Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing - Publikacja - MOST Wiedzy


Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing


The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann–Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.


  • 1 4


  • 1 2

    Web of Science

  • 1 1


Autorzy (5)

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Acta Geophysica nr 63, wydanie 4, strony 1103 - 1125,
ISSN: 1895-6572
Rok wydania:
Opis bibliograficzny:
Bałdysz Z., Nykiel G., Figurski M., Szafranek K., Kroszczyński K.: Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing// Acta Geophysica. -Vol. 63, iss. 4 (2015), s.1103-1125
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1515/acgeo-2015-0033
Bibliografia: test
  1. ing the global positioning system, J. Geophys. Res. 97, D14, 15787-15801, DOI: 10.1029/92JD01517. otwiera się w nowej karcie
  2. Bock, O., M.-N. Bouin, A. Walpersdorf, J.-P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and numerical weather prediction model reanalyses over Africa, Q. J. Roy. Meteor. Soc. 133, 629, 2011-2027, DOI: 10.1002/qj.185. otwiera się w nowej karcie
  3. Bock, O., P. Willis, J. Wang, and C. Mears (2014), A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water data set for cli- mate monitoring and model verification, J. Geophys. Res. -Atmos. 119, 12, 7209-7230, DOI: 10.1002/2013JD021124. otwiera się w nowej karcie
  4. Bruyninx, C. (2004), The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists, GeoInformatics 7, 5, 32-35.
  5. Byun, S.H., and Y.E. Bar-Server (2009), A new type of troposphere zenith path de- lay product of the international GNSS service, J. Geodesy 83, 3-4, 367-373, DOI: 10.1007/s00190-008-0288-8. otwiera się w nowej karcie
  6. COST (2012), Memorandum of understanding for the implementation of a European Concerted Research Action, COST Action ES1206, Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), European Cooperation in Sci- ence and Technology. otwiera się w nowej karcie
  7. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (eds.) (2007), Bernese GPS software version 5.0, User manual, Astronomical Institute, University of Bern, Bern, Switzerland.
  8. Figurski, M., P. Kamiński, and A. Kenyeres (2009), Preliminary results of the com- plete EPN reprocessing computed by the MUT EPN Local Analysis Centre, Bull. Geod. Geomatics 1, 163-174. otwiera się w nowej karcie
  9. Goosens, C., and A. Berger (1986), Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century, Ann. Geophys. 4, 4, 385-400.
  10. Guerova, G. (2013), Ground-based GNSS meteorology, Gfg 2 Summer School, 2 July 2013, Potsdam, Germany. otwiera się w nowej karcie
  11. Hagemann, S., L. Bengtsson, and G. Gendt (2003), On the determination of atmos- pheric water vapor from GPS measurements, J. Geophys. Res. 108, D21, 4678, DOI: 10.1029/2002JD003235. otwiera się w nowej karcie
  12. Held, I.M., and B.J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Climate 19, 21, 5686-5699, DOI: 10.1175/JCLI3990.1. otwiera się w nowej karcie
  13. Herring, T.A. (1992), Modeling atmospheric delays in the analysis of space geodetic data. In: J.C. de Munck, and T.A.T. Spoelstra (eds.), Proc. Symp. Refrac- tion of Transatmospheric Signals in Geodesy, 19-22 May 1992, Hague, The Netherlands, 157-164. otwiera się w nowej karcie
  14. Hocke, K. (1998), Phase estimation with Lomb-Scargle periodogram method, Ann. Geophys. 16, 3, 356-358.
  15. Jin, S., J.-U. Park, J.-H. Cho, and P.-H. Park (2007), Seasonal variability of GPS- derived zenith tropospheric delay (1994-2006) and climate implications, J. Geophys. Res. 112, D9, D09110, DOI: 10.1029/2006JD007772. otwiera się w nowej karcie
  16. Karmeshu, N. (2012), Trend detection in annual temperature and precipitation using Mann Kendall test -A case study to assess climate change on select states in the Northeastern United States, M.Sc. Thesis, University of Pennsyl- vania, Philadelphia, USA.
  17. Kendall, M.G., and A. Stuart (1970), The Advanced Theory of Statistics. Vol. 2: In- terference and Relationship, 3rd ed., Hafner, New York.
  18. Lomb, N.R. (1976), Least-squares frequency analysis of unequally spaced data, As- trophys. Space Sci. 39, 2, 447-462, DOI: 10.1007/BF006483. otwiera się w nowej karcie
  19. Mann, H.B. (1945), Nonparametric tests against trend, Econometrica 13, 3, 245-259, DOI: 10.2307/1907187. otwiera się w nowej karcie
  20. Marini, J.W. (1972), Correction of satellite tracking data for an arbitrary tropo- spheric profile, Radio Sci. 7, 2, 223-231, DOI: 10.1029/RS007i002p00223. otwiera się w nowej karcie
  21. Mavromatis, T., and D. Stathis (2011), Response of the water balance in Greece to temperature and precipitation trends, Theor. Appl. Climatol. 104, 1-2, 13- 24, DOI: 10.1007/s00704-010-0320-9. otwiera się w nowej karcie
  22. Niell, A.E. (1996), Global mapping functions for the atmospheric delay at radio wavelengths, J. Geophys. Res. 101, B2, 3227-3246, DOI: 10.1029/ 95JB03048. otwiera się w nowej karcie
  23. Nilsson, T., and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res. 113, D19, D19101, DOI: 10.1029/2008JD010110. otwiera się w nowej karcie
  24. Ning, T. (2012), GPS meteorology: with focus on climate application, Ph.D. Thesis, Department of Earth and Space Sciences, Chalmers University of Technol- ogy, Göteborg, Sweden.
  25. Pacione, R., B. Pace, and G. Bianco (2014), An homogeneously reprocessed Zenith Total Delay long-term time series over Europe. In: EGU General Assem- bly, 27 April -2 May 2014, Vienna, Austria, id. 2945.
  26. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992), Numerical recipes in Fortran, 2nd ed., Cambridge University Press, Cambridge.
  27. Ross, R.J., and W.P. Elliott (2001), Radiosonde-based northern hemisphere tropo- spheric water vapor trends, J. Climate 14, 7, 1602-1612, DOI: 10.1175/ 1520-0442(2001)014<1602:RBNHTW>2.0.CO;2. otwiera się w nowej karcie
  28. Schüler, T. (2001), On ground-based GPS tropospheric delay estimation, Ph.D. The- sis, Universität der Bundeswehr, München, Germany, 364 pp. otwiera się w nowej karcie
  29. Söhne, W., M. Figurski, and K. Szafranek (2010), Homogeneous Zenith Total Delay parameter estimation from European permanent GNSS sites, Bull. Geod. Geomatics 69, 1, 11-22.
  30. Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey (2006), Reprocessing of a global GPS network, J. Geophys. Res. 111, B5, B05402, DOI: 10.1029/2005JB003747. otwiera się w nowej karcie
  31. Malderen, R., H. Brenot, E. Pottiaux, S. Beirle, C. Hermans, M. de Mazière, T. Wagner, H. de Backer, and C. Bruyninx (2014), A multi-site intercom- parison of integrated water vapour observations for climate change analy- sis, Atmos. Meas. Tech. 7, 8, 2487-2512, DOI: 10.5194/amt-7-2487-2014. otwiera się w nowej karcie
  32. Wang, J., and L. Zhang (2009), Climate applications of a global, 2-hourly atmos- pheric precipitable water dataset derived from IGS tropospheric products, J. Geodesy 83, 3-4, 209-217, DOI: 10.1007/s00190-008-0238-5. otwiera się w nowej karcie
  33. Yong, W., Y. Binyun, W. Debao, and L. Yanping (2008), Zenith Tropospheric De- lay from GPS monitoring climate change of Chinese Mainland. In: Int. Workshop on Education Technology and Training and on Geoscience and Remote Sensing, 21-22 December 2008, Shanghai, China, Vol. 1, 365-368, DOI: 10.1109/ETTandGRS.2008.43. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 48 razy

Publikacje, które mogą cię zainteresować

Meta Tagi