Locally Adaptive Cooperative Kalman Smoothing and Its Application to Identification of Nonstationary Stochastic Systems
Abstrakt
One of the central problems of the stochastic approximation theory is the proper adjustment of the smoothing algorithm to the unknown, and possibly time-varying, rate and mode of variation of the estimated signals/parameters. In this paper we propose a novel locally adaptive parallel estimation scheme which can be used to solve the problem of fixed-interval Kalman smoothing in the presence of model uncertainty. The proposed solution is based on the idea of cooperative smoothing - the Bayesian extension of the leave-one-out cross-validation approach to model selection. Within this approach the smoothed estimates are evaluated as a convex combination of the estimates provided by several competing smoothers. We derive computationally attractivealgorithms allowing for cooperative Kalman smoothing and show how the proposed approach can be applied to identification of nonstationary stochastic systems.
Cytowania
-
1 8
CrossRef
-
0
Web of Science
-
2 0
Scopus
Autor (1)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tsp.2011.2172432
- Licencja
- Copyright (2011 IEEE)
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuł w czasopiśmie wyróżnionym w JCR
- Opublikowano w:
-
IEEE TRANSACTIONS ON SIGNAL PROCESSING
nr 60,
strony 48 - 59,
ISSN: 1053-587X - Język:
- angielski
- Rok wydania:
- 2012
- Opis bibliograficzny:
- Niedźwiecki M.: Locally Adaptive Cooperative Kalman Smoothing and Its Application to Identification of Nonstationary Stochastic Systems// IEEE TRANSACTIONS ON SIGNAL PROCESSING. -Vol. 60, nr. Iss. 1 (2012), s.48-59
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/tsp.2011.2172432
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 111 razy