Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels - Publikacja - MOST Wiedzy

Wyszukiwarka

Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels

Abstrakt

The industrial-scale production of lignocellulosic-based biofuels from biomass is expected to benefit society and the environment. The main pathways of residues processing include advanced hydrolysis and fermentation, pyrolysis, gasification, chemical synthesis and biological processes. The products of such treatment are second generation biofuels. The degree of fermentation of organic substances depends primarily on their composition and chemical structure. Optimization of fermentation conditions leads to better understanding of occurring processes. Therefore, an overview of recent developments in fermentation modeling is necessary to establish process parameters enabling high yields of biofuels production. Among process parameters affecting the yield and rate of biogas and biohydrogen, pH of the pulp, temperature, composition, biomass pre-treatment and digestion time are to be considered. The technology of anaerobic co-digestion has been intensively developed as a valuable solution for the disposal of organic wastes and sewage sludge. Modeling of biogas production from lignocellulosic biomass has been intensively investigated and is well described by adapted ADM1 model. Modeling of fermentative hydrogen production lacks a kinetic model incorporating process parameters with the view of pretreatment and fermentation. This paper presents the state-of-the-art on the problems related to lignocellulosic biomass pre-treatment and discusses the mechanisms of lignocellulosics conversion to gaseous biofuels.

Cytowania

  • 7 7

    CrossRef

  • 0

    Web of Science

  • 7 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 391 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
RENEWABLE ENERGY nr 129, strony 384 - 408,
ISSN: 0960-1481
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kucharska K., Hołowacz I., Konopacka-Łyskawa D., Rybarczyk P., Kamiński M. A.: Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels// RENEWABLE ENERGY. -Vol. 129, iss. Part A (2018), s.384-408
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.renene.2018.06.018
Bibliografia: test
  1. feedstocks, the definition of efficient conditions of saccharification, minimizing the 1242 generation or effective separation of inhibitors, the genetic engineering development 1243 concerning high biofuels producing strains and the designation of optimal operating strategies 1244 through modeling and optimization procedures. otwiera się w nowej karcie
  2. This work was carried out within the framework of the project "Studies of alkaline hydrolysis 1247 of lignocellulosic biomass and conversion conditions of hydrolysed products to biogas", 1248 supported financially by the National Science Center through the grant UMO- 1249 2014/13/B/ST8/04258 otwiera się w nowej karcie
  3. T. Klimiuk, Ewa; Pawłowska, Małgorzata; Pokój, Biofuels. Technologies for 1252 sustainable development, Wydawnictwo Naukowe PWN, 2012.
  4. X.J. Li H, Qu Y, Yang Y, Chang S, Microwave irradiation--A green and efficient way 1254 to pretreat biomass., Biresource Technoil. 199 (2016) 34-41. 1255 doi:10.1016/j.biortech.2015.08.099. . otwiera się w nowej karcie
  5. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a 1257 review, Bioresour Technol. 83 (2002) 1-11. doi:10.1016/S0960-8524(01)00212-7. otwiera się w nowej karcie
  6. X.Y. Cheng, Q. Li, C.Z. Liu, Coproduction of hydrogen and methane via anaerobic 1259 fermentation of cornstalk waste in continuous stirred tank reactor integrated with up- 1260 flow anaerobic sludge bed, Bioresour. Technol. 114 (2012) 327-333. 1261 doi:10.1016/j.biortech.2012.03.038. otwiera się w nowej karcie
  7. C.M. Zhang, Z.G. Mao, X. Wang, J.H. Zhang, F.B. Sun, L. Tang, H.J. Zhang, Effective 1263 ethanol production by reutilizing waste distillage anaerobic digestion effluent in an 1264 integrated fermentation process coupled with both ethanol and methane fermentations, 1265 otwiera się w nowej karcie
  8. Bioprocess Biosyst. Eng. 33 (2010) 1067-1075. doi:10.1007/s00449-010-0432-8. otwiera się w nowej karcie
  9. M. Sharma, A. Kaushik, Biohydrogen Production: Sustainability of Current 1267 Technology and Future Perspective, in: D. Singh A., Rathore (Ed.), Biohydrogen Prod.
  10. Sustain. Curr. Technol. Futur. Perspect., Springer, 2017: pp. 253-268. otwiera się w nowej karcie
  11. K. Randolph, S. Studer, H. Liu, A. Beliaev, J. Holladay, DOE Hydrogen and Fuel Cells 1270 Program: Hydrogen Production Cost from Fermentation, 2017.
  12. S.I. Mussatto, N. Bikaki, Technoeconomic Consideration fro Biomass Fractionation in 1272 a Biorafinery Context, in: S.I. Mussatto (Ed.), Biomass Fractionation Technol. Fro a 1273 otwiera się w nowej karcie
  13. Lignocellul. Feed. Based Biorafinery, Elsevier Inc., Amsterdam, 2016: pp. 587-610. otwiera się w nowej karcie
  14. D. Klein-Marcuschamer, H.W. Blanch, Renewable fuels from biomass: Technical 1275 hurdles and economic assessment of biological routes, AIChE J. 61 (2015) 2689-2701. 1276 doi:10.1002/aic.14755. otwiera się w nowej karcie
  15. H.M. Morgan, W. Xie, J. Liang, H. Mao, H. Lei, R. Ruan, Q. Bu, A techno-economic 1278 evaluation of anaerobic biogas producing systems in developing countries, Bioresour. 1279 otwiera się w nowej karcie
  16. Technol. 250 (2018) 910-921. doi:10.1016/j.biortech.2017.12.013. otwiera się w nowej karcie
  17. M. Orive, M. Cebrián, J. Zufía, Techno-economic anaerobic co-digestion feasibility 1281 study for two-phase olive oil mill pomace and pig slurry, Renew. Energy. (2016). 1282 doi:10.1016/j.renene.2016.06.019. otwiera się w nowej karcie
  18. L.T. Fuess, B.C. Klein, M.F. Chagas, M.C. Alves Ferreira Rezende, M.L. Garcia, A. 1284 otwiera się w nowej karcie
  19. Bonomi, M. Zaiat, Diversifying the technological strategies for recovering bioenergy 1285 from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno- 1286 economic and environmental approach, Renew. Energy. 122 (2018) 674-687. 1287 doi:10.1016/j.renene.2018.02.003. otwiera się w nowej karcie
  20. A. Pääkkönen, H. Tolvanen, J. Rintala, Techno-economic analysis of a power to biogas 1289 system operated based on fluctuating electricity price, Renew. Energy. 117 (2018) 1290 166-174. doi:10.1016/j.renene.2017.10.031. otwiera się w nowej karcie
  21. A. Akbulut, Techno-economic analysis of electricity and heat generation from farm- 1292 scale biogas plant: Çiçekdaĝi{dotless} case study, Energy. 44 (2012) 381-390. 1293 doi:10.1016/j.energy.2012.06.017. otwiera się w nowej karcie
  22. E.U. Khan, B. Mainali, A. Martin, S. Silveira, Techno-economic analysis of small scale 1295 biogas based polygeneration systems: Bangladesh case study, Sustain. Energy Technol. otwiera się w nowej karcie
  23. Assessments. 7 (2014) 68-78. doi:10.1016/j.seta.2014.03.004. otwiera się w nowej karcie
  24. S. Wang, Z. Ma, T. Zhang, M. Bao, H. Su, Optimization and modeling of biohydrogen 1298 production by mixed bacterial cultures from raw cassava starch, Front. Chem. Sci. Eng. 1299 11 (2017) 100-106. doi:10.1007/s11705-017-1617-3. otwiera się w nowej karcie
  25. W. Han, Y. Yan, J. Gu, Y. Shi, J. Tang, Y. Li, Techno-economic analysis of a novel 1301 bioprocess combining solid state fermentation and dark fermentation for H2production 1302 from food waste, Int. J. Hydrogen Energy. 41 (2016) 22619-22625. 1303 doi:10.1016/j.ijhydene.2016.09.047. otwiera się w nowej karcie
  26. W. Han, J. Fang, Z. Liu, J. Tang, Techno-economic evaluation of a combined 1305 bioprocess for fermentative hydrogen production from food waste, Bioresour. Technol. 1306 202 (2016) 107-112. doi:10.1016/j.biortech.2015.11.072. otwiera się w nowej karcie
  27. E.-M. Aro, From first generation biofuels to advanced solar biofuels, (n.d.). 1310 doi:10.1007/s13280-015-0730-0. otwiera się w nowej karcie
  28. F. Monlau, C. Sambusiti, A. Barakat, X.M. Guo, E. Latrille, E. Trably, J.-P. Steyer, H. 1312 otwiera się w nowej karcie
  29. Carrere, Predictive Models of Biohydrogen and Biomethane Production Based on the 1313 Compositional and Structural Features of Lignocellulosic Materials, Environ. Sci. 1314
  30. Technol. 46 (2012) 12217-12225. doi:10.1021/es303132t. otwiera się w nowej karcie
  31. P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for Pretreatment of 1316 otwiera się w nowej karcie
  32. Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. otwiera się w nowej karcie
  33. Chem. Res. 48 (2009) 3713-3729. doi:10.1021/ie801542g. otwiera się w nowej karcie
  34. P. Kaparaju, M. Serrano, A.B. Thomsen, P. Kongjan, I. Angelidaki, Bioethanol, 1319 biohydrogen and biogas production from wheat straw in a biorefinery concept, (2009). 1320 doi:10.1016/j.biortech.2008.11.011. otwiera się w nowej karcie
  35. R. Oztekin, I.K. Kapdan, F. Kargi, H. Argun, Optimization of media composition for 1322 hydrogen gas production from hydrolyzed wheat starch by dark fermentation, Int. J. 1323 otwiera się w nowej karcie
  36. Hydrogen Energy. 33 (2008) 4083-4090. doi:10.1016/j.ijhydene.2008.05.052. otwiera się w nowej karcie
  37. X. Chen, S.L. Suib, Y. Hayashi, H. Matsumoto, H2O Splitting in Tubular PACT 1325 (Plasma and Catalyst Integrated Technologies) Reactors, J. Catal. 201 (2001) 198-205. 1326 doi:10.1006/jcat.2001.3252. otwiera się w nowej karcie
  38. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a 1328 review, Bioresour Technol. 83 (2002) 1-11. doi:10.1016/S0960-8524(01)00212-7. otwiera się w nowej karcie
  39. F. Saura-Calixto, J. Cañellas, J. Garcia-Raso, Determination of hemicellulose, cellulose 1330 and lignin contents of dietary fibre and crude fibre of several seed hulls. Data 1331 comparison, Z. Lebensm. Unters. Forsch. 42 (1983) 1547-54. 1332 doi:10.1007/BF01146796. otwiera się w nowej karcie
  40. C. Ververis, K. Georghiou, D. Danielidis, D.G. Hatzinikolaou, P. Santas, R. Santas, V. 1334 otwiera się w nowej karcie
  41. Corleti, Cellulose, hemicelluloses, lignin and ash content of some organic materials and 1335 their suitability for use as paper pulp supplements, Bioresour. Technol. 98 (2007) 296- 1336 301. doi:10.1016/j.biortech.2006.01.007. otwiera się w nowej karcie
  42. A.O. Ayeni, O.A. Adeeyo, O.M. Oresegun, T.E. Oladimeji, Compositional analysis of 1338 lignocellulosic materials: Evaluation of an economically viable method suitable for 1339 woody and non-woody biomass, Am. J. Eng. Res. 15 (2015) 1234-1245. 1340 doi:https://www.researchgate.net/file.PostFileLoader.html?id=56ace27964e9b21ed38b 1341 4567&assetKey=AS%3A323629718409216%401454170745211.
  43. Z. Anwar, M. Gulfraz, M. Irshad, Agro-industrial lignocellulosic biomass a key to 1343 unlock the future bio-energy: A brief review, J. Radiat. Res. Appl. Sci. 3 (2014) 1245- 1344 52. doi:10.1016/j.jrras.2014.02.003. otwiera się w nowej karcie
  44. J. Dai, K. Gliniewicz, M.L. Settles, E.R. Coats, A.G. McDonald, Influence of organic 1346 loading rate and solid retention time on polyhydroxybutyrate production from hybrid 1347 poplar hydrolysates using mixed microbial cultures, Bioresour. Technol. 175 (2015) 1348 23-33. doi:10.1016/j.biortech.2014.10.049. otwiera się w nowej karcie
  45. J.P. Dworzanski, R.M. Buchanan, J.N. Chapman, H.L.C. Meuzelaar, Characterization 1350 of Lignocellulosic Materials and Model Compounds By Combined Tg/(Gc)/Ft Ir/Ms, 1351
  46. Symp. Pyrolysis Nat. Synth. Macromol. 36 (2006) 725-732. otwiera się w nowej karcie
  47. P.C. Hallenbeck, Microbial technologies in advanced biofuels production, 2012. 1353 doi:10.1007/978-1-4614-1208-3. otwiera się w nowej karcie
  48. K. Karimi, G. Emtiazi, M.J. Taherzadeh, Ethanol production from dilute-acid 1355 pretreated rice straw by simultaneous saccharification and fermentation with Mucor 1356 indicus, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme Microb. Technol. 40 1357 (2006) 138-144. doi:10.1016/j.enzmictec.2005.10.046. otwiera się w nowej karcie
  49. K. Karimi, M.J. Taherzadeh, A critical review of analytical methods in pretreatment of 1359 lignocelluloses: Composition, imaging, and crystallinity, Bioresour. Technol. 200 1360 (2016) 1008-1018. doi:10.1016/j.biortech.2015.11.022. otwiera się w nowej karcie
  50. R.C. Kuhad, R. Gupta, Y.P. Khasa, A. Singh, Bioethanol production from Lantana 1362 camara (red sage): Pretreatment, saccharification and fermentation, Bioresour. Technol. 1363 101 (2010) 8348-8354. doi:10.1016/j.biortech.2010.06.043. otwiera się w nowej karcie
  51. V.S. Chang, M.T. Holtzapple, Fundamental factors affecting biomass enzymatic 1365 reactivity, Appl. Biochem. Biotechnol. 84 (2000) 5-37. doi:10.1385/ABAB:84-86:1- 1366 9:5. otwiera się w nowej karcie
  52. Y. Zheng, J. Zhao, F. Xu, Y. Li, Pretreatment of lignocellulosic biomass for enhanced 1368 biogas production, Prog. Energy Combust. Sci. 42 (2014) 35-53. 1369 doi:10.1016/j.pecs.2014.01.001. otwiera się w nowej karcie
  53. Q. Zhang, J. Hu, D.-J. Lee, Biogas from anaerobic digestion processes: Research 1371 updates, (2016). doi:10.1016/j.renene.2016.02.029. otwiera się w nowej karcie
  54. S. Mirmohamadsadeghi, K. Karimi, A. Zamani, H. Amiri, I.S. Horváth, I.S. th, 1373 rv&#xe1, ri, Enhanced solid-state biogas production from lignocellulosic biomass by 1374 organosolv pretreatment., Biomed Res. Int. 2014 (2014) 350414. 1375 doi:10.1155/2014/350414. otwiera się w nowej karcie
  55. J. Speda, M.A. Johansson, A. Odnell, M. Karlsson, Enhanced biomethane production 1377 rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion 1378 treatment with endogenous cellulolytic enzymes, Biotechnol. Biofuels. 10 (2017). 1379 doi:10.1186/s13068-017-0814-0. otwiera się w nowej karcie
  56. C. Mao, Y. Feng, X. Wang, G. Ren, Review on research achievements of biogas from 1381 anaerobic digestion, Renew. Sustain. Energy Rev. 45 (2015) 540-555. 1382 doi:10.1016/j.rser.2015.02.032. otwiera się w nowej karcie
  57. T. Getahun, M. Gebrehiwot, A. Ambelu, T. Van Gerven, B. Van Der Bruggen, The 1384 potential of biogas production from municipal solid waste in a tropical climate, (n.d.). 1385 doi:10.1007/s10661-014-3727-4. otwiera się w nowej karcie
  58. X. Ge, F. Xu, Y. Li, Solid-state anaerobic digestion of lignocellulosic biomass: Recent 1387 progress and perspectives, (2016). doi:10.1016/j.biortech.2016.01.050. otwiera się w nowej karcie
  59. Pham et al., Validation and recomendation of methods to measure biogas production 1389 potential of animal manure, (n.d.). doi:10.5713/ajas.2012.12623. otwiera się w nowej karcie
  60. M. Walker, Y. Zhang, S. Heaven, C. Banks, Potential errors in the quantitative 1391 evaluation of biogas production in anaerobic digestion processes, (2009). 1392 doi:10.1016/j.biortech.2009.07.018. otwiera się w nowej karcie
  61. Y. Li, R. Zhang, G. Liu, C. Chen, Y. He, X. Liu, Comparison of methane production 1394 potential, biodegradability, and kinetics of different organic substrates, (2013). 1395 doi:10.1016/j.biortech.2013.09.063. otwiera się w nowej karcie
  62. G. Tian, W. Zhang, M. Dong, B. Yang, R. Zhu, F. Yin, X. Zhao, Y. Wang, W. Xiao, Q. otwiera się w nowej karcie
  63. Wang, X. Cui, Metabolic pathway analysis based on high-throughput sequencing in a 1398 batch biogas production process, Energy. 139 (2017) 571-579. 1399 doi:10.1016/j.energy.2017.08.003. otwiera się w nowej karcie
  64. I. Ntaikou, G. Antonopoulou, G. Lyberatos, Biohydrogen production from biomass and 1401 wastes via dark fermentation: A review, Waste and Biomass Valorization. 1 (2010) 21- 1402 39. doi:10.1007/s12649-009-9001-2. otwiera się w nowej karcie
  65. R. Nandi, S. Sengupta, J. Zajic, N. Kosaric, J. Brosseau, R. Nandi, S. Sengupta, 1404
  66. Microbial production of hydrogen: an overview., Crit. Rev. Microbiol. 24 (1998) 61- 1405 84. doi:10.1080/10408419891294181. otwiera się w nowej karcie
  67. R.K. Thauer, Energy Conservation in chemotrophic anaerobic bacteria, Bacteriol Rev. 1407 41 (1977) 100-180. otwiera się w nowej karcie
  68. G. Marbán, T. Valdés-Solís, Corrigendum to "Towards the hydrogen economy?" [Int. otwiera się w nowej karcie
  69. J. Hyd. Energy 32(12), Int. J. Hydrogen Energy. (n.d.) 1625-1637. 1410 doi:10.1016/j.ijhydene.2007.11.002. otwiera się w nowej karcie
  70. K. Uyeda, J.C. Rabinowitz, Pyruvate-ferredoxin oxidoreductase. IV. Studies on the 1412 reaction mechanism., J. Biol. Chem. 246 (1971) 3120-5.
  71. B.B. Buchanan, 6 Ferredoxin-Linked Carboxylation Reactions, Enzymes. 6 (1972) 1414 193-216. doi:10.1016/S1874-6047(08)60041-4. otwiera się w nowej karcie
  72. H. Bothe, B. Falkenberg, U. Nolteernsting, Properties and function of the pyruvate: 1416 Ferredoxin oxidoreductase from the blue-green alga Anabaena cylindrica, Arch. 1417 otwiera się w nowej karcie
  73. Microbiol. 96 (1974) 291-304. doi:10.1007/BF00590185. otwiera się w nowej karcie
  74. B.J. Bachmann, Derivations and Genotypes of Some Mutant Derivatives of Escherichia 1419 coli K-12, Escherichia Coli Salmonella Typhimurium Cell. Mol. Biol. 1 (1996). 1420 doi:http://dx.doi.org/10.1016/0968-0004(88)90241-1. otwiera się w nowej karcie
  75. J. Knappe, H.P. Blaschowski, P. Grobner, T. Schmitt, Pyruvate Formate-Lyase of 1422 Escherichia coli: the Acetyl-Enzyme Intermediate, Eur. J. Biochem. 12 (1974). 1423 doi:10.1111/j.1432-1033.1974.tb03894.x. otwiera się w nowej karcie
  76. R.K.K. Thauer, K. Jungermann, K. Decker, Energy conservation in chemotrophic 1425 anaerobic bacteria -ERRATUM, Microbiol. Mol. Biol. Rev. 41 (1977) 100. otwiera się w nowej karcie
  77. B.O. Solomon, A.P. Zeng, H. Biebl, H. Schlieker, C. Posten, W.D. Deckwer, 1427 Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in 1428 Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on 1429 glycerol, J. Biotechnol. 39 (1995) 107-17. doi:10.1016/0168-1656(94)00148-6. otwiera się w nowej karcie
  78. R.G. Sawers, Formate and its role in hydrogen production in Escherichia coli., 1431 otwiera się w nowej karcie
  79. Biochem Soc Trans. 33 (2005) 42-6. doi:10.1042/BST0330042. otwiera się w nowej karcie
  80. R.K.K. THAUER, K. Jungermann, K. DECKER, Energy conservation in chemotrophic 1433 anaerobic bacteria -ERRATUM, Microbiol. Mol. Biol. Rev. (1977). otwiera się w nowej karcie
  81. L. Thomas, A. Joseph, L.D. Gottumukkala, Xylanase and cellulase systems of 1435 Clostridium sp.: An insight on molecular approaches for strain improvement, 1436 otwiera się w nowej karcie
  82. Bioresour. Technol. 158 (2014) 343-350. doi:10.1016/j.biortech.2014.01.140. otwiera się w nowej karcie
  83. A.T.W.M.T.W.M. Hendriks, G. Zeeman, Pretreatments to enhance the digestibility of 1438 lignocellulosic biomass, Bioresour. Technol. 100 (2009) 10-18. 1439 doi:10.1016/j.biortech.2008.05.027. otwiera się w nowej karcie
  84. H. Li, Y. Qu, Y. Yang, S. Chang, J. Xu, Microwave irradiation -A green and efficient 1441 way to pretreat biomass, Bioresour. Technol. 199 (2016) 34-41. 1442 doi:10.1016/j.biortech.2015.08.099. otwiera się w nowej karcie
  85. N. Azbar, F.T. Çetinkaya Dokgöz, T. Keskin, K.S. Korkmaz, H.M. Syed, Continuous 1444 fermentative hydrogen production from cheese whey wastewater under thermophilic 1445 anaerobic conditions, Int. J. Hydrogen Energy. 34 (2009) 7441-7447. 1446 doi:10.1016/j.ijhydene.2009.04.032. otwiera się w nowej karcie
  86. N.K. Kortei, M. Wiafe-kwagyan, Evaluating the effect of gamma radiation on eight 1448 different agro-lignocellulose waste materials for the production of oyster mushrooms ( 1449 Pleurotus eous ( Berk .) Sacc . strain P-31 ), Croat. J. Food Technolody. 9 (2014) 83- 1450 90. otwiera się w nowej karcie
  87. J. Lalak, A. Kasprzycka, A. Murat, E.M. Paprota, J. Tys, Obróbka wstępna biomasy 1452 bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej (praca 1453 przeglądowa), Acta Agrophysica. 21 (2014) 51-62.
  88. F. Talebnia, D. Karakashev, I. Angelidaki, Production of bioethanol from wheat straw: 1455 An overview on pretreatment, hydrolysis and fermentation, Bioresour. Technol. 101 1456 (2010) 4744-4753. doi:10.1016/j.biortech.2009.11.080. otwiera się w nowej karcie
  89. S.C. Rabelo, N.A. Amezquita Fonseca, R.R. Andrade, R. Maciel Filho, A.C. Costa, 1458 otwiera się w nowej karcie
  90. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with 1459 lime and alkaline hydrogen peroxide, Biomass and Bioenergy. 35 (2011) 2600-2607. 1460 doi:10.1016/j.biombioe.2011.02.042. otwiera się w nowej karcie
  91. A.A. Elgharbawy, M.Z. Alam, M. Moniruzzaman, M. Goto, Ionic liquid pretreatment 1462 as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass, 1463 otwiera się w nowej karcie
  92. Biochem. Eng. J. 109 (2016) 252-267. doi:10.1016/j.bej.2016.01.021. otwiera się w nowej karcie
  93. Z. Zhu, N. Sathitsuksanoh, T. Vinzant, D.J. Schell, J.D. McMillan, Y.H.P. Zhang, 1465 Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based 1466 lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure and 1467 substrate accessibility, Biotechnol. Bioeng. 103 (2009) 715-725. 1468 doi:10.1002/bit.22307. otwiera się w nowej karcie
  94. V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin, Biomass pretreatment: 1470 Fundamentals toward application, Biotechnol. Adv. 29 (2011) 675-685. 1471 doi:10.1016/j.biotechadv.2011.05.005. otwiera się w nowej karcie
  95. T.F. Carneiro, M. Timko, J.M. Prado, M. Berni, Chapter 17 -Biomass Pretreatment 1473 With Carbon Dioxide, in: Biomass Fractionation Technol. a Lignocellul. Feed. Based 1474 Biorefinery, 2016: pp. 385-407. doi:10.1016/B978-0-12-802323-5.00017-7. otwiera się w nowej karcie
  96. J.Y. Zhu, X. Pan, R.S. Zalesny, Pretreatment of woody biomass for biofuel production: 1476 energy efficiency, technologies, and recalcitrance, Appl. Microbiol. Biotechnol. 87 1477 (2010) 847-857. doi:10.1007/s00253-010-2654-8. otwiera się w nowej karcie
  97. N. Ramírez-Ramírez, E.R. Romero-García, V.C. Calderón, C.I. Avitia, A. Téllez- 1479 otwiera się w nowej karcie
  98. Valencia, M. Pedraza-Reyes, Expression, characterization and synergistic interactions 1480 of Myxobacter Sp. AL-1 Cel9 and Cel48 glycosyl hydrolases, Int. J. Mol. Sci. 9 (2008) 1481 247-257. doi:10.3390/ijms9030247. otwiera się w nowej karcie
  99. K. Kovács, PRODUCTION OF CELLULOLYTIC ENZYMES WITH 1483 TRICHODERMA ATROVIRIDE MUTANTS FOR THE BIOMASS-TO- 1484 BIOETHANOL PROCESS, Dr. Thesis, Lund Univ. Sweden. (2009). otwiera się w nowej karcie
  100. N. Beukes, B.I. Pletschke, Effect of alkaline pre-treatment on enzyme synergy for 1486 efficient hemicellulose hydrolysis in sugarcane bagasse, Bioresour. Technol. 102 1487 (2011) 5207-5213. doi:10.1016/j.biortech.2011.01.090. otwiera się w nowej karcie
  101. A.K. Kumar, S. Sharma, Recent updates on different methods of pretreatment of 1489 lignocellulosic feedstocks: a review., Bioresour. Bioprocess. 4 (2017) 7. 1490 doi:10.1186/s40643-017-0137-9. otwiera się w nowej karcie
  102. C. Sant'Anna, W. De Souza, Microscopy as a tool to follow deconstruction of 1492 lignocellulosic biomass, Curr. Microsc. Contrib. to Adv. Sci. Technol. 17 (2012) 639- 1493 645. http://www.formatex.info/microscopy5/book/639-645.pdf.
  103. K. Karimi, M.J. Taherzadeh, A critical review on analysis in pretreatment of 1495 lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility, 1496 otwiera się w nowej karcie
  104. Bioresour. Technol. 203 (2016) 348-356. doi:10.1016/j.biortech.2015.12.035. otwiera się w nowej karcie
  105. [81] S.G. Wi, E.J. Cho, D.-S. Lee, S.J. Lee, Y.J. Lee, H.-J. Bae, Lignocellulose conversion 1498 for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of 1499 various lignocellulosic materials., Biotechnol. Biofuels. 8 (2015) 228. 1500 doi:10.1186/s13068-015-0419-4. otwiera się w nowej karcie
  106. L.J. Jönsson, B. Alriksson, N.-O. Nilvebrant, Bioconversion of lignocellulose: 1502 inhibitors and detoxification, (n.d.). doi:10.1186/1754-6834-6-16. otwiera się w nowej karcie
  107. M.C. Jonsson L.J, Pretreatment of lignocellulose: formation of inhibitory by-products 1504 and strategies for minimizing their effects, (n.d.). http://ac.els- 1505 cdn.com/S0960852415014042/1-s2.0-S0960852415014042-main.pdf?_tid=6c020498- 1506 984b-11e7-8046- 1507 00000aacb35f&acdnat=1505283716_69d192e37aeb180acae58b0652ba1d70 (accessed 1508 September 13, 2017). otwiera się w nowej karcie
  108. A. Nilsson, Control of fermentation of lignocellulosic hydrolysates, Kund, 2001. 1510
  109. I.S. Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Microbial Cellulose 1511 Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev. 66 (2002) 1512 506-577. doi:10.1128/MMBR.66.3.506. otwiera się w nowej karcie
  110. C. Akobi, H. Hafez, G. Nakhla, The impact of furfural concentrations and substrate-to- 1514 biomass ratios on biological hydrogen production from synthetic lignocellulosic 1515 hydrolysate using mesophilic anaerobic digester sludge Furfural:sugars exerted a 1516 greater effect on H 2 inhibition than f, Bioresour Technol. 221 (2016) 598-606. 1517 doi:10.1016/j.biortech.2016.09.067. otwiera się w nowej karcie
  111. L.J. Jönsson, B. Alriksson, N.-O. Nilvebrant, Bioconversion of lignocellulose: 1519 inhibitors and detoxification., Biotechnol. Biofuels. 6 (2013) 16. doi:10.1186/1754- 1520 6834-6-16. otwiera się w nowej karcie
  112. E. Palmqvist, B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. I: 1522 Inhibition and detoxification, Bioresour. Technol. 74 (2000) 17-24. 1523 doi:10.1016/S0960-8524(99)00160-1. otwiera się w nowej karcie
  113. X..
  114. W. Zhao L.; Liu, D., Effect of several factors on peracetic acid pretreatment of 1525 sugarcane bagasse for enzymatic hydrolysis, J. Chem. Technol. Biotechnol. 82 (2007) 1526 1115-1121. doi:10.1002/jctb. otwiera się w nowej karcie
  115. D.B. Levin, R. Islam, N. Cicek, R. Sparling, Hydrogen production by Clostridium 1528 thermocellum 27405 from cellulosic biomass substrates, Int. J. Hydrogen Energy. 31 1529 (2006) 1496-1503. doi:10.1016/j.ijhydene.2006.06.015. otwiera się w nowej karcie
  116. D. Evvyernie, S. Yamazaki, K. Morimoto, S. Karita, T. Kimura, K. Sakka, K. Ohmiya, 1531 otwiera się w nowej karcie
  117. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, 1532 mesophilic and hydrogen-producing bacterium, J. Biosci. Bioeng. 89 (2000) 596-601. 1533 doi:10.1016/S1389-1723(00)80063-8. otwiera się w nowej karcie
  118. S. Tanisho, Y. Ishiwata, Continuous hydrogen production from molasses by the 1535 bacterium Enterobacter aerogenes, Int. J. Hydrogen Energy. 19 (1994) 807-812. 1536 doi:10.1016/0360-3199(94)90197-X. otwiera się w nowej karcie
  119. H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi, Y. Takasaki, Microbial 1538 hydrogen production from sweet potato starch residue, J. Biosci. Bioeng. 91 (2001) 58- 1539 63. doi:10.1016/S1389-1723(01)80112-2. otwiera się w nowej karcie
  120. E.W.J. Van Niel, M.A.W. Budde, G. De Haas, F.J. Van der Wal, P.A.M. Claassen, 1541 A.J.M. Stams, Distinctive properties of high hydrogen producing extreme 1542 thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int. J. 1543 Hydrogen Energy. 27 (2002) 1391-1398. doi:10.1016/S0360-3199(02)00115-5. otwiera się w nowej karcie
  121. R. Sparling, Hydrogen production from inhibited anaerobic composters, Int. J. 1545 Hydrogen Energy. 30 (1997) 285-292. doi:10.1016/S0360-3199(96)00137-1. otwiera się w nowej karcie
  122. J.J. Lay, Y.J. Lee, T. Noike, Feasibility of biological hydrogen production from organic 1547 fraction of municipal solid waste, Water Res. 33 (1999) 2579-2586. doi:Doi 1548 10.1016/S0043-1354(98)00483-7. otwiera się w nowej karcie
  123. J. Pan, R. Zhang, H.M. El-Mashad, H. Sun, Y. Ying, Effect of food to microorganism 1550 ratio on biohydrogen production from food waste via anaerobic fermentation, Int. J. 1551 Hydrogen Energy. 33 (2008) 6968-6975. doi:10.1016/j.ijhydene.2008.07.130. otwiera się w nowej karcie
  124. Y.M. Wong, T.Y. Wu, J.C. Juan, A review of sustainable hydrogen production using 1553 seed sludge via dark fermentation, Renew. Sustain. Energy Rev. 34 (2014) 471-482. 1554 doi:10.1016/j.rser.2014.03.008. otwiera się w nowej karcie
  125. S.I. Mussatto, M. Fernandes, I.M. Mancilha, I.C. Roberto, Effects of medium 1556 supplementation and pH control on lactic acid production from brewer's spent grain, 1557 otwiera się w nowej karcie
  126. Biochem. Eng. J. (2008). doi:10.1016/j.bej.2008.01.013. otwiera się w nowej karcie
  127. T. Ravinder, M. V. Swamy, G. Seenayya, G. Reddy, Clostridium lentocellum SG6 -A 1559 potential organism for fermentation of cellulose to acetic acid, Bioresour. Technol. 1560 (2001). doi:10.1016/S0960-8524(01)00094-3. otwiera się w nowej karcie
  128. T. Watanabe, A. Suzuki, H. Nakagawa, K. Kirimura, S. Usami, Citric acid production 1562 from cellulose hydrolysate by a 2-deoxyglucose-resistant mutant strain of Aspergillus 1563 niger, Bioresour. Technol. (1998). otwiera się w nowej karcie
  129. D.Y. Kim, S.C. Yim, P.C. Lee, W.G. Lee, S.Y. Lee, H.N. Chang, Batch and continuous 1565 fermentation of succinic acid from wood hydrolysate by Mannheimia 1566 succiniciproducens MBEL55E, in: Enzyme Microb. Technol., 2004. 1567 doi:10.1016/j.enzmictec.2004.08.018. otwiera się w nowej karcie
  130. Q. Li, M. Yang, D. Wang, W. Li, Y. Wu, Y. Zhang, J. Xing, Z. Su, Efficient 1569 conversion of crop stalk wastes into succinic acid production by Actinobacillus 1570 succinogenes, Bioresour. Technol. (2010). doi:10.1016/j.biortech.2009.12.064. 1571 otwiera się w nowej karcie
  131. J.C. Parajó, V. Santos, M. Vázquez, J.M. Cruz, Production of carotenoids by 1572 Xanthophyllomyces dendrorhous growing on enzymatic hydrolysates of prehydrolysed 1573 wood, Food Chem. (1997). doi:10.1016/S0308-8146(96)00341-X. otwiera się w nowej karcie
  132. J.M. Cruz, J.C. Parajo, Improved astaxanthin production by Xanthophyllomyces 1575 dendrorhous growing on enzymatic wood hydrolysates containing glucose and 1576 cellobiose, Food Chem. (1998). doi:10.1016/S0308-8146(98)00061-2. otwiera się w nowej karcie
  133. J.P.A. Silva, S.I. Mussatto, I.C. Roberto, The influence of initial xylose concentration, 1578 agitation, and aeration on ethanol production by Pichia stipitis from rice straw 1579 hemicellulosic hydrolysate, Appl. Biochem. Biotechnol. (2010). doi:10.1007/s12010- 1580 009-8867-6. otwiera się w nowej karcie
  134. N. Qureshi, B.C. Saha, R.E. Hector, B. Dien, S. Hughes, S. Liu, L. Iten, M.J. Bowman, 1582 otwiera się w nowej karcie
  135. G. Sarath, M.A. Cotta, Production of butanol (a biofuel) from agricultural residues: 1583 Part II -Use of corn stover and switchgrass hydrolysates, Biomass and Bioenergy. 1584 (2010). doi:10.1016/j.biombioe.2009.12.023. otwiera się w nowej karcie
  136. N. Qureshi, B.C. Saha, B. Dien, R.E. Hector, M.A. Cotta, Production of butanol (a 1586 biofuel) from agricultural residues: Part I -Use of barley straw hydrolysate, Biomass 1587 and Bioenergy. (2010). doi:10.1016/j.biombioe.2009.12.024. otwiera się w nowej karcie
  137. B.C. Saha, R.J. Bothast, Production of L-arabitol from L-arabinose by Candida 1589 entomaea and Pichia guilliermondii, Appl. Microbiol. Biotechnol. (1996). 1590 doi:10.1007/s002530050687. otwiera się w nowej karcie
  138. S.K.K. Garg, a. Jain, Fermentative production of 2, 3-butanediol: a review, Bioresour. 1592 otwiera się w nowej karcie
  139. Technol. (1995). doi:10.1016/0960-8524(94)00136-O. otwiera się w nowej karcie
  140. M. Saritha, A. Arora, Lata, Biological Pretreatment of Lignocellulosic Substrates for 1594 otwiera się w nowej karcie
  141. Enhanced Delignification and Enzymatic Digestibility, Indian J. Microbiol. 52 (2012) 1595 122-130. doi:10.1007/s12088-011-0199-x. otwiera się w nowej karcie
  142. J.N. Nigam, Hemicellulose Acid Hydrolysate To Motor Fuel Ethanol By Xylose - 1597 Fermenting Yeast, J. Biotechnol. 97 (2002) 107-116. otwiera się w nowej karcie
  143. P. Guo, K. Mochidzuki, W. Cheng, M. Zhou, H. Gao, D. Zheng, X. Wang, Z. Cui, 1599 Effects of different pretreatment strategies on corn stalk acidogenic fermentation using 1600 a microbial consortium, Bioresour. Technol. 102 (2011) 7526-7531. 1601 doi:10.1016/j.biortech.2011.04.083. otwiera się w nowej karcie
  144. A.B. Moldes, A. Torrado, A. Converti, J.M. Domínguez, Complete bioconversion of 1603 hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus 1604 pentosus, Appl. Biochem. Biotechnol. (2006). doi:10.1385/ABAB:135:3:219. otwiera się w nowej karcie
  145. A. Garde, G. Jonsson, A.S. Schmidt, B.K. Ahring, Lactic acid production from wheat 1606 straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis, 1607 otwiera się w nowej karcie
  146. Bioresour. Technol. (2002). doi:10.1016/S0960-8524(01)00135-3. otwiera się w nowej karcie
  147. Y. Zhu, Z. Wu, S.T. Yang, Butyric acid production from acid hydrolysate of corn fibre 1609 by Clostridium tyrobutyricum in a fibrous-bed bioreactor, Process Biochem. (2002). 1610 doi:10.1016/S0032-9592(02)00162-0. otwiera się w nowej karcie
  148. [117] S. Zahedi, D. Sales, L.I. Romero, R. Solera, Hydrogen production from the organic 1612 fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of 1613 organic loading rate and microbial content of the solid waste, Bioresour. Technol. 129 1614 (2013) 85-91. doi:10.1016/j.biortech.2012.11.003. otwiera się w nowej karcie
  149. C.-F. Chu, K.-Q. Xu, Y.-Y. Li, Y. Inamori, Hydrogen and methane potential based on 1616 the nature of food waste materials in a two-stage thermophilic fermentation process, 1617 otwiera się w nowej karcie
  150. Int. J. Hydrogen Energy. (2012). doi:10.1016/j.ijhydene.2012.04.048. otwiera się w nowej karcie
  151. A.E. Mars, T. Veuskens, M.A.W. Budde, P.F.N.M. van Doeveren, S.J. Lips, R.R. 1619 otwiera się w nowej karcie
  152. Bakker, T. de Vrije, P.A.M. Claassen, Biohydrogen production from untreated and 1620 hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor 1621 saccharolyticus and Thermotoga neapolitana, Int. J. Hydrogen Energy. 35 (2010) 1622 7730-7737. doi:10.1016/j.ijhydene.2010.05.063. otwiera się w nowej karcie
  153. V. Redondas, X. Gómez, S. García, C. Pevida, F. Rubiera, A. Morán, J.J. Pis, 1624 Hydrogen production from food wastes and gas post-treatment by CO2 adsorption, 1625 otwiera się w nowej karcie
  154. Waste Manag. 32 (2012) 60-66. doi:10.1016/j.wasman.2011.09.003. otwiera się w nowej karcie
  155. X. Wu, J. Zhu, C. Dong, C. Miller, Y. Li, L. Wang, W. Yao, Continuous biohydrogen 1627 production from liquid swine manure supplemented with glucose using an anaerobic 1628 sequencing batch reactor, Int. J. Hydrogen Energy. 34 (2009) 6636-6645. 1629 doi:10.1016/j.ijhydene.2009.06.058. otwiera się w nowej karcie
  156. G.-L. Tang, J. Huang, Z.-J. Sun, Q.-Q. Tang, C.-H. Yan, G.-Q. Liu, Biohydrogen 1631 production from cattle wastewater by enriched anaerobic mixed consortia: influence of 1632 fermentation temperature and pH., J. Biosci. Bioeng. 106 (2008) 80-7. 1633 doi:10.1263/jbb.106.80. otwiera się w nowej karcie
  157. Y. Xing, Z. Li, Y. Fan, H. Hou, Biohydrogen production from dairy manures with 1635 acidification pretreatment by anaerobic fermentation, Environ. Sci. Pollut. Res. 17 1636 (2010) 392-399. doi:10.1007/s11356-009-0187-4. otwiera się w nowej karcie
  158. N. Azbar, F.T. Dokgöz, T. Keskin, R. Eltem, K.S. Korkmaz, Y. Gezgin, Z. Akbal, S. 1638 otwiera się w nowej karcie
  159. Öncel, M.C. Dalay, Ç. Gönen, F. Tutuk, Comparative Evaluation of Bio-Hydrogen 1639
  160. Production From Cheese Whey Wastewater Under Thermophilic and Mesophilic 1640 otwiera się w nowej karcie
  161. Anaerobic Conditions, Int. J. Green Energy. 6 (2009) 192-200. 1641 doi:10.1080/15435070902785027. otwiera się w nowej karcie
  162. K. Vijayaraghavan, D. Ahmad, Biohydrogen generation from palm oil mill effluent 1643 using anaerobic contact filter, Int. J. Hydrogen Energy. 31 (2006) 1284-1291. 1644 doi:10.1016/j.ijhydene.2005.12.002. otwiera się w nowej karcie
  163. G. Kumar, B. Sen, P. Sivagurunathan, C.Y. Lin, High rate hydrogen fermentation of 1646 cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system, 1647 otwiera się w nowej karcie
  164. Fuel. 182 (2016) 131-140. doi:10.1016/j.fuel.2016.05.088. otwiera się w nowej karcie
  165. G.-L. Cao, L. Zhao, A.-J. Wang, Z.-Y. Wang, N.-Q. Ren, Single-step bioconversion of 1649 lignocellulose to hydrogen using novel moderately thermophilic bacteria., Biotechnol. 1650 otwiera się w nowej karcie
  166. Biofuels. 7 (2014) 82. doi:10.1186/1754-6834-7-82. otwiera się w nowej karcie
  167. G. Ivanova, G. Rákhely, K.L. Kovács, Thermophilic biohydrogen production from 1652 energy plants by Caldicellulosiruptor saccharolyticus and comparison with related 1653 studies, Int. J. Hydrogen Energy. 34 (2009) 3659-3670. 1654 doi:10.1016/j.ijhydene.2009.02.082. otwiera się w nowej karcie
  168. K.J. Wu, J.S. Chang, Batch and continuous fermentative production of hydrogen with 1656 anaerobic sludge entrapped in a composite polymeric matrix, Process Biochem. 42 1657 (2007) 279-284. doi:10.1016/j.procbio.2006.07.021. otwiera się w nowej karcie
  169. K.R. Babu, T. Satyanarayana, α-Amylase production by thermophilic Bacillus 1659 coagulans in solid state fermentation, Process Biochem. (1995). doi:10.1016/0032- 1660 9592(95)87038-5. otwiera się w nowej karcie
  170. Z. Baysal, F. Uyar, Ç.̧ Aytekin, Solid state fermentation for production of α-amylase by 1662 a thermotolerant Bacillus subtilis from hot-spring water, Process Biochem. (2003). 1663 doi:10.1016/S0032-9592(02)00150-4. otwiera się w nowej karcie
  171. F. Francis, A. Sabu, K.M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, A. 1665 otwiera się w nowej karcie
  172. Pandey, Use of response surface methodology for optimizing process parameters for 1666 the production of α-amylase by Aspergillus oryzae, Biochem. Eng. J. (2003). 1667 doi:10.1016/S1369-703X(02)00192-4. otwiera się w nowej karcie
  173. P. V. Gawande, M.Y. Kamat, Production of Aspergillus xylanase by lignocellulosic 1669 waste fermentation and its application, J. Appl. Microbiol. (1999). doi:10.1046/j.1365- 1670 2672.1999.00843.x. otwiera się w nowej karcie
  174. A.M.F. Milagres, E. Santos, T. Piovan, I.C. Roberto, Production of xylanase by 1672 Thermoascus aurantiacus from sugar cane bagasse in an aerated growth fermentor, 1673 otwiera się w nowej karcie
  175. Process Biochem. (2004). doi:10.1016/S0032-9592(03)00272-3. otwiera się w nowej karcie
  176. R.S. Prakasham, C.S. Rao, P.N. Sarma, Green gram husk-an inexpensive substrate for 1675 alkaline protease production by Bacillus sp. in solid-state fermentation, Bioresour. 1676 otwiera się w nowej karcie
  177. Technol. (2006). doi:10.1016/j.biortech.2005.07.015. otwiera się w nowej karcie
  178. P.T. Sangeetha, M.N. Ramesh, S.G. Prapulla, Production of fructosyl transferase by 1678 otwiera się w nowej karcie
  179. Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products, 1679 otwiera się w nowej karcie
  180. Appl. Microbiol. Biotechnol. (2004). doi:10.1007/s00253-004-1618-2. otwiera się w nowej karcie
  181. Fedailaine M, Moussi K, Khitous M, A. S, Saber M, Tirichine N, ScienceDirect 1681 Modeling of the anaerobic digestion of organic waste for biogas production, Procedia 1682 Comput. Sci. 52 (2015) 730-737. doi:10.1016/j.procs.2015.05.086. otwiera się w nowej karcie
  182. M. C, S. Beevi, ScienceDirect Mathematical Modeling and Simulation of Anaerobic 1684 Digestion of Solid Waste, Procedia Technol. 24 (2016) 654-660. 1685 doi:10.1016/j.protcy.2016.05.174. otwiera się w nowej karcie
  183. K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion process for biogas 1687 production : Progress , challenges and perspectives, Renew. Sustain. Energy Rev. 76 1688 (2017) 1485-1496. doi:10.1016/j.rser.2016.11.184. otwiera się w nowej karcie
  184. J. Lauwers, L. Appels, I.P. Thompson, J. Degrève, J.F. Van Impe, R. Dewil, 1690 Mathematical modelling of anaerobic digestion of biomass and waste: Power and 1691 limitations, Prog. Energy Combust. Sci. 39 (2013) 383-402. 1692 doi:10.1016/j.pecs.2013.03.003. otwiera się w nowej karcie
  185. M. Lübken, T. Gehring, M. Wichern, Microbiological fermentation of lignocellulosic 1694 biomass: current state and prospects of mathematical modeling, (n.d.). 1695 doi:10.1007/s00253-009-2365-1. otwiera się w nowej karcie
  186. D.J. Batstone, D. Puyol, X. Flores-Alsina, J. Rodríguez, Mathematical modelling of 1697 anaerobic digestion processes: applications and future needs, Rev. Environ. Sci. 1698 otwiera się w nowej karcie
  187. Biotechnol. 14 (2015) 595-613. doi:10.1007/s11157-015-9376-4. otwiera się w nowej karcie
  188. M. Lübken, M. Wichern, M. Schlattmann, A. Gronauer, H. Horn, Modelling the energy 1700 balance of an anaerobic digester fed with cattle manure and renewable energy crops, 1701 otwiera się w nowej karcie
  189. Water Res. 41 (2007) 4085-4096. doi:10.1016/j.watres.2007.05.061. otwiera się w nowej karcie
  190. F. Boubaker, B.C. Ridha, Modelling of the mesophilic anaerobic co-digestion of olive 1703 mill wastewater with olive mill solid waste using anaerobic digestion model, 1704 otwiera się w nowej karcie
  191. Bioresour. Technol. 99 (2008) 6565-6577. doi:10.1016/j.biortech.2007.11.035. otwiera się w nowej karcie
  192. K. Derbal, M. Bencheikh-lehocine, F. Cecchi, A.H. Meniai, P. Pavan, Application of 1706 the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste 1707 activated sludge in mesophilic condition, Bioresour. Technol. 100 (2009) 1539-1543. 1708 doi:10.1016/j.biortech.2008.07.064. otwiera się w nowej karcie
  193. A. Galí, T. Benabdallah, S. Astals, J. Mata-Alvarez, Modified version of ADM1 model 1710 for agro-waste application, Bioresour. Technol. 100 (2009) 2783-2790. 1711 doi:10.1016/j.biortech.2008.12.052. otwiera się w nowej karcie
  194. B.H. Zhao, Z.B. Yue, B.J. Ni, Y. Mu, H.Q. Yu, H. Harada, Modeling anaerobic 1713 digestion of aquatic plants by rumen cultures: Cattail as an example, Water Res. 43 1714 (2009) 2047-2055. doi:10.1016/j.watres.2009.02.006. otwiera się w nowej karcie
  195. K. Koch, M. Lübken, T. Gehring, M. Wichern, H. Horn, Biogas from grass silage - 1716 Measurements and modeling with ADM1, Bioresour. Technol. 101 (2010) 8158-8165. 1717 doi:10.1016/j.biortech.2010.06.009. otwiera się w nowej karcie
  196. G. Esposito, L. Frunzo, A. Panico, F. Pirozzi, Modelling the effect of the OLR and 1719 OFMSW particle size on the performances of an anaerobic co-digestion reactor, 1720 otwiera się w nowej karcie
  197. Process Biochem. 46 (2011) 557-565. doi:10.1016/j.procbio.2010.10.010. otwiera się w nowej karcie
  198. H. Zhou, D. Löffler, M. Kranert, Model-based predictions of anaerobic digestion of 1722 agricultural substrates for biogas production, Bioresour. Technol. 102 (2011) 10819- 1723 10828. doi:10.1016/j.biortech.2011.09.014. otwiera się w nowej karcie
  199. R. Girault, G. Bridoux, F. Nauleau, C. Poullain, J. Buffet, J.P. Steyer, A.G. Sadowski, 1725 otwiera się w nowej karcie
  200. F. Béline, A waste characterisation procedure for ADM1 implementation based on 1726 degradation kinetics, Water Res. 46 (2012) 4099-4110. 1727 doi:10.1016/j.watres.2012.04.028. otwiera się w nowej karcie
  201. P. Rivas-García, J.E. Botello-Álvarez, A. Estrada-Baltazar, J.L. Navarrete-Bolaños, 1729 Numerical study of microbial population dynamics in anaerobic digestion through the 1730 otwiera się w nowej karcie
  202. Anaerobic Digestion Model No. 1 (ADM1), Chem. Eng. J. 228 (2013) 87-92. 1731 doi:10.1016/j.cej.2013.05.013. otwiera się w nowej karcie
  203. D. Poggio, M. Walker, W. Nimmo, L. Ma, M. Pourkashanian, Modelling the anaerobic 1733 digestion of solid organic waste -Substrate characterisation method for ADM1 using a 1734 combined biochemical and kinetic parameter estimation approach, Waste Manag. 53 1735 (2016) 40-54. doi:10.1016/j.wasman.2016.04.024. otwiera się w nowej karcie
  204. X.S. Shi, X.Z. Yuan, Y.P. Wang, S.J. Zeng, Y.L. Qiu, R.B. Guo, L.S. Wang, Modeling 1737 of the methane production and pH value during the anaerobic co-digestion of dairy 1738 manure and spent mushroom substrate, Chem. Eng. J. 244 (2014) 258-263. 1739 doi:10.1016/j.cej.2014.02.007. otwiera się w nowej karcie
  205. E. Klimiuk, Z.M. Gusiatin, K. Bułkowska, T. Pokój, S. Rynkowska, ADM1-based 1741 modeling of anaerobic codigestion of maize silage and cattle manure -a feedstock 1742 characterisation for model implementation (part I), Arch. Environ. Prot. 41 (2015) 20- 1743 27. doi:10.1515/aep-2015-0026. otwiera się w nowej karcie
  206. K. Bułkowska, I. Białobrzewski, Z.M. Gusiatin, E. Klimiuk, T. Pokój, ADM1-based 1745 modeling of anaerobic codigestion of maize silage and cattle manure -calibration of 1746 parameters and model verification (part II) / Modelowanie kofermentacji kiszonki 1747 kukurydzy i obornika bydlęcego za pomocą ADM1 -kalibracja i weryfikacja model, 1748 Arch. Environ. Prot. 41 (2015) 20-27. doi:10.1515/aep-2015-0027. otwiera się w nowej karcie
  207. P.G. Rathnasiri, Dynamic modelling and simulation of pilot scale anaerobic digestion 1750 plant treating source separated food waste and effect of recycling sludge, Procedia 1751 Environ. Sci. 35 (2016) 740-748. doi:10.1016/j.proenv.2016.07.082. otwiera się w nowej karcie
  208. E. Jurado, G. Antonopoulou, G. Lyberatos, H.N. Gavala, I. V. Skiadas, Continuous 1753 anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of 1754 swine manure fibers pretreated with aqueous ammonia soaking, Appl. Energy. 172 1755 (2016) 190-198. doi:10.1016/j.apenergy.2016.03.072. otwiera się w nowej karcie
  209. U. Jeppsson, M.-N. Pons, I. Nopens, J. Alex, J.B. Copp, K.V. Gernaey, C. Rosen, J.-P.
  210. Steyer, P.A. Vanrolleghem, Benchmark simulation model no 2: general protocol and 1758 exploratory case studies, Water Sci. Technol. 56 (2007) 67. doi:10.2166/wst.2007.604. 1759 otwiera się w nowej karcie
  211. M. Arnell, L. Amand, Anaerobic co-digestion in plant-wide wastewater treatment 1760 models, Faculty of Engineering, Lund University, 2014.
  212. K. Solon, X. Flores-Alsina, K. V. Gernaey, U. Jeppsson, Effects of influent 1762 fractionation, kinetics, stoichiometry and mass transfer on CH 4 , H 2 and CO 2 1763 production for (plant-wide) modeling of anaerobic digesters, Water Sci. Technol. 71 1764 (2015) 870-877. doi:10.2166/wst.2015.029. otwiera się w nowej karcie
  213. M. Arnell, A. Aergi, L. Amand, D.J. Batstone, P.D. Jensen, U. Jeppson, Modelling 1766 anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, 1767 substrate characterisation and plant-wide integration, Water Res. 98 (2016) 138-146. 1768 doi:10.1016/J.WATRES.2016.03.070. otwiera się w nowej karcie
  214. W. Zhong, Z. Zhang, Y. Luo, S. Sun, W. Qiao, M. Xiao, Effect of biological 1770 pretreatments in enhancing corn straw biogas production, Bioresour. Technol. 102 1771 (2011) 11177-11182. doi:10.1016/j.biortech.2011.09.077. otwiera się w nowej karcie
  215. C. Veluchamy, A.S. Kalamdhad, Enhanced methane production and its kinetics model 1773 of thermally pretreated lignocellulose waste material, (2017). 1774 doi:10.1016/j.biortech.2017.05.068. otwiera się w nowej karcie
  216. K.V.R. MH Zwietering, Il Jongenburger, FM Rombouts, Modeling of the bacterial 1776 growth curve, Appl. Environ. Microbiol. 6 (1990) 1875-1881. otwiera się w nowej karcie
  217. M. Das Ghatak, P. Mahanta, Kinetic Assessment of Biogas Production from 1778 Lignocellulosic Biomasses, Int. J. Eng. Adv. Technol. (2014) 2249-8958.
  218. A. Abdelhay, A. Albsoul, F. Hadidi, A. Abuothman, Optimization and Modeling of 1782 Biogas Production From Green Waste/Biowaste Co-Digestion Using Leachate and 1783 Sludge, CLEAN -Soil, Air, Water. 44 (2016) 1557-1563. 1784 doi:10.1002/clen.201500514. otwiera się w nowej karcie
  219. M. Das Ghatak, P. Mahanta, Kinetic model development for biogas production from 1786 cattle dung, in: 2017: p. 20010. doi:10.1063/1.4990163. otwiera się w nowej karcie
  220. M. Cui, Z. Yuan, X. Zhi, L. Wei, J. Shen, Biohydrogen production from poplar leaves 1788 pretreated by different methods using anaerobic mixed bacteria, Int. J. Hydrogen 1789 Energy. 35 (2010) 4041-4047. doi:10.1016/j.ijhydene.2010.02.035. otwiera się w nowej karcie
  221. H. Han, L. Wei, B. Liu, H. Yang, J. Shen, Optimization of biohydrogen production 1791 from soybean straw using anaerobic mixed bacteria, Int. J. Hydrogen Energy. 37 1792 (2012) 13200-13208. doi:10.1016/j.ijhydene.2012.03.073. otwiera się w nowej karcie
  222. M. Quéméneur, M. Bittel, E. Trably, C. Dumas, L. Fourage, G. Ravot, J.P. Steyer, H. 1794 otwiera się w nowej karcie
  223. Carrère, Effect of enzyme addition on fermentative hydrogen production from wheat 1795 straw, Int. J. Hydrogen Energy. 37 (2012) 10639-10647. 1796 doi:10.1016/j.ijhydene.2012.04.083. otwiera się w nowej karcie
  224. M. Quéméneur, J. Hamelin, A. Barakat, J.-P. Steyer, H. Carrère, E. Trably, Inhibition 1798 of fermentative hydrogen production by lignocellulose-derived compounds in mixed 1799 cultures, Int. J. Hydrogen Energy. 37 (2012) 3150-3159. 1800 doi:10.1016/j.ijhydene.2011.11.033. otwiera się w nowej karcie
  225. G. Kumar, B. Sen, P. Sivagurunathan, C.Y. Lin, Comparative evaluation of hydrogen 1802 fermentation of de-oiled Jatropha waste hydrolyzates, Int. J. Hydrogen Energy. 40 1803 (2015) 10766-10774. doi:10.1016/j.ijhydene.2015.06.118. otwiera się w nowej karcie
  226. M. Reilly, R. Dinsdale, A. Guwy, Mesophilic biohydrogen production from calcium 1805 hydroxide treated wheat straw, Int. J. Hydrogen Energy. 39 (2014) 16891-16901. 1806 doi:10.1016/j.ijhydene.2014.08.069. otwiera się w nowej karcie
  227. Y. Yin, J. Wang, Fermentative Hydrogen Production from Waste Sludge Solubilized 1808 by Low-Pressure Wet Oxidation Treatment, Energy & Fuels. 30 (2016) 5878-5884. 1809 doi:10.1021/acs.energyfuels.6b01034. otwiera się w nowej karcie
  228. D. Liu, R.Y. Li, M. Ji, Y.M. Cai, Enhanced hydrogen and methane production from 1811 sewage sludge by addition of cornstalk in two-stage fermentation process, Asian J. otwiera się w nowej karcie
  229. Chem. 25 (2013) 6535-6539. doi:10.14233/ajchem.2013.14347. otwiera się w nowej karcie
  230. X. Liu, R. Li, M. Ji, L. Han, Hydrogen and methane production by co-digestion of 1814 waste activated sludge and food waste in the two-stage fermentation process: Substrate 1815 conversion and energy yield, Bioresour. Technol. 146 (2013) 317-323. 1816 doi:10.1016/j.biortech.2013.07.096. otwiera się w nowej karcie
  231. S. Eker, M. Sarp, Hydrogen gas production from waste paper by dark fermentation: 1818 Effects of initial substrate and biomass concentrations, Int. J. Hydrogen Energy. 42 1819 (2017) 2562-2568. doi:10.1016/j.ijhydene.2016.04.020. otwiera się w nowej karcie
  232. R.R. Gonzales, P. Sivagurunathan, S.H. Kim, Effect of severity on dilute acid 1821 pretreatment of lignocellulosic biomass and the following hydrogen fermentation, Int. otwiera się w nowej karcie
  233. J. Hydrogen Energy. 41 (2016) 21678-21684. doi:10.1016/j.ijhydene.2016.06.198. 1823 otwiera się w nowej karcie
  234. P.S. Chong, J.M. Jahim, S. Harun, S.S. Lim, S.A. Mutalib, O. Hassan, M.T.M. Nor, 1824 Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil 1825 palm empty fruit bunch, Int. J. Hydrogen Energy. 38 (2013) 9592-9599. 1826 doi:10.1016/j.ijhydene.2013.01.154. otwiera się w nowej karcie
  235. X. Zhang, X. Ye, B. Guo, K.T. Finneran, J.L. Zilles, E. Morgenroth, Lignocellulosic 1828 hydrolysates and extracellular electron shuttles for H2 production using co-culture 1829 fermentation with Clostridium beijerinckii and Geobacter metallireducens, Bioresour. 1830 otwiera się w nowej karcie
  236. Technol. 147 (2013) 89-95. doi:10.1016/j.biortech.2013.07.106. otwiera się w nowej karcie
  237. H. Argun, S. Dao, Bio-hydrogen production from waste peach pulp by dark 1832 fermentation: Effect of inoculum addition, Int. J. Hydrogen Energy. 42 (2017) 2569- 1833 2574. doi:10.1016/j.ijhydene.2016.06.225. otwiera się w nowej karcie
  238. M.R. Boni, S. Sbaffoni, L. Tuccinardi, P. Viotti, Development and calibration of a 1835 model for biohydrogen production from organic waste, Waste Manag. 33 (2013) 1128- 1836 1135. doi:10.1016/j.wasman.2013.01.019. otwiera się w nowej karcie
  239. D.D. Nath K, Modeling and optimization of fermentative hydrogen production., 1838 otwiera się w nowej karcie
  240. Bioresour Technol. 102 (2011) 8569-81. doi:10.1016/j.biortech.2011.03.108. otwiera się w nowej karcie
  241. L. Singh, Z.A. Wahid, Methods for enhancing bio-hydrogen production from 1840 biological process: A review, J. Ind. Eng. Chem. 21 (2015) 70-80. 1841 doi:10.1016/j.jiec.2014.05.035. otwiera się w nowej karcie
  242. D.C. Montgomery, Design and Analysis of Experiments, Eighth Edition, John Wiley & 1843 Sons Inc., 2013. doi:10.1198/tech.2006.s372. otwiera się w nowej karcie
  243. J. Wang, W. Wan, Factors influencing fermentative hydrogen production: A review, 1845 otwiera się w nowej karcie
  244. Int. J. Hydrogen Energy. 34 (2009) 799-811. doi:10.1016/j.ijhydene.2008.11.015. 1846 otwiera się w nowej karcie
  245. Y. Sewsynker, E.B. Gueguim Kana, Intelligent models to predict hydrogen yield in 1847 dark microbial fermentations using existing knowledge, Int. J. Hydrogen Energy. 41 1848 (2016) 12929-12940. doi:10.1016/j.ijhydene.2016.05.250. otwiera się w nowej karcie
  246. O.S. Dahunsi, S. Oranusi, E. V Efeovbokhan, Anaerobic mono-digestion of Tithonia 1850 diversifolia (Wild Mexican sunflower), Energy Convers. Manag. 148 (2017) 128-145. 1851 doi:10.1016/j.enconman.2017.05.056. otwiera się w nowej karcie
  247. S.O. Dahunsi, S. Oranusi, J.B. Owolabi, V.E. Efeovbokhan, Synergy of Siam weed 1853 (Chromolaena odorata) and poultry manure for energy generation: Effects of 1854 pretreatment methods, modeling and process optimization, Bioresour. Technol. 225 1855 (2017) 409-417. doi:10.1016/j.biortech.2016.11.123. otwiera się w nowej karcie
  248. [191] S.O. Dahunsi, S. Oranusi, V.E. Efeovbokhan, Cleaner energy for cleaner production: 1857 Modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit 1858 peels, J. Clean. Prod. 156 (2017) 19-29. doi:10.1016/j.jclepro.2017.04.042. otwiera się w nowej karcie
  249. [192] S.O. Dahunsi, S. Oranusi, J.B. Owolabi, V.E. Efeovbokhan, Mesophilic anaerobic co- 1860 digestion of poultry dropping and Carica papaya peels: Modelling and process 1861 parameter optimization study, Bioresour. Technol. 216 (2016) 587-600. 1862 doi:10.1016/j.biortech.2016.05.118. otwiera się w nowej karcie
  250. S.O. Dahunsi, S. Oranusi, J.B. Owolabi, V.E. Efeovbokhan, Comparative biogas 1864 generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its 1865 optimization, Bioresour. Technol. 221 (2016) 517-525. 1866 doi:10.1016/j.biortech.2016.09.065. otwiera się w nowej karcie
  251. A. Menon, J. Wang, A. Giannis, Optimization of micronutrient supplement for 1868 enhancing biogas production from food waste in two-phase thermophilic anaerobic 1869 digestion, Waste Manag. 59 (2017) 465-475. doi:10.1016/j.wasman.2016.10.017. otwiera się w nowej karcie
  252. T.R.T. Yusof, H.C. Man, A.A. Rahman, H.S. Hafid, Optimization of Methane Gas 1871 Production From Co-Digestion of Food Waste and Poultry Manure Using Artificial 1872 Neural Network and Response Surface Methodology, J. Agric. Sci. 6 (2014). 1873 doi:10.5539/jas.v6n7p27. otwiera się w nowej karcie
  253. [196] S. Sathish, S. Vivekanandan, Parametric optimization for floating drum anaerobic bio- 1875 digester using Response Surface Methodology and Artificial Neural Network, (2016). 1876 doi:10.1016/j.aej.2016.08.010. otwiera się w nowej karcie
  254. P.T. Sekoai, E.B. Gueguim Kana, A two-stage modelling and optimization of 1878 biohydrogen production from a mixture of agro-municipal waste, Int. J. Hydrogen 1879 Energy. 38 (2013) 8657-8663. doi:10.1016/j.ijhydene.2013.04.130. otwiera się w nowej karcie
  255. G. Kumar, P. Sivagurunathan, S.-H. Kim, P. Bakonyi, C.-Y. Lin, Modeling and 1881 Optimization of Biohydrogen Production from De-oiled Jatropha Using the Response 1882 Surface Method, Arab. J. Sci. Eng. 40 (2015) 15-22. doi:10.1007/s13369-014-1502-z. otwiera się w nowej karcie
  256. F. Ismail, S. Abd-Aziz, C. MeiLing, M.A. Hassan, Statistical optimization of 1884 biohydrogen production using food waste under thermophilic conditions., Open 1885 Renew. Energy J. 2 (2009) 124-131. otwiera się w nowej karcie
  257. P.T. Sekoai, Modelling and Optimization of Operational Setpoint Parameters for 1887 otwiera się w nowej karcie
  258. Maximum Fermentative Biohydrogen Production Using Box-Behnken Design, (2016). 1888 doi:10.3390/fermentation2030015. otwiera się w nowej karcie
  259. [201] S. Sangyoka, A. Reungsang, C.-Y. Lin, Optimization of biohydrogen production from 1890 sugarcane bagasse by mixed cultures using a statistical method, Sustain. Environ. Res. 1891 26 (2016) 235-242. doi:10.1016/j.serj.2016.05.001. otwiera się w nowej karcie
  260. H. Argun, S. Dao, Hydrogen gas production from waste peach pulp by dark 1893 fermentation and electrohydrolysis, Int. J. Hydrogen Energy. 41 (2016) 11568-11576. 1894 doi:10.1016/j.ijhydene.2015.11.170. otwiera się w nowej karcie
  261. P. Moondley, E.B.G. Kana, Optimization of Operational Parameters for Biohydrogen 1896 Production from Waste Sugarcane Leaves and Semi-Pilot, Bioresources. 12 (2017) 1897 2015-2030. doi:10.15376/biores.12.1.2015-2030. otwiera się w nowej karcie
  262. R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments, 1899 2nd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2003. doi:10.2307/2289624. 1900 otwiera się w nowej karcie
  263. J.S. Almeida, Predictive non-linear modeling of complex data by artificial neural 1901 networks, Curr. Opin. Biotechnol. 13 (2002) 72-76. otwiera się w nowej karcie
  264. F. Xu, Z.W. Wang, Y. Li, Predicting the methane yield of lignocellulosic biomass in 1903 mesophilic solid-state anaerobic digestion based on feedstock characteristics and 1904 process parameters, Bioresour. Technol. 173 (2014) 168-176. 1905 doi:10.1016/j.biortech.2014.09.090. otwiera się w nowej karcie
  265. V. V Nair, H. Dhar, S. Kumar, A. Kumar, S. Mukherjee, J.W.C. Wong, Artificial 1907 neural network based modeling to evaluate methane yield from biogas in a laboratory- 1908 scale anaerobic bioreactor, Bioresour. Technol. . 217 (2016) 90-99. 1909 doi:10.1016/j.biortech.2016.03.046. otwiera się w nowej karcie
  266. T. Beltramo, C. Ranzan, J. Hinrichs, B. Hitzmann, Artificial neural network prediction 1911 of the biogas flow rate optimised with an ant colony algorithm, Biosyst. Eng. 143 1912 (2016) 68-78. doi:10.1016/j.biosystemseng.2016.01.006. otwiera się w nowej karcie
  267. E.B.G. Kana, J.K. Oloke, A. Lateef, M.O. Adesiyan, Modeling and optimization of 1914 biogas production on saw dust and other co-substrates using Artificial Neural network 1915 and Genetic Algorithm, Renew. Energy. 46 (2012) 276-281. 1916 doi:10.1016/j.renene.2012.03.027. otwiera się w nowej karcie
  268. D.P.B.T.B. Strik, A.M. Domnanovich, L. Zani, R. Braun, P. Holubar, Prediction of 1918 trace compounds in biogas from anaerobic digestion using the MATLAB Neural 1919 Network Toolbox, Environ. Model. Softw. (2005). doi:10.1016/j.envsoft.2004.09.006. 1920 otwiera się w nowej karcie
  269. R.S. Prakasham, T. Sathish, P. Brahmaiah, Imperative role of neural networks coupled 1921 genetic algorithm on optimization of biohydrogen yield, Int. J. Hydrogen Energy. 36 1922 (2011) 4332-4339. doi:10.1016/j.ijhydene.2011.01.031. otwiera się w nowej karcie
  270. J.K. Whiteman, E.B.G. Kana, Comparative Assessment of the Artificial Neural 1924 Network and Response Surface Modelling Efficiencies for Biohydrogen Production on 1925 Sugar Cane Molasses, Bioenergy Res. 7 (2014) 295-305. doi:10.1007/s12155-013- 1926 9375-7. otwiera się w nowej karcie
  271. Y. Shi, G.S. Gai, X.T. Zhao, J.J. Zhu, P. Zhang, Back propagation neural network 1928 (BPNN) simulation model and influence of operational parameters on hydrogen bio- 1929 production through integrative biological reactor (IBR) treating wastewater, in: 2010 1930 4th Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2010, 2010. 1931 doi:10.1109/ICBBE.2010.5518251. otwiera się w nowej karcie
  272. N. Nasr, H. Hafez, M.H. El Naggar, G. Nakhla, Application of artificial neural 1933 networks for modeling of biohydrogen production, Int. J. Hydrogen Energy. 38 (2013) 1934 3189-3195. doi:10.1016/j.ijhydene.2012.12.109. otwiera się w nowej karcie
  273. M. Nasr, A. Tawfik, S. Ookawara, M. Suzuki, Prediction of Hydrogen Production 1936 Using Artificial Neural Network, in: Seventeenth Int. Water Technol. Conf., 2013. 1937 otwiera się w nowej karcie
  274. L.M. Rosales-Colunga, R. González-García, A. De León Rodríguez, Estimation of 1938 hydrogen production in genetically modified E. coli fermentations using an artificial 1939 neural network, Int. J. Hydrogen Energy. 35 (2010) 13186-13192. 1940 doi:10.1016/j.ijhydene.2010.08.137. otwiera się w nowej karcie
  275. J. Wang, W. Wan, Experimental design methods for fermentative hydrogen production: 1942 A review, Int. J. Hydrogen Energy. 34 (2009) 235-244. 1943 doi:10.1016/j.ijhydene.2008.10.008. otwiera się w nowej karcie
  276. J. Wang, W. Wan, Optimization of fermentative hydrogen production process using 1945 genetic algorithm based on neural network and response surface methodology, Int. J. 1946 Hydrogen Energy. 34 (2009) 255-261. doi:10.1016/j.ijhydene.2008.10.010. otwiera się w nowej karcie
  277. P. Jha, E.B.G. Kana, S. Schmidt, Can artificial neural network and response surface 1948 methodology reliably predict hydrogen production and COD removal in an UASB 1949 bioreactor?, J. Hydrog. Energy. 42 (2017) 18875-18883. 1950 doi:10.1016/j.ijhydene.2017.06.063. otwiera się w nowej karcie
  278. A. El-Shafie, Neural network nonlinear modeling for hydrogen production using 1952 anaerobic fermentation, Neural Comput. Appl. 24 (2014) 539-547. 1953 doi:10.1007/s00521-012-1268-8. otwiera się w nowej karcie
  279. Y. Sewsynker-Sukai, E.B. Gueguim Kana, Does the volume matter in bioprocess 1955 model development? An insight into modelling and optimization of biohydrogen 1956 production, Int. J. Hydrogen Energy. 42 (2017) 5780-5792. 1957 doi:10.1016/j.ijhydene.2017.02.074. otwiera się w nowej karcie
  280. N. Qureshi, B.C. Saha, B. Dien, R.E. Hector, M.A. Cotta, Production of butanol (a 1959 biofuel) from agricultural residues: Part I -Use of barley straw hydrolysate, Biomass 1960 and Bioenergy. 34 (2010) 566-71. doi:10.1016/j.biombioe.2009.12.024. otwiera się w nowej karcie
  281. M.E. Nissilä, C.H. Lay, J.A. Puhakka, Dark fermentative hydrogen production from 1962 lignocellulosic hydrolyzates -A review, Biomass and Bioenergy. 67 (2014) 145-159. 1963 doi:10.1016/j.biombioe.2014.04.035. otwiera się w nowej karcie
Źródła finansowania:
  • UMO-2014/13/B/ST8/04258
Weryfikacja:
Politechnika Gdańska

wyświetlono 293 razy

Publikacje, które mogą cię zainteresować

Meta Tagi