Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model - Publikacja - MOST Wiedzy

Wyszukiwarka

Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model

Abstrakt

This paper presents experimental verification of the mathematical model of unsaturated flow in double‐porosity soils developed by the asymptotic homogenization method. A series of one‐dimensional infiltration experiments was carried out in a column filled with a double‐porosity medium composed of a mixture of sand and sintered clayey spheres arranged in a periodic manner. The unsaturated hydraulic properties of each porous material were obtained from independent infiltration experiments by inverse analysis and some additional tests. They were used to calculate the effective parameters of the double‐porosity medium, i.e., the effective hydraulic conductivity and the effective capillary capacity. The numerical solution of the macroscopic boundary value problem, consisting of a highly nonlinear integrodifferential equation, was obtained using the Fortran code DPOR_1D presented by Lewandowska et al. [2004]. The calculated time evolutions of both water infiltrating into and flowing out from the double‐porosity medium were compared with the experimental results. A very reasonable qualitative and quantitative agreement between simulations and observations is obtained, showing the capacity of the model to capture the main features of the process.

Cytowania

  • 2 9

    CrossRef

  • 3 0

    Web of Science

  • 3 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 21 razy

Licencja

Copyright (2005 by the American Geophysical Union)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
WATER RESOURCES RESEARCH nr 41, wydanie 2, strony 1 - 14,
ISSN: 0043-1397
Język:
angielski
Rok wydania:
2005
Opis bibliograficzny:
Lewandowska J., Szymkiewicz A., Gorczewska-Langner W., Vauclin M.: Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model// WATER RESOURCES RESEARCH. -Vol. 41, iss. 2 (2005), s.1-14
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1029/2004wr003504
Bibliografia: test
  1. Arbogast, T., J. Douglas Jr., and U. Hornung (1990), Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21, 823 -836. otwiera się w nowej karcie
  2. Auriault, J.-L. (1991), Heterogeneous medium: Is an equivalent macro- scopic description possible?, Int. J. Eng. Sci., 29(7), 785 -795. otwiera się w nowej karcie
  3. Barenblatt, G. I., I. P. Zheltov, and I. N. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math., 24(5), 1286 -1303. otwiera się w nowej karcie
  4. Barker, J. A. (1985), Block-geometry functions characterizing transport in densely fissured media, J. Hydrol., 77, 263 -279. otwiera się w nowej karcie
  5. Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York. Bensoussan, A., J.-L. Lions, and G. Papanicolaou (1978), Asymptotic Analysis for Periodic Structures, Elsevier, New York.
  6. Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A general mass- conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26(7), 1483 -1496. otwiera się w nowej karcie
  7. Chen, C., and R. J. Wagenet (1992), Simulation of water and chemicals in macropore soils. part 1: Representation of the equivalent macro- pore influence and its effect on soil water flow, J. Hydrol., 130, 105 -126. otwiera się w nowej karcie
  8. Clothier, B. E., L. Heng, G. N. Magesan, and I. Vogeler (1995), The measured mobile-water content of an unsaturated soil as a function of hydraulic regime, Aust. J. Soil Res., 33, 397 -414. otwiera się w nowej karcie
  9. COMSOL Group (2002), FEMLAB users manual, version 2.3.01.148, Burlington, Mass.
  10. Douglas, J., M. Peszyńska, and R. Showalter (1997), Single phase flow in partially fissured media, Transp. Porous Media, 278, 285 -306.
  11. Dykhuizen, R. C. (1990), A new coupling term for dual-porosity models, Water Resour. Res., 26(2), 351 -356. otwiera się w nowej karcie
  12. Flavigny, E., J. Desrues, and B. Palayer (1990), Le sable d'Hostun ''RF'': Note technique, Rev. Fr. Geotech., 53, 67 -69. otwiera się w nowej karcie
  13. Gerke, H. H., and J. M. Köhne (2004), Dual-permeability modeling of preferential bromide leaching from a tile-drained glacial till agricultural field, J. Hydrol., 289, 239 -257. otwiera się w nowej karcie
  14. Gerke, H. H., and M. T. van Genuchten (1993a), A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res., 29(2), 305 -319. otwiera się w nowej karcie
  15. Gerke, H. H., and M. T. van Genuchten (1993b), Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models, Water Resour. Res., 29(4), 1225 -1238. otwiera się w nowej karcie
  16. Gerke, H. H., and M. T. van Genuchten (1996), Macroscopic representation of structural geometry for simulating water and solute movement in dual- porosity media, Adv. Water Resour., 19(6), 343 -357. otwiera się w nowej karcie
  17. Germann, P. F., and K. Beven (1985), Kinematic wave approximation to infiltration into soils with sorbing macropores, Water Resour. Res., 21(7), 990 -996. otwiera się w nowej karcie
  18. Hall, C., and W. D. Hoff (2003), Transport in Brick, Stone and Concrete, Taylor and Francis, Philadelphia, Pa. otwiera się w nowej karcie
  19. Hornung, U. (1991), Homogenization of miscible displacement in unsatu- rated aggregated soils, in Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equations Their Appl., vol. 5, edited by G. dal Maso and F. Dell'Antonio, pp. 143 -153, Springer, New York. otwiera się w nowej karcie
  20. Jarvis, N. J. (1994), The MACRO model ver. 3.1: Technical description and sample simulations, Rep. Diss. 19, 51 pp., Dep. of Soil Sci., Swed. Univ. of Agric. Sci., Uppsala.
  21. Jarvis, N. J. (1998), Modeling the impact of preferential flow on nonpoint source pollution, in Physical Nonequilibrium in Soils: Modeling and Application, edited by H. M. Selim and L. Ma, pp. 195 -221, CRC Press, Boca Raton, Fla. otwiera się w nowej karcie
  22. Jaynes, D. B., S. D. Logsdon, and R. Horton (1995), Field method for measuring mobile/immobile water content and solute transfer rate coefficient, Soil Sci. Soc. Am. J., 59, 352 -356. otwiera się w nowej karcie
  23. Kätterer, T., B. Schmied, K. C. Abbaspour, and R. Schulin (2001), Single and dual-porosity modeling of multiple tracer transport through soil columns: Effects of initial moisture and mode of application, Eur. J. Soil Sci., 52, 25 -36. otwiera się w nowej karcie
  24. Köhne, J. M., H. H. Gerke, and S. Köhne (2002a), Effective diffusion coefficients of soil aggregates with surface skins, Soil Sci. Soc. Am. J., 66(5), 1430 -1438. otwiera się w nowej karcie
  25. Köhne, J. M., S. Köhne, and H. H. Gerke (2002b), Estimating the hydraulic functions of dual-permeability models from bulk soil data, Water Resour. Res., 38(7), 1121, doi:10.1029/2001WR000492. otwiera się w nowej karcie
  26. Larsson, M. H., and N. J. Jarvis (1999), Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil, J. Hydrol., 215, 153 -171. otwiera się w nowej karcie
  27. Lewandowska, J., and J.-L. Auriault (2003), Modeling of unsaturated flow in soils with highly permeable inclusions, C. R. Acad. Sci., Ser. IIB Mec., 332, 91 -96. otwiera się w nowej karcie
  28. Lewandowska, J., and J.-P. Laurent (2001), Homogenization modeling and parametric study of moisture transfer in an unsaturated heterogeneous porous medium, Transp. Porous Media, 45, 321 -345.
  29. Lewandowska, J., A. Szymkiewicz, K. Burzyński, and M. Vauclin (2004), Modeling of unsaturated water flow in double porosity soils by the homogenization approach, Adv. Water Resour., 27(3), 283 -296. otwiera się w nowej karcie
  30. Logsdon, S. D. (2002), Determination of preferential flow model param- eters, Soil Sci. Soc. Am. J., 66, 1095 -1103. otwiera się w nowej karcie
  31. Ludwig, R., H. H. Gerke, and O. Wendroth (1999), Describing water flow in macroporous field soils using the modified macro model, J. Hydrol., 215, 135 -152. otwiera się w nowej karcie
  32. Marquardt, D. W. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431 -441. otwiera się w nowej karcie
  33. Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513 -522. otwiera się w nowej karcie
  34. Quintard, M., and S. Whitaker (1995), Transport in chemically and mechanically heterogeneous porous media. I: Theoretical development of region averaged equations for slightly compressible single phase flow, Adv. Water Resour., 19(1), 29 -47. otwiera się w nowej karcie
  35. Richards, L. A. (1931), Capillary conduction of liquids through porous medium, Physics, 1, 318 -333. otwiera się w nowej karcie
  36. Sanchez-Palencia, E. (1980), Non-homogeneous Media and Vibration Theory, Lect. Note Phys., vol. 127, Springer, New York. otwiera się w nowej karcie
  37. Saxena, R. K., N. J. Jarvis, and L. Bergström (1994), Interpreting non-steady state tracer breakthrough experiments in sand and clay soils using a dual porosity model, J. Hydrol., 162, 279 -298. otwiera się w nowej karcie
  38. Schwartz, R. C., A. S. R. Juo, and K. J. McInnes (2000), Estimating param- eters for a dual-porosity model to describe non-equilibrium, reactive transport in a fine-textured soil, J. Hydrol., 229, 146 -167. otwiera się w nowej karcie
  39. Š imůnek, J., M. Š ejna, and M. T. van Genuchten (1998), HYDRUS 1D software package for simulating the one-dimensional movement of water heat and multiple solutes in variably saturated media, version 2.0, Int. Ground Water Model. Cent., Colo. Sch. of Mines., Golden. Š imůnek, J., O. Wendroth, N. Wypler, and M. T. van Genuchten (2001), Non-equilibrium water flow characterized by means of upward infiltra- tion experiments, Eur. J. Soil Sci., 52, 13 -24.
  40. Š imůnek, J., N. J. Jarvis, M. T. van Genuchten, and A. Gärdenäs (2003), Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14 -35. otwiera się w nowej karcie
  41. Touma, J., and M. Vauclin (1986), Experimental and numerical analysis of two phase infiltration in a partially saturated soil, Transp. Porous Media, 1, 27 -55. otwiera się w nowej karcie
  42. van Genuchten, M. T. (1980), A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892 -898. otwiera się w nowej karcie
  43. Villholt, K. G., and K. H. Jensen (1998), Flow and transport processes in a macroporous subsurface drained glacial till soil: II. Model analysis, J. Hydrol., 207, 121 -135. otwiera się w nowej karcie
  44. Villholt, K. G., K. H. Jensen, and J. Fredericia (1998), Flow and transport processes in a macroporous subsurface drained glacial till soil: I. Field investigations, J. Hydrol., 207, 98 -120. otwiera się w nowej karcie
  45. Warren, J. E., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245 -255. otwiera się w nowej karcie
  46. Zimmerman, R. W., and G. S. Bodvarsson (1989), Integral method solution for diffusion into a spherical block, J. Hydrol., 111, 213 -224. otwiera się w nowej karcie
  47. Zimmerman, R. W., G. Chen, T. Hadgu, and G. S. Bodvarsson (1993), A numerical dual-porosity model with semianalytical treatment of fracture/ matrix flow, Water Resour. Res., 29(7), 2127 -2137. otwiera się w nowej karcie
  48. Zimmerman, R. W., T. Hadgu, and G. S. Bodvarsson (1996), A new lumped-parameter model for flow in unsaturated dual-porosity media, Adv. Water Resour., 19(5), 317 -327. otwiera się w nowej karcie
  49. ÀÀ ÀÀ ÀÀ À À ÀÀ ÀÀ À À À À À À À À À À À À À À À À W. Gorczewska and A. Szymkiewicz, Institute of Hydroengineering, Polish Academy of Science, ul. Kościerska 7, 80-953 Gdańsk, Poland. J. Lewandowska and M. Vauclin, Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), UMR 5564, CNRS, UJF, INPG, IRD, BP53, 38041 otwiera się w nowej karcie
  50. Grenoble Cedex 09, France. ( jolanta.lewandowska@ hmg.inpg.fr) otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi