Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance - Publikacja - MOST Wiedzy

Wyszukiwarka

Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance

Abstrakt

Induction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access to the diagnosed machine, which is not always possible. Methods based on motor current signature analysis are free of this disadvantage. Preliminary studies have shown that motor current signature analysis based normalized triple covariance is a very good diagnostic indicator for induction motor bearings. This paper presents an attempt to find a more accurate diagnostic indicator based on normalized triple covariance. In this paper the author verifies how many diagnostic features (normalized triple covariances) included in diagnostic indicator can give better separation between healthy and unhealthy cases.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED) strony 498 - 502
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Ciszewski T.: Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance// 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)/ : , 2017, s.498-502
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/demped.2017.8062401
Bibliografia: test
  1. L. Swędrowski, "Measuring system for analysis of motor supplying current for diagnostic purposes," 5th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), pp. 145-149, Vienna, Austria, September 2005. otwiera się w nowej karcie
  2. F. Immovilli, M. Cocconcelli, A. Bellini, R. Rubini, "Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals", IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4710-4717, November 2009. otwiera się w nowej karcie
  3. B. Corne, B. Vervisch, C. Debruyne, J. Knockaert, J. Desmet, "Comparing MCSA with Vibration Analysis in order to detect Bearing Faults -A Case Study", IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'Alene, ID, pp. 1366-1372, May 2015. otwiera się w nowej karcie
  4. L. Frosini, E. Bassi, "Stator Current and Motor Efficiency as Indicators for Different Types of Bearing Faults in Induction Motors", IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 244-251, July 2009. otwiera się w nowej karcie
  5. T. Ciszewski, L. Swędrowski, "Comparison of induction motor bearing diagnostic test results through vibration and stator current measurement", Poznan University of Technology Academic Journals Electrical Engineering, vol. 10, pp. 165-170, 2012.
  6. B. Noureddine, Z. Salah Eddine, S. Mohamed, "Experimental Exploitation for the Diagnosis to the Induction Machine under a Bearing Fault -using MCSA", 4th International Conference on Electrical Engineering (ICEE) IEEE 2015. otwiera się w nowej karcie
  7. K. C. Deekshit Kompella, M. Venu Gopala Rao, R. Srinivasa Rao, R. N. Sreenivasu, "Estimation of Bering Faults In Induction motor by MCSA using Daubechies Wavelet Analysis", 2014 International Conference on Smart Electric Grid (ISEG), IEEE 2014. otwiera się w nowej karcie
  8. L. Frosini, M. Magnaghi, A. Albini, G. Magrotti, "A new diagnostic instrument to detect generalized roughness in rolling bearings for induction motors", 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, pp. 239-245, Guarda, Portugal, September 2015. otwiera się w nowej karcie
  9. P. Rzeszucinski, M. Orman, C. T. Pinto, A. Tkaczyk, M. Sulowicz, "A signal processing approach to bearing fault detection with the use of a mobile phone", 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, pp. 310-315, Guarda, Portugal, September 2015. otwiera się w nowej karcie
  10. L. A. Gupta, D. Peroulis, "Wireless Temperature Sensor for Condition Monitoring of Bearings Operating Through Thick Metal Plates", IEEE Sensors Journal, vol. 13, no. 6, pp. 2292-2298, June 2013. otwiera się w nowej karcie
  11. A. Dzwonkowski, L. Swędrowski, "Diagnosis of bearing damage in induction motors by instantaneous power analysis", International Journal of Condition Monitoring, vol. 2, no. 2, pp. 40-45, December 2012. otwiera się w nowej karcie
  12. R. Yang, J. Kang, J. Zhao, J. Li, H. Li, "A Case Study of Bearing Condition Monitoring Using SPM", 2014 Prognostics and System Health Management Conference, pp. 695-698, Zhangiiaijie, China, September 2014. otwiera się w nowej karcie
  13. M. Wolkiewicz, C. T. Kowalski, "Incipient Stator Fault Detector Based on Neural Networks end Symmetrical Components Analysis For Induction Motor Drives",13th Selected Issues of Electrical Engineering and Electronics (WZEE), May 2016. otwiera się w nowej karcie
  14. K. M. Siddiqui, K. Sahay, V.K. Giri, "Early; Diagnosis of Stator Inter- turn Fault in Inverter Driven Induction Motor by Wavelet Transform", 1st IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES), July 2016. otwiera się w nowej karcie
  15. N. Mariun, M. R. Mehrjou, M. H. Marhaban, N. Misron, "An Experimental Study of Induction Motor Current Signature Analysis Techniques for Incipient Broken Rotor Bar Detection", 2011 otwiera się w nowej karcie
  16. International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Torremolinos (Málaga), Spain, May 2011. otwiera się w nowej karcie
  17. N. Mariun, M. R. Mehrjou, M. H. Marhaban, N. Misron, "Evaluation of Fourier and wavelet analysis for efficient recognition of broken rotor bar in squirrel-cage induction machine", 2010 IEEE International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, November/December 2010.
  18. A. E. Mabrouk, S. E. Zouzou, "Diagnosis of rotor faults in three-phase induction motors under time-varying loads", 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), September 2015. otwiera się w nowej karcie
  19. M. Pineda-Sanchez, R. Puche-Panadero, M. Riera-Guasp, J. Perez-Cruz, J. Roger-Folch, J. Pons-Llinares, V. Climente-Alarcon, J. A. Antonino- Daviu, "Application of the Teager-Kaiser Energy Operator to the Fault Diagnosis of Induction Motors", IEEE Transactions on Energy Conversion, vol. 28, no. 4, pp. 1036-1044, December 2013. otwiera się w nowej karcie
  20. T. Ciszewski, L. Gelman, L. Swędrowski, "MCSA with Normalized Triple Covariance as a bearings diagnostic indicator in induction motor", 13th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Paris, France, October 2016. otwiera się w nowej karcie
  21. L. Swędrowski, T. Ciszewski, L. Gelman, "Current based Normalized Triple Covariance as a bearings diagnostic feature in induction motor", 19th World Conference on Non-Destructive Testing, Munich, Germany, June 2016.
  22. T. Ciszewski, L. Gelman, L. Swędrowski, "Current-based higher-order spectral covariance as a bearing diagnostic feature for induction motors", Insight -Non-Destructive Testing and Condition Monitoring, vol. 58, no. 8, pp. 431-434, August 2016. otwiera się w nowej karcie
  23. T. Ciszewski, L. Swędrowski, L. Gelman, "Induction motor bearings diagnostic using MCSA and normalized tripple covariance", 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, September 2015. otwiera się w nowej karcie
  24. L. Swędrowski, J. Rusek, "Model and Simulation Tests of a Squirrel - Cage Induction Motor with Oscillation of the Air Gap", International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Vienna, Austria, September 2005. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi