Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance - Publikacja - MOST Wiedzy

Wyszukiwarka

Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance

Abstrakt

Induction motors are one of the most widely used electrical machines. Statistics of bearing failures of induction motors indicate, that they constitute more than 40% of induction motor damage. Therefore, bearing diagnosis is so important for trouble-free work of induction motors. The most common methods of bearing diagnosis are based on vibration signal analysis. The main disadvantage of those methods is the need for physical access to the diagnosed machine, which is not always possible. Methods based on motor current signature analysis are free of this disadvantage. Preliminary studies have shown that motor current signature analysis based normalized triple covariance is a very good diagnostic indicator for induction motor bearings. This paper presents an attempt to find a more accurate diagnostic indicator based on normalized triple covariance. In this paper the author verifies how many diagnostic features (normalized triple covariances) included in diagnostic indicator can give better separation between healthy and unhealthy cases.

Cytowania

  • 5

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 202 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2017 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED) strony 498 - 502
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Ciszewski T.: Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance// 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)/ : , 2017, s.498-502
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/demped.2017.8062401
Weryfikacja:
Politechnika Gdańska

wyświetlono 172 razy

Publikacje, które mogą cię zainteresować

Meta Tagi