Isolation of Bacteriocin-producing Staphylococcus spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis - Publikacja - MOST Wiedzy

Wyszukiwarka

Isolation of Bacteriocin-producing Staphylococcus spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis

Abstrakt

A collection of 206 Staphylococcus spp. isolates was investigated for their ability to produce compounds exhibiting antistaphylococcal activity. This group included Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus xylosus strains recovered from bovine mastitis (n = 158) and human skin wounds and soft tissues infections (n = 48). Production of substances with antimicrobial activity was observed in six strains. Five of them were recovered from bovine mastitis, and one was isolated from the infected human skin wound. Three of the six antimicrobials produced by the different strains showed substantial loss of antimicrobial activity upon treatment with proteolytic enzymes, which suggests their peptidic structure. Additional studies have shown that one of the putative bacteriocins was efficiently secreted to the liquid medium, facilitating its large-scale production and isolation. The peptide produced by the M2B strain exhibited promising activity; however, against narrow spectrum of Staphylococcus spp. clinical and animal isolates. Growth inhibition was observed only in the case of 13 (including nine S. aureus, three S. xylosus and one S. epidermidis strains) out of 206 strains tested. Important advantage of the produced agent was its high thermal stability. Fifteen minutes of incubation at 90°C did not affect its antimicrobial potential. The highest efficiency of production of the agent was demonstrated in TSB medium after 24 hours at 37°C. The researches revealed that ability to production of bacteriocin among staphylococci is not very common. Only one (S. xylosus strain assigned as M2B) out of 206 strains tested produced satisfactory amounts of antistaphylococcal bacteriocin. In spite of that, we would encourage other researchers for investigation of their collections of Staphylococcus spp. isolates towards selection strains producing antimicrobial agents.

Cytowania

  • 2

    CrossRef

  • 2

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 9 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Polish Journal of Microbiology nr 67, wydanie 2, strony 163 - 169,
ISSN: 1733-1331
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Magdalena Z., Churey J., Worobo R., Milewski S., Szweda P.: Isolation of Bacteriocin-producing Staphylococcus spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis// Polish Journal of Microbiology. -Vol. 67, iss. 2 (2018), s.163-169
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.21307/pjm-2018-018
Bibliografia: test
  1. Andersson D.I., D. Hughes and J.Z. Kubicek-Sutherland. 2016. Mechanisms and consequences of bacterial resistance to anti- microbial peptides. Drug Resist. Updat. 26: 43-57. otwiera się w nowej karcie
  2. Barefoot S.F. and T.R. Klaenhammer. 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol. 45: 1808-1815. otwiera się w nowej karcie
  3. Bastos M.C.F., H. Ceotto, M.L.V. Coelho and J.S. Nascimento. otwiera się w nowej karcie
  4. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 10: 38-61. otwiera się w nowej karcie
  5. Braem G., B. Stijlemans, W. Van Haken, S. De Vliegher, L. De Vuyst and F. Leroy. 2014. Antibacterial activities of coagulase- negative staphylococci from bovine teat apex skin and their inhibi- tory effect on mastitis-related pathogens. J. Appl. Microbiol. 116: 1084-1093. otwiera się w nowej karcie
  6. Brito M.A.V.P., G.A. Somkuti and J.A. Renye. 2011. Production of antilisterial bacteriocins by staphylococci isolated from bovine milk1. J. Dairy Sci. 94: 1194-1200. otwiera się w nowej karcie
  7. Di Meo F., G. Fabre, K. Berka, T. Ossman, B. Chantemargue, M. Paloncýová, P. Marquet, M. Otyepka and P. Trouillas. 2016. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol. Res. 111: 471-486.
  8. Fleming H.P., J.L. Etchells and R.N. Costilow. 1975. Microbial inhibition by an isolate of Pediococcus from Cucumber Brines 1. Appl. Microbiol. 30: 1040-1042. otwiera się w nowej karcie
  9. Hewelt-Belka W., J. Nakonieczna, M. Belka, T. Bączek, J. Namieś- nik and A. Kot-Wasik. 2016. Untargeted lipidomics reveals differ- ences in the lipid pattern among clinical isolates of Staphylococ- cus aureus resistant and sensitive to antibiotics. J. Proteome Res. 4: 914-22. otwiera się w nowej karcie
  10. Jakubczak A., P. Szweda, K. Łukaszewska and J. Kur. 2007. Molec- ular typing of Staphylococcus aureus isolated from cows with mastitis in the east of Poland on the basis of polymorphism of genes coding protein A and coagulase. Pol. J. Vet. Sci. 10: 199-205.
  11. Joerger R.D. 2003. Alternatives to antibiotics: bacteriocins, anti- microbial peptides and bacteriophages. Poultry Sci. 82: 640-647. otwiera się w nowej karcie
  12. Kosikowska P. and A. Lesner. 2016. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin. Ther. Pat. 26: 689-702. otwiera się w nowej karcie
  13. Kot B., M. Piechota, M. Antos-Bielska, E. Zdunek, K.M. Wolska, T. Binek, J. Olszewska, P. Guliński and E.A. Trafny. 2012. Anti- microbial resistance and genotypes of staphylococci from bovine milk and the cowshed environment. Pol. J. Vet. Sci. 15: 741-749. otwiera się w nowej karcie
  14. Kurlenda J. and M. Grinholc. 2012. Alternative therapies in Staphy- lococcus aureus diseases. Acta Biochim. Pol. 59: 171-184. otwiera się w nowej karcie
  15. Lee H., J. Churey and R. Worobo. 2008. Antimicrobial activity of bacterial isolates from different floral sources of honey. Int. J. Food Microbiol. 126: 240-244. otwiera się w nowej karcie
  16. Malanovic N. and K. Lohner. 2016. Antimicrobial peptides target- ing Gram-positive bacteria. Pharmaceuticals (Basel). 9(3). pii: E59. doi: 10.3390/ph9030059. otwiera się w nowej karcie
  17. Nascimento J.S., H. Ceotto, S.B. Nascimento, M. Giambiagi- Demarval, K.N. Santos and M.C.F. Bastos. 2006. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett. Appl. Microbiol. 42: 215-221. otwiera się w nowej karcie
  18. Nes I.F. 2011. History, Current Knowledge, and Future Directions on Bacteriocin Research in Lactic Acid Bacteria. In: Drider D. and S. Rebuffat (eds). Prokaryotic Antimicrobial Peptides. Springer, New York, NY otwiera się w nowej karcie
  19. Ołdak A. and D. Zielińska. 2017. Bacteriocins from lactic acid bac- teria as an alternative to antibiotics. Post. Hig. Med. Dosw. 71: 328-338. otwiera się w nowej karcie
  20. Powers J.-P.S. and R.E. Hancock. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24: 1681-1691. otwiera się w nowej karcie
  21. Rashid R., M. Veleba and K.A. Kline. 2016. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol. 4:55. doi: 10.3389/fcell.2016.00055. otwiera się w nowej karcie
  22. Schillinger U. and F.K. Lücke. 1989. Antibacterial activity of Lac- tobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901-1906. otwiera się w nowej karcie
  23. Sjölund M. and G. Kahlmeter. 2008. Staphylococci in primary skin and soft tissue infections in a Swedish county. Scand. J. Inf. Dis. 40: 894-898. otwiera się w nowej karcie
  24. Szweda P., M. Schielmann, A. Frankowska, B. Kot and M. Zalew- ska. 2014. Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: lysostaphin, nisin and polymyxin B. J. Vet. Med. Sci. 76: 355-362. otwiera się w nowej karcie
  25. Varella Coelho M.L., J.D. Santos Nascimento, P.C. Fagundes, D.J. Madureira, S.S Oliveira, M.A. Vasconcelos de Paiva Brito and C. Freire Bastos Mdo. 2007. Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis. Res. Microbiol. 158: 625-630. otwiera się w nowej karcie
  26. Weisburg W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA ampigication for phylogenetic study. J. Bacte- riol. 173: 697-703. otwiera się w nowej karcie
  27. Yeaman, M.R. and N.Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. otwiera się w nowej karcie
  28. This article is published in Open Access model and licensed under a Creative Commons CC BY-NC-ND 4.0, licence available at: https://creativecommons.org/licenses/by-nc-nd/4.0/ otwiera się w nowej karcie
Źródła finansowania:
  • 2012/07/N/NZ9/00939
Weryfikacja:
Politechnika Gdańska

wyświetlono 56 razy

Publikacje, które mogą cię zainteresować

Meta Tagi