Large deformation modelling of CPT probing in soft soil—pore water pressure analysis - Publikacja - MOST Wiedzy

Wyszukiwarka

Large deformation modelling of CPT probing in soft soil—pore water pressure analysis

Abstrakt

This paper presents the results of finite element modelling with Updated Lagrangian formulation of the Cone Penetration Test in soft soil deposit located in Jazowa, Poland. The numerical calculations are carried out for homogenous, normally consolidated, organic soil layer. The Modified Cam Clay constitutive model for soft soil and Coulomb model for interface are used. The study compares the registered pore water pressure distributions for type-2 piezocone observed during in-situ penetration and corresponding numerical model. The numerical dissipation test is carried out and the results are confronted with in-situ registered data. The influence of orthotropic soil hydraulic conductivity on pore water pressure development at shoulder filter element during dissipation tests is examined. Finally, the distribution of pore water pressures around the piezocone obtained from numerical simulations is compared with high quality literature database.

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
Cone Penetration Testing 2018: Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18) strony 371 - 376
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Konkol J., Bałachowski L.: Large deformation modelling of CPT probing in soft soil—pore water pressure analysis// Cone Penetration Testing 2018: Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18)/ ed. Michael A. Hicks, Federico Pisanò, Joek Peuchen : , 2018, s.371-376
Bibliografia: test
  1. Ansari, Y., Merifield, M. & Sheng, D. 2014. A piezocone dissipation test interpretation method for hydraulic conductivity of soft clays. Soils and Foundations, 54(6): 1104-1116. otwiera się w nowej karcie
  2. Beuth, L. & Vermeer, P.A. 2013. Large deformation analy- sis of cone penetration in undrained clay. In M.A. Hicks et al. (eds.), Installation effects in geotechnical engineer- ing, Proc. intern. conf., Rotterdam, The Netherlands, 24-27 March 2013. London, UK: Taylor & Francis. otwiera się w nowej karcie
  3. Burns, S.E. & Mayne, P.W. 1998. Monotonic and dila- tory pore-pressure decay during piezocone tests in clay. Canadian Geotechnical Journal, 35(6): 1063-1073. otwiera się w nowej karcie
  4. Campanella, R.G., Robertson, P.K. & Gillespie, D. 1986. Factors affecting the pore water pressure and its meas- urements around the penetrating cone. In Proceedings of 39th Canadian Geotechnical Conference. Ottawa, Canada.
  5. Ceccato, F., Beuth, L. & Simonini, P. 2016. Analysis of Piezocone Penetration under Different Drainage Con- ditions with the Two-Phase Material Point Method. Journal of Geotechnical and Geoenvironmental Engineer- ing, 140(12): 04016066. otwiera się w nowej karcie
  6. Chai, J., Hossain, M.J., Carter, J.P. & Shen, S.-L. 2014. Cone penetration-induced pore pressure distribution and dis- sipation. Computers and Geotechnics, 57: 105-113. otwiera się w nowej karcie
  7. Chai, J., Sheng, D. & Zhu, H. 2012. Coefficient of consoli- dation from non-standard piezocone dissipation curves. Computers and Geotechnics, 41: 13-22. otwiera się w nowej karcie
  8. Chen, B.S.Y. & Mayne, P.W. 1994. Profiling the overconsoli- dation ratio of clays by piezocone tests. Internal Report GIT-CEEGEO-94-1. Atlanta: Georgia Institute of Technology. otwiera się w nowej karcie
  9. Konkol, J. 2017. Numerical analysis of pile installation effects in cohesive soils. PhD Thesis. Gdańsk: Gdańsk University of Technology. otwiera się w nowej karcie
  10. Kulhawy, F.H. & Mayne, P.W. 1990. Manual on estimating soil properties for foundation design. Palo Alto, Califor- nia, USA: Electric Power Research Institute. otwiera się w nowej karcie
  11. Mabsout, M.E. & Tassoulas, J.L. 1994. A finite element model for the simulation of pile driving. International Journal for Numerical Methods in Engineering, 37(2): 257-278. otwiera się w nowej karcie
  12. Mahmoodzadeh, H., Randolph, M.F. & Wang, D. 2014. Numerical simulation of piezocone dissipation test in clays. Géotechnique, 64(8): 657-666. otwiera się w nowej karcie
  13. Robertson, P.K. 2010. Estimating in-situ soil permeability from CPT & CPTu. In Proceedings of 2nd International Symposium on Cone Penetration Testing. Pomona, Cali- fornia, USA: California State Polytechnic University.
  14. Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.M.M. & Gillespie, D.G. 1992. Estimating coefficient of consolidation from piezocone tests. Canadian Geo- technical Journal, 29(4): 539-550. otwiera się w nowej karcie
  15. Sheng, D., Kelly, R., Pineda, J. & Bates, L. 2014. Numerical study of rate effects in cone penetration test. In Proceed- ings of 3rd International Symposium on Cone Penetration Testing. Las Vegas, Nevada, USA. otwiera się w nowej karcie
  16. Suzuki, Y. 2015. Investigation and interpretation of cone penetration rate effects. PhD Thesis. Perth, Australia: University of Western Australia.
  17. Tsubakihara, Y. & Kishida H. 1993. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses. Soils and Foundations, 33(2): 1-13. otwiera się w nowej karcie
  18. Van den Berg, P. 1994. Analysis of soil penetration. PhD Thesis. Delft, Netherlands: Delft University of Technology.
  19. Vardanega, P.J. & Bolton, M.D. 2013. Stiffness of clays and silts: Normalizing shear modulus and shear strain. Jour- nal of Geotechnical and Geoenvironmental Engineering, 139(9): 1575-1589. otwiera się w nowej karcie
  20. Wroth, C.P. 1984. Interpretation of in situ soil tests. Géo- technique, 34(4): 449-489. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 29 razy

Publikacje, które mogą cię zainteresować

Meta Tagi