Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics - Publikacja - MOST Wiedzy

Wyszukiwarka

Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics

Abstrakt

This paper presents results of a ground penetrating radar (GPR) survey conducted in St. Joseph’s Church in Gdańsk, Poland. The aim of the study was to produce tomographic imaging of a renovated floor as well as the objects buried under the floor to detect linear and volume inclusions. The assumed track spacing was meaningfully greater than the single signal spacing in each track, which induced the need for interpolation methods to estimate signal values in the areas beyond the trace lines. Various interpolation techniques were used to prepare the tomography maps. GPR time slices allowed the identification of reinforcing meshes, underfloor heating system elements and the foundations of entrances to crypts. The results obtained were compared to the exact images acquired in a dense regular grid to evaluate the efficiency of the applied interpolation methods and to verify the possibility of conducting GPR surveys with coarse track spacing.

Cytowania

  • 2

    CrossRef

  • 2

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 16 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MEASUREMENT nr 154, strony 1 - 12,
ISSN: 0263-2241
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Rucka M., Wojtczak E., Zielińska M.: Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics// MEASUREMENT -Vol. 154, (2020), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.measurement.2020.107494
Bibliografia: test
  1. C. Brooke, Thermal Imaging for the Archaeological Investigation of Historic Buildings, Remote Sens. 10 (2018) 1401, https://doi.org/10.3390/rs10091401. otwiera się w nowej karcie
  2. E. Alexakis, E.T. Delegou, K.C. Lampropoulos, M. Apostolopoulou, I. Ntoutsi, A. Moropoulou, NDT as a monitoring tool of the works progress and the assessment of materials and rehabilitation interventions at the Holy Aedicule of the Holy Sepulchre, Constr. Build. Mater. 189 (2018) 512-526, https://doi.org/10.1016/j.conbuildmat.2018.09.007. otwiera się w nowej karcie
  3. M.I. Martínez-Garrido, R. Fort, M. Gómez-Heras, J. Valles-Iriso, M.J. Varas- Muriel, A comprehensive study for moisture control in cultural heritage using non-destructive techniques, J. Appl. Geophys. 155 (2018) 36-52, https://doi. org/10.1016/j.jappgeo.2018.03.008. otwiera się w nowej karcie
  4. L. Courard, A. Gillard, A. Darimont, J.M. Bleus, P. Paquet, Pathologies of concrete in Saint-Vincent Neo-Byzantine Church and Pauchot reinforced artificial stone, Constr. Build. Mater. 34 (2012) 201-210, https://doi.org/10.1016/ j.conbuildmat.2012.02.070. otwiera się w nowej karcie
  5. P. Lopez-Arce, M. Tagnit-Hammou, B. Menendez, J.D. Mertz, M. Guiavarc'h, A. Kaci, S. Aggoun, A. Cousture, Physico-chemical stone-mortar compatibility of commercial stone-repair mortars of historic buildings from Paris, Constr. Build. Mater. 124 (2016) 424-441, https://doi.org/10.1016/j.conbuildmat.2016.07.076. otwiera się w nowej karcie
  6. B. Jonaitis, V. Antonovič, A. Šneideris, R. Boris, R. Zavalis, Analysis of Physical and Mechanical Properties of the Mortar in the Historic Retaining Wall of the Gediminas Castle Hill (Vilnius, Lithuania), Materials (Basel). 12 (2018) 8, https://doi.org/10.3390/ma12010008. otwiera się w nowej karcie
  7. Y. Boffill, H. Blanco, I. Lombillo, L. Villegas, Assessment of historic brickwork under compression and comparison with available equations, Constr. Build. Mater. 207 (2019) 258-272, https://doi.org/10.1016/j.conbuildmat.2019.02.083. otwiera się w nowej karcie
  8. D.M. McCann, M.C. Forde, Review of NDT methods in the assessment of concrete and masonry structures, NDT E Int. 34 (2001) 71-84, https://doi.org/ 10.1016/S0963-8695(00)00032-3. otwiera się w nowej karcie
  9. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, The Institiute of Electrical and Electronics Engineers Inc, New York, 1988. otwiera się w nowej karcie
  10. L. Binda, A. Saisi, C. Tiraboschi, S. Valle, C. Colla, M. Forde, Application of sonic and radar tests on the piers and walls of the Cathedral of Noto, Constr. Build. Mater. 17 (2003) 613-627, https://doi.org/10.1016/S0950-0618(03)00056-4. otwiera się w nowej karcie
  11. V. Pérez-Gracia, J.O. Caselles, J. Clapés, G. Martinez, R. Osorio, Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures, NDT E Int. 59 (2013) 40-47, https://doi.org/10.1016/j. ndteint.2013.04.014. otwiera się w nowej karcie
  12. E. Zendri, L. Falchi, F.C. Izzo, Z.M. Morabito, G. Driussi, A review of common NDTs in the monitoring and preservation of historical architectural surfaces, Int. J. Archit. Herit. 11 (2017) 987-1004, https://doi.org/10.1080/ 15583058.2017.1331477. otwiera się w nowej karcie
  13. M. Zieliń ska, M. Rucka, Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography, Materials (Basel). 11 (2018) 2543, https://doi.org/ 10.3390/ma11122543. otwiera się w nowej karcie
  14. T. Shiotani, S. Momoki, H. Chai, D.G. Aggelis, Elastic wave validation of large concrete structures repaired by means of cement grouting, Constr. Build. Mater. 23 (2009) 2647-2652, https://doi.org/10.1016/j.conbuildmat.2009.01.005. otwiera się w nowej karcie
  15. H.K. Chai, K.F. Liu, A. Behnia, K. Yoshikazu, T. Shiotani, Development of a tomography technique for assessment of the material condition of concrete using optimized elastic wave parameters, Materials (Basel). 9 (2016) 291, https://doi.org/10.3390/ma9040291. otwiera się w nowej karcie
  16. V.G. Haach, F.C. Ramirez, Qualitative assessment of concrete by ultrasound tomography, Constr. Build. Mater. 119 (2016) 61-70, https://doi.org/10.1016/ j.conbuildmat.2016.05.056. otwiera się w nowej karcie
  17. Ł. Drobiec, R. Jasiń ski, W. Mazur, Accuracy of eddy-current and radar methods used in reinforcement detection, Materials (Basel) 12 (2019) 1168, https://doi. org/10.3390/ma12071168. otwiera się w nowej karcie
  18. K. Schabowicz, Ultrasonic tomography -The latest nondestructive technique for testing concrete members -Description, test methodology, application example, Arch. Civ. Mech. Eng. 14 (2014) 295-303, https://doi.org/10.1016/j. acme.2013.10.006. otwiera się w nowej karcie
  19. W. Neubauer, A. Eder-Hinterleitner, S. Seren, P. Melichar, Georadar in the Roman civil town Carnuntum, Austria: An approach for archaeological interpretation of GPR data, Archaeol. Prospect. 9 (2002) 135-156, https:// doi.org/10.1002/arp.183. otwiera się w nowej karcie
  20. D. Goodman, Y. Nishimura, J.D. Rogers, GPR time slices in archaeological prospection, Archaeol. Prospect. 2 (1995) 85-89.
  21. L. Orlando, Georadar data collection, anomaly shapeand archaeological interpretation -a case study from central Italy, Archaeol. Prospect. 14 (2007) 213-225, https://doi.org/10.1002/arp.311 Georadar. otwiera się w nowej karcie
  22. G. De Donno, L. Di Giambattista, L. Orlando, High-resolution investigation of masonry samples through GPR and electrical resistivity tomography, Constr. Build. Mater. 154 (2017) 1234-1249, https://doi.org/10.1016/ j.conbuildmat.2017.06.112. otwiera się w nowej karcie
  23. R. Samet, E. Çelik, S. Tural, E. S ßengönül, M. Özkan, E. Damcı, Using interpolation techniques to determine the optimal profile interval in ground-penetrating radar applications, J. Appl. Geophys. 140 (2017) 154-167, https://doi.org/ 10.1016/j.jappgeo.2017.04.003. otwiera się w nowej karcie
  24. P. Klę sk, M. Kapruziak, B. Olech, Statistical moments calculated via integral images in application to landmine detection from Ground Penetrating Radar 3D scans, Pattern Anal. Appl. 21 (2018) 671-684, https://doi.org/10.1007/ s10044-016-0592-5. otwiera się w nowej karcie
  25. W. Zhao, E. Forte, F. Fontana, M. Pipan, G. Tian, GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy, Meas. J. Int. Meas. Confed. 113 (2018) 161-171, https://doi.org/ 10.1016/j.measurement.2017.09.004. otwiera się w nowej karcie
  26. D. Shepard, Two-dimensional interpolation function for irregularly-spaced data, in: Proc. -1968 ACM Natl. Conf., 1968: pp. 517-524 otwiera się w nowej karcie
  27. F.W. Chen, C.W. Liu, Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan, Paddy Water Environ. 10 (2012) 209-222, https://doi.org/10.1007/s10333-012-0319-1. otwiera się w nowej karcie
  28. Y. Mito, M.A.M. Ismail, T. Yamamoto, Multidimensional scaling and inverse distance weighting transform for image processing of hydrogeological structure in rock mass, J. Hydrol. 411 (2011) 25-36, https://doi.org/10.1016/ j.jhydrol.2011.09.018. otwiera się w nowej karcie
  29. M. Jing, J. Wu, Fast image interpolation using directional inverse distance weighting for real-time applications, Opt. Commun. 286 (2013) 111-116, https://doi.org/10.1016/j.optcom.2012.09.011. otwiera się w nowej karcie
  30. D. Goodman, S. Piro, GPR remote sensing in archaeology, 2013. doi:10.1007/ 978-3-642-31857-3. otwiera się w nowej karcie
  31. L. De Mesnard, Computers & geosciences pollution models and inverse distance weighting : some critical remarks, Comput. Geosci. 52 (2013) 459- 469, https://doi.org/10.1016/j.cageo.2012.11.002. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 56 razy

Publikacje, które mogą cię zainteresować

Meta Tagi