Learning sperm cells part segmentation with class-specific data augmentation - Publikacja - MOST Wiedzy

Wyszukiwarka

Learning sperm cells part segmentation with class-specific data augmentation

Abstrakt

Infertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation. However, fertility assessment algorithms often neglect individual spermatozoon tail and its beating patterns because recognizing the tails in blurry microscopic images reliably is challenging. In this article, we propose that models trained with head and tail part classes can better localize parts and segment the whole spermatozoon objects. Usually, the training of segmentation sperm models is supported by image-level augmentation. We argue that models guided by class-specific data augmentation attend to less discriminative sperm parts. To demonstrate this, we decouple the augmentation into object-level and background augmentation for the sperm part segmentation problem. Our proposed method outperforms state-of-the-art methods on the SegSperm dataset. Moreover, our ablation studies confirm the effectiveness of the proposed part-based object representation and augmentation.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Jankowski M., Lewandowska E., Talbot H., Węsierski D., Węsierska A.: Learning sperm cells part segmentation with class-specific data augmentation// / : , 2024,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi61632.2024.10613572
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 35 razy

Publikacje, które mogą cię zainteresować

Meta Tagi