Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc - Publikacja - MOST Wiedzy

Wyszukiwarka

Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc

Abstrakt

Glucosamine-6-phosphate synthase (EC 2.6.1.16) is responsible for catalysis of the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5 diphospho Nacetyl- d-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes of it a potential target for anti-fungal, anti-bacterial and anti-diabetic therapy. The crystal structure of isomerase domain from human pathogenic fungus Candida albicans has been solved recently but it doesn’t reveal the molecular mechanism details of inhibition taking place under UDP-GlcNAc influence, the unique feature of eukaryotic enzyme. The following study is a continuation of the previous research based on comparative molecular dynamics simulations of the structures with and without the enzyme’s physiological inhibitor (UDP-GlcNAc) bound. The models used for this study included fructose-6-phosphate, one of the enzyme’s substrates in its binding pocket. The simulation results studies demonstrated differences in mobility of the compared structures. Some amino acid residues were determined, for which flexibility is evidently different between the models. Importantly, it has been confirmed that the most fixed residues are related to the inhibitor binding process and to the catalysis reaction. The obtained results constitute an important step towards understanding of the inhibition that GlcN-6-P synthase is subjected by UDP-GlcNAc molecule

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 18 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF MOLECULAR GRAPHICS & MODELLING nr 78, strony 14 - 25,
ISSN: 1093-3263
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Miszkiel A., Wojciechowski M.: Long range molecular dynamics study of interactions of the eukaryotic glucosamine-6-phosphate synthase with fructose-6-phosphate and UDP-GlcNAc// JOURNAL OF MOLECULAR GRAPHICS & MODELLING. -Vol. 78, (2017), s.14-25
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jmgm.2017.09.009
Bibliografia: test
  1. M. Buse, Hexosamines, insulin resistance, and the complications of diabetes: current status, Am. J. Physiol. 290 (2006) 1-15. otwiera się w nowej karcie
  2. E. Borowski, Novel approaches in the rational design of antifungal agents of low toxicity, Farmaco 55 (2000) 206-208. otwiera się w nowej karcie
  3. S. Milewski, Glucosamine-6-phosphate synthase-the multi-facets enzyme, Biochim. Biophys. Acta 1597 (2002) 173-192. otwiera się w nowej karcie
  4. L.F. Hebert, M.C. Daniels, J.X. Zhou, E.D. Crook, R.L. Turner, S.T. Simmons, J.L. Neidigh, J.S. Zhu, A.D. Baron, D.A. McClain, Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance, J. Clin. Invest. 98 (1996) 930-936. otwiera się w nowej karcie
  5. D.A. McClain, E.D. Crook, Hexosamines and insulin resistance, Diabetes 45 (1996) 1003-1009. otwiera się w nowej karcie
  6. A. Teplyakov, G. Obmolova, M. a Badet-Denisot, B. Badet, I. Polikarpov, Involvement of the C terminus in intramolecular nitrogen channeling in glucosamine 6-phosphate synthase: evidence from a 1.6 angstrom crystal structure of the isomerase domain, Struct. Fold. Des. 6 (1998) 1047-1055. otwiera się w nowej karcie
  7. A. Teplyakov, G. Obmolova, B. Badet, M.A. Badet-Denisot, Channeling of ammonia in glucosamine-6-phosphate synthase, J. Mol. Biol. 313 (2001) 1093-1102. otwiera się w nowej karcie
  8. P. Durand, B. Golinelli-Pimpaneau, S. Mouilleron, B. Badet, M.-A. Badet-Denisot, Highlights of glucosamine-6P synthase catalysis, Arch. Biochem. Biophys. 474 (2008) 302-317. otwiera się w nowej karcie
  9. M.-A. Denisot, F. Le Goffic, B. Badet, Glucosamine-6-phosphate synthase from Escherichia coli yields two proteins upon limited proteolysis: identification of the glutamine amidohydrolase and 2R ketose/aldose isomerase-bearing domains based on their biochemical properties, Arch. Biochem. Biophys. 288 (1991) 225-230. otwiera się w nowej karcie
  10. J. Raczynska, J. Olchowy, P.V. Konariev, D.I. Svergun, S. Milewski, W. Rypniewski, The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans, J. Mol. Biol. 372 (2007) 672-688. otwiera się w nowej karcie
  11. A. Teplyakov, G. Obmolova, M. Badet-denisot, B. Badet, The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase, Protein Sci. 8 (1999) 596-602. otwiera się w nowej karcie
  12. A. Miszkiel, M. Wojciechowski, S. Milewski, Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc, J. Mol. Model. 17 (2011) 3103-3115. otwiera się w nowej karcie
  13. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. 26 (2005) 1701-1718.
  14. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4 (2008) 435-447. otwiera się w nowej karcie
  15. H.J.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, J.R. Haak, Molecular-dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684-3690. otwiera się w nowej karcie
  16. T. Darden, D. York, L. Pedersen, Particle mesh ewald -an N.Log(N) method for ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089-10092. otwiera się w nowej karcie
  17. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS. a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (1997) 1463-1472. otwiera się w nowej karcie
  18. A.W. Schuttelkopf, D.M.F. van Aalten, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. Sect. D-Biological Crystallogr. 60 (2004) 1355-1363. otwiera się w nowej karcie
  19. J. Raczynska, J. Olchowy, P.V. Konariev, D.I. Svergun, S. Milewski, W. Rypniewski, The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans, J. Mol. Biol. 372 (2007) 672-688. otwiera się w nowej karcie
  20. B. Hess, Similarities between principal components of protein dynamics and random diffusion, Phys. Rev. E 62 (2000) 8438-8448. otwiera się w nowej karcie
  21. B. Hess, Convergence of sampling in protein simulations, Phys. Rev. E 65 (2002) 1-10. otwiera się w nowej karcie
  22. S. Mouilleron, M.-A.A. Badet-Denisot, B. Golinelli-Pimpaneau, Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel, J. Mol. Biol. 377 (2008) 1174-1185. otwiera się w nowej karcie
  23. A.K. Bera, J.L. Smith, H. Zalkin, Dual role for the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel - interdomain signaling and intermediate channeling, J. Biol. Chem. 275 (2000) 7975-7979. otwiera się w nowej karcie
  24. J. Olchowy, I. Gabriel, S. Milewski, Functional domains and interdomain communication in Candida albicans glucosamine-6-phosphate synthase, Biochem. J. 404 (2007) 121-130. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 123 razy

Publikacje, które mogą cię zainteresować

Meta Tagi