Comput. Syst. Sci. 2000, 61, 217-235. [CrossRef] otwiera się w nowej karcie
  5. Rizun, N.; Kapłanski, P.; Taranenko, Y. Method of a Two-Level Text-Meaning Similarity Approximation of the Customers' Opinions; Economic Studies-Scientific Papers; Nr. 296/2016; University of Economics in Katowice: Katowice, Poland, 2016; pp. 64-85. Information 2018, 9, 307
  6. Teh, Y.W.; Jordan, M.I.; Beal, M.J.; Blei, D.M. Sharing clusters among related groups: Hierarchical Dirichlet processes. In Advances in Neural Information Processing Systems; Neural Information Processing Systems: Vancouver, BC, Canada, 2005; pp. 1385-1392. otwiera się w nowej karcie
  7. Xuan, J.; Lu, J.; Zhang, G.; Da Xu, R.Y.; Luo, X. Bayesian nonparametric relational topic model through dependent gamma processes. IEEE Trans. Knowl. Data Eng. 2017, 29, 1357-1369. [CrossRef] otwiera się w nowej karcie
  8. Xuan, J.; Lu, J.; Zhang, G.; Da Xu, R.Y.; Luo, X. Doubly nonparametric sparse nonnegative matrix factorization based on dependent Indian buffet processes. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1835-1849. [CrossRef] [PubMed] otwiera się w nowej karcie
  9. Rizun, N.; Taranenko, Y.; Waloszek, W. The Algorithm of Building the Hierarchical Contextual Framework of Textual Corpora. In Proceedings of the Eighth IEEE International Conference on Intelligent Computing and Information System, ICICIS 2017, Cairo, Egypt, 5-7 December 2017; pp. 366-372. otwiera się w nowej karcie
  10. Blei, D. Introduction to Probabilistic Topic Models. Commun. ACM 2012, 55, 77-84. [CrossRef] otwiera się w nowej karcie
  11. Blei, D.; Lafferty, J.D. Topic Modeling. Available online: http://www.cs.columbia.edu/~blei/papers/ BleiLafferty2009.pdf (accessed on 4 December 2018). otwiera się w nowej karcie
  12. Gramacki, J.; Gramacki, A. Metody algebraiczne w zadaniach eksploracji danych na przykładzie automatycznego analizowania treści dokumentów. In Proceedings of the XVI Konferencja PLOUG, Kościelisko, Poland, 19-20 October 2010; pp. 227-249.
  13. Titov, I. Modeling Online Reviews with Multi-grain Topic Models. In Proceedings of the 17th International Conference on World Wide Web (WWW'08), Beijing, China, 21-25 April 2008; pp. 111-120. otwiera się w nowej karcie
  14. Griffiths, T.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228-5235. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Aggarwal, C.; Zhai, X. Mining Text Data; Springer: New York, NY, USA, 2012. otwiera się w nowej karcie
  16. Canini, K.R.; Shi, L.; Griffiths, T. Online Inference of Topics with Latent Dirichlet Allocation. J. Mach. Learn. Res. 2009, 5, 65-72.
  17. Blei, D.; Ng, A.; Jordan, M. Latent Dirichlet allocation. J. Mach. Learn. Res. 2013, 3, 993-1022.
  18. Asgari, E.; Bastani, K. The Utility of Hierarchical Dirichlet Process for Relationship Detection of Latent Constructs. Acad. Manag. Proc. 2017, 1, 16300. [CrossRef] otwiera się w nowej karcie
  19. Klekovkina, M.V.; Kotelnikov, E.V. The automatic sentiment text classification method based on emotional vocabulary. In Proceedings of the Digital libraries: Advanced Methods and Technologies, Digital Collections (RCDL-2012), Pereslavl-Zalessky, Moscow, 15-18 October 2012; pp. 118-123.
  20. Kim, S.-M.; Hovy, E. Determining the sentiment of opinions. In Proceedings of the 20th International Conference on Computational Linguistics (COLING '04), Geneva, Switzerland, 23-27 August 2004; otwiera się w nowej karcie
  21. Choi, Y.; Cardie, C.; Riloff, E.; Patwardhan, S. Identifying sources of opinions with conditional random fields and extraction patterns. In Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, BC, Canada, 6-8 October 2005; Association for Computational Linguistics: Stroudsburg, PA, USA, 2005; pp. 355-362. otwiera się w nowej karcie
  22. Whitelaw, C.; Garg, N.; Argamon, S. Using appraisal groups for sentiment analysis. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM '05), Bremen, Germany, 31 October-5 November 2005; pp. 625-631. otwiera się w nowej karcie
  23. Pang, B.; Lee, L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL '04), Barcelona, Spain, 21-26 July 2004; Association for Computational Linguistics: Stroudsburg, PA, USA, 2004; p. 271. otwiera się w nowej karcie
  24. Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up?: Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (EMNLP '02), Philadelphia, PA, USA, 6-7 June 2002; Association for Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 79-86. otwiera się w nowej karcie
  25. Turney, P.D.; Littman, M.L. Unsupervised learning of semantic orientation from a hundred-billion-word corpus. CoRR, 2002; arXiv:cs/0212012. otwiera się w nowej karcie
  26. Taboada, M.; Brooke, J.; Tofiloski, M.; Voll, K.; Stede, M. Lexicon-based methods for sentiment analysis. Comput. Linguist. 2011, 37, 267-307. [CrossRef] Information 2018, 9, 307 23 of 24 otwiera się w nowej karcie
  27. Boiy, E. Automatic Sentiment Analysis in On-line Text. In Proceedings of the 11th International Conference on Electronic Publishing (ELPUB 2007), Vienna, Austria, 13-15 June 2007; pp. 349-360. otwiera się w nowej karcie
  28. Boucher, J.D.; Osgood, C.E. The Pollyanna hypothesis. J. Memory Lang. 1969, 8, 1-8. [CrossRef] otwiera się w nowej karcie
  29. Pang, B. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 18-22. [CrossRef] otwiera się w nowej karcie
  30. Liu, B. Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1-67. [CrossRef] otwiera się w nowej karcie
  31. Tomanek, K. Analiza sentymentu-Metoda analizy danych jakościowych. Przykład zastosowania oraz ewaluacja słownika RID i metody klasyfikacji Bayesa w analizie danych jakościowych. Przegląd Socjologii Jakościowej. 2014, pp. 118-136. Available online: www.przegladsocjologiijakosciowej.org (accessed on 30 November 2018). otwiera się w nowej karcie
  32. Lin, C.; He, Y. Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2-6 November 2009; otwiera się w nowej karcie
  33. Rao, Y.; Li, Q.; Mao, X.; Wenyin, L. Sentiment topic models for social emotion mining. Inf. Sci. 2014, 266, 90-100. [CrossRef] otwiera się w nowej karcie
  34. Mei, Q.; Ling, X.; Wondra, M.; Su, H.; Zhai, C. Topic sentiment mixture: Modeling facets and opinions in weblogs. In Proceedings of the 16th international conference on World Wide Web (WWW '07), Banff, AB, Canada, 8-12 May 2007. otwiera się w nowej karcie
  35. Titov, I.; McDonald, R. A joint model of text and aspect ratings for sentiment summarization. In Proceedings of the ACL-08: HLT, Columbus, OH, USA, 19 June 2008; Association for Computational Linguistics: Stroudsburg, PA, USA, 2008; pp. 308-316.
  36. Rizun, N.; Taranenko, Y.; Waloszek, W. The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models. In Proceedings of the 8th International Conference on Knowledge Engineering and Semantic Web, Szczecin, Poland, 8-10 November 2017; pp. 53-68. otwiera się w nowej karcie
  37. Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval, 2nd ed.; Addison-Wesley: Wokingham, UK, 2011.
  38. Salton, G.; Michael, J. McGill Introduction to Modern Information Retrieval;
  39. McGraw-Hill Computer Science Series, XV; McGraw-Hill: New York, NY, USA, 1983; 448p.
  40. Rizun, N.; Taranenko, Y. Methodology of Constructing and Analyzing the Hierarchical Contextually-Oriented Corpora. In Proceedings of the Federated Conference on Computer Science and Information Systems, Poznań, Poland, 9-12 September 2018; pp. 501-510. otwiera się w nowej karcie
  41. Rizun, N.; Kapłanski, P.; Taranenko, Y. Development and Research of the Text Messages Semantic Clustering Methodology. In Proceedings of the Third European Network Intelligence Conference, Wroclaw, Poland, 5-7 September 2016; pp. 180-187. otwiera się w nowej karcie
  42. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264-323. [CrossRef] otwiera się w nowej karcie
  43. Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Deerwester, S. Using latent semantic analysis to improve information retrieval. In Proceedings of the CHI'88: Conference on Human Factors in Computing; ACM: New York, NY, USA, 1988; pp. 281-285. otwiera się w nowej karcie
  44. Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by Latent Semantic Analysis. 1990. Available online: http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf (accessed on 30 November 2018).
  45. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645-678. [CrossRef] [PubMed] otwiera się w nowej karcie
  46. Bahl, L.; Baker, J.; Jelinek, E.; Mercer, R. Perplexity-A measure of the difficulty of speech recognition tasks. J. Acoust. Soc. Am. 1977, 62 (Suppl. 1), S63.
  47. Rizun, N.; Taranenko, Y. Development of the Algorithm of Polish Language Film Reviews Preprocessing. Rocznik Naukowy Wydzialu Zarzadzania w Ciechanowie 2017, XI, 168-188.
Weryfikacja:
Politechnika Gdańska

wyświetlono 16 razy

Publikacje, które mogą cię zainteresować

Meta Tagi