Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures - Publikacja - MOST Wiedzy

Wyszukiwarka

Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures

Abstrakt

Warm mix asphalt (WMA) has been widely accepted as a future asphalt paving technology. Besides clear advantages, there are still some concerns regarding durability and long-term performance of pavements made with this type of asphalt mixtures. One of the most important issues is low temperature behaviour of WMA because certain additives used for temperature reduction can aect bitumen properties. This paper presents the evaluation of low-temperature properties of laboratory-produced asphalt concrete for wearing course with selected WMA additives. One type of bitumen with paving grade 50/70 and fiveWMAadditives of dierent nature (organic, surface tension reducer and combination of both) were used in this study. The production and compaction temperature of mixtures containing WMA additives was 25 C lower in comparison with the temperature of the reference mix. To assess the susceptibility of WMA to low-temperature cracking, Semi-Circular Bending (SCB) and Thermal Stress Restrained Specimen Test (TSRST) were used. Supplementary rating was made by analysing Bending Beam Rheometer (BBR) test results of asphalt binders.

Cytowania

  • 3

    CrossRef

  • 5

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 17 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 13, strony 1 - 15,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Stienss M., Szydłowski C.: Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures// Materials -Vol. 13,iss. 1 (2020), s.1-15
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma13010202
Bibliografia: test
  1. Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology. Int. J. Pavement Eng. 2014, 15, 79-94. [CrossRef] Materials 2020, 13, 202 otwiera się w nowej karcie
  2. Vaitkus, A.;Čygas, D.; Laurinavičius, A.; Vorobjovas, V.; Perveneckas, Z. Influence of warm mix asphalt technology on asphalt physical and mechanical properties. Constr. Build. Mater. 2016, 112, 800-806. [CrossRef] otwiera się w nowej karcie
  3. West, R.C.; Rodezno, C.; Grant, J.; Prowell, B.D.; Frank, B.; Osborn, L.V.; Kriech, T. NCHRP Report 779-Field Performance of Warm Mix Asphalt Technologies; Transportation Research Board: Washington, DC, USA, 2014; ISBN 9780309308038. otwiera się w nowej karcie
  4. D'Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb, D.E.; et al. Warm-Mix Asphalt: European Practice;
  5. Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr. Build. Mater. 2015, 83, 62-69. [CrossRef] otwiera się w nowej karcie
  6. Iwański, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Effect of Surface Active Agent (SAA) on 50/70 otwiera się w nowej karcie
  7. Bitumen Foaming Characteristics. Materials 2019, 12, 3514. [CrossRef] otwiera się w nowej karcie
  8. Williams, B.A.; Willis, J.R.; Ross, T.C. Annual Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2018, 9th Annual Survey (IS 138); National Asphalt Pavement Association: Greenbelt, MD, USA, 2019.
  9. Woszuk, A.; Panek, R.; Madej, J.; Zofka, A.; Franus, W. Mesoporous silica material MCM-41: Novel additive for warm mix asphalts. Constr. Build. Mater. 2018, 183, 270-274. [CrossRef] otwiera się w nowej karcie
  10. Gao, J.; Yan, K.; He, W.; Yang, S.; You, L. High temperature performance of asphalt modified with Sasobit and Deurex. Constr. Build. Mater. 2018, 164, 783-791. [CrossRef] otwiera się w nowej karcie
  11. Luo, H.; Leng, H.; Ding, H.; Xu, J.; Lin, H.; Ai, C.; Qiu, Y. Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder. Constr. Build. Mater. 2020, 231, 117118. [CrossRef] otwiera się w nowej karcie
  12. Woszuk, A. Application of fly ash derived zeolites in warm-mix asphalt technology. Materials 2018, 11, 1542. [CrossRef] otwiera się w nowej karcie
  13. Ji, J.; Suo, Z.; Xu, Y. Laboratory Evaluation on the Long-term Aging Characterization of Warm Modified Binders. Procedia-Soc. Behav. Sci. 2013, 96, 1640-1647. [CrossRef] otwiera się w nowej karcie
  14. Almeida, A.; Sergio, M. Evaluation of the potential of sasobit REDUX additive to lowerwarm-mix asphalt production temperature. Materials 2019, 12, 1285. [CrossRef] otwiera się w nowej karcie
  15. Liu, K.; Zhu, J.; Zhang, K.; Wu, J.; Yin, J.; Shi, X. Effects of mixing sequence on mechanical properties of graphene oxide and warm mix additive composite modified asphalt binder. Constr. Build. Mater. 2019, 217, 301-309. [CrossRef] otwiera się w nowej karcie
  16. Zhu, J.; Zhang, K.; Liu, K.; Shi, X. Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Constr. Build. Mater. 2019, 217, 273-282. [CrossRef] otwiera się w nowej karcie
  17. Khani Sanij, H.; Afkhamy Meybodi, P.; Amiri Hormozaky, M.; Hosseini, S.H.; Olazar, M. Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycotherm TM as an anti-stripping additive. Constr. Build. Mater. 2019, 197, 185-194. [CrossRef] otwiera się w nowej karcie
  18. Xiao, F.; Zhao, W.; Gandhi, T.; Amirkhanian, S.N. Influence of Antistripping Additives on Moisture Susceptibility of Warm Mix Asphalt Mixtures. J. Mater. Civ. Eng. 2010, 22, 1047-1055. [CrossRef] otwiera się w nowej karcie
  19. Mogawer, W.S.; Austerman, A.J.; Kassem, E.; Masad, E. Moisture Damage Characteristics of Warm Mix Asphalt Mixtures. AAPT J. 2011, 80, 491-526. otwiera się w nowej karcie
  20. Mogawer, W.S.; Austerman, A.J.; Bahia, H.U. Evaluating the Effect of Warm-Mix Asphalt Technologies on Moisture Characteristics of Asphalt Binders and Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2011, 2209, 52-60. [CrossRef] otwiera się w nowej karcie
  21. Ghabchi, R.; Singh, D.; Zaman, M.M. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Mater. Pavement Des. 2015, 16, 334-357. [CrossRef] otwiera się w nowej karcie
  22. Xu, S.; Xiao, F.; Amirkhanian, S.; Singh, D. Moisture characteristics of mixtures with warm mix asphalt technologies-A review. Constr. Build. Mater. 2017, 142, 148-161. [CrossRef] otwiera się w nowej karcie
  23. Bairgi, B.K.; Tarefder, R.A.; Ahmed, M.U. Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Constr. Build. Mater. 2018, 170, 790-800. [CrossRef] otwiera się w nowej karcie
  24. Yoo, M.-Y.; Jeong, S.-H.; Park, J.-Y.; Kim, N.-H.; Kim, K.-W. Low-Temperature Fracture Characteristics of Selected Warm-Mix Asphalt Concretes. Transp. Res. Rec. J. Transp. Res. Board 2011, 2208, 40-47. [CrossRef] otwiera się w nowej karcie
  25. Bernier, A.; Zofka, A.; Josen, R.; Mahoney, J. Warm-Mix Asphalt Pilot Project in Connecticut. Transp. Res. Rec. J. Transp. Res. Board 2012, 2294, 106-116. [CrossRef] otwiera się w nowej karcie
  26. Das, P.K.; Tasdemir, Y.; Birgisson, B. Low temperature cracking performance of WMA with the use of the Superpave indirect tensile test. Constr. Build. Mater. 2012, 30, 643-649. [CrossRef] otwiera się w nowej karcie
  27. Das, P.K.; Tasdemir, Y.; Birgisson, B. Evaluation of fracture and moisture damage performance of wax modified asphalt mixtures. Road Mater. Pavement Des. 2012, 13, 142-155. [CrossRef] otwiera się w nowej karcie
  28. Hill, B.; Behnia, B.; Hakimzadeh, S.; Buttlar, W.G.; Reis, H. Evaluation of the Low Temperature Cracking Performance of WMA Mixtures. J. Transp. Res. Board 2012, 2294, 81-88. [CrossRef] otwiera się w nowej karcie
  29. Medeiros, M.S.; Daniel, J.S.; Bolton, H.L.; Meagher, W.C. Evaluation of moisture and low-temperature cracking susceptibility of warm-mixture asphalt. Int. J. Pavement Eng. 2012, 13, 395-400. [CrossRef] otwiera się w nowej karcie
  30. Hajj, E.Y.; Alavi, M.Z.; Morian, N.E.; Sebaaly, P.E. Effect of select warm-mix additives on thermo-viscoelastic properties of asphalt mixtures. Road Mater. Pavement Des. 2013, 14, 175-186. [CrossRef] otwiera się w nowej karcie
  31. Hasan, Z.; Hamid, B.; Amir, I.; Danial, N. Long term performance of warm mix asphalt versus hot mix asphalt. J. Cent. South. Univ. 2013, 20, 256-266. [CrossRef] otwiera się w nowej karcie
  32. Akisetty, C.K.; Xiao, F.; Gandhi, T.; Amirkhanian, S.N. Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive. Constr. Build. Mater. 2011, 25, 950-956. [CrossRef] otwiera się w nowej karcie
  33. Singh, D.; Ashish, P.K.; Chitragar, S.F. Laboratory performance of Recycled Asphalt Mixes containing wax and chemical based Warm Mix Additives using Semi Circular Bending and Tensile Strength Ratio tests. Constr. Build. Mater. 2018, 158, 1003-1014. [CrossRef] otwiera się w nowej karcie
  34. Razmi, A.; Mirsayar, M.M. Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures. Int. J. Pavement Res. Technol. 2018, 11, 265-273. [CrossRef] otwiera się w nowej karcie
  35. Cao, W.; Barghabany, P.; Mohammad, L.; Cooper, S.B.; Balamurugan, S. Chemical and rheological evaluation of asphalts incorporating RAP/RAS binders and warm-mix technologies in relation to crack resistance. Constr. Build. Mater. 2019, 198, 256-268. [CrossRef] otwiera się w nowej karcie
  36. Sebaaly, P.E.; Hajj, E.Y.; Piratheepan, M. Evaluation of selected warm mix asphalt technologies. Road Mater. Pavement Des. 2015, 16, 475-486. [CrossRef] otwiera się w nowej karcie
  37. Buss, A.; Williams, R.C.; Schram, S. The influence of warm mix asphalt on binders in mixes that contain recycled asphalt materials. Constr. Build. Mater. 2015, 77, 50-58. [CrossRef] otwiera się w nowej karcie
  38. Standard EN 13108-1:2016-07-Bituminous mixtures-Material specifications-Part 1: Asphalt Concrete; European Committee for Standardization CEN: Paris, France, 2016. otwiera się w nowej karcie
  39. Asphalt Pavements for National Roads-WT-2 2014-Part I-Asphalt mixtures-Technical Guidelines; General Director for National Roads and Highways: Warsaw, Poland, 2014. otwiera się w nowej karcie
  40. Standard EN 12697-35 Bituminous mixtures-Test methods for hot mix asphalt-Part 35: Laboratory mixing; European Committee for Standardization CEN: Paris, France, 2016. otwiera się w nowej karcie
  41. Standard EN 12697-33 Bituminous mixtures-Test methods for hot mix asphal-Part 33: Specimen prepared by roller compactor; European Committee for Standardization CEN: Paris, France, 2019. otwiera się w nowej karcie
  42. Standard EN 12697-46 Bituminous mixtures-Test methods for hot mix asphalt-Part 46: Low temperature cracking and properties by uniaxial tension tests; European Committee for Standardization CEN: Paris, France, 2012. otwiera się w nowej karcie
  43. Standard EN 12697-44 Bituminous mixtures-Test methods for hot mix asphalt-Part 44: Crack propagation by semi-circular bending tes; European Committee for Standardization CEN: Paris, France, 2019. otwiera się w nowej karcie
  44. Pszczola, M.; Szydlowski, C. Influence of bitumen type and asphalt mixture composition on low-temperature strength properties according to various test methods. Materials 2018, 11, 2118. [CrossRef] otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 73 razy

Publikacje, które mogą cię zainteresować

Meta Tagi