Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering - Publikacja - MOST Wiedzy


Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering


The prediction of winter flooding is a complicated task since it is affected by many meteorological and hydraulic factors. Typically, information on river ice conditions is based on historical observations, which are usually incomplete. Recently, data have been supplemented by information extracted from satellite images. All the above mentioned factors provide a good background of the characteristics of ice processes, but are not sufficient for a detailed analysis of river ice, which is highly dynamic and has a local extent. The main aim of this paper is to show the possibility of the prediction of ice jams in a river using a mathematical model. The case of the Odra River was used here. Within the Lower and Middle Odra River, the most significant flood risk, in winter conditions, is posed by ice jams created when movable ice is stopped by existing obstacles such as shallow areas in the riverbed, the narrowing of the riverbed, and other obstacles caused as a result of sudden changes of the river current, backwater from sea waters, and north winds, which contribute to the creation of ice jams. This in turn causes the damming of water and flooding of adjacent areas. The DynaRICE model was implemented at two locations along the Odra River, previously selected as ice-prone areas. Also, a thermal simulation of ice cover formation on Lake Dąbie was shown with variable discharge. The results of numerical simulations showed a high risk of ice jamming on the Odra River, created within one day of ice moving downstream. The prediction of the place and timing, as well as the extent, of the ice jam is impossible without the application of a robust mathematical model.


  • 4


  • 4

    Web of Science

  • 4


Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Water nr 10, wydanie 9, strony 1 - 15,
ISSN: 2073-4441
Rok wydania:
Opis bibliograficzny:
Kolerski T.: Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering// Water. -Vol. 10, iss. 9 (2018), s.1-15
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/w10091241
Bibliografia: test
  1. Wolski, K.; Tymiński, T.; Głuchowska, B. Analysis of ice phenomena hazard on the middle Odra river. Ann. Wars. Univ. Life Sci. SGGW. Land Reclam. 2017, 49, doi:10.1515/sggw-2017-0024. otwiera się w nowej karcie
  2. Pawłowski, B. Determinants of change in the duration of ice phenomena on the Vistula River in Toruń. J. Hydrol. Hydromech. 2015, 63, doi:10.1515/johh-2015-0017. otwiera się w nowej karcie
  3. Kornaś, M. Ice phenomena in the Warta River in Poznań in 1961-2010. Quaest. Geogr. 2014, 33, doi:10.2478/quageo-2014-0001. otwiera się w nowej karcie
  4. Ptak, M.; Choiński, A. Ice phenomena in rivers of the coastal zone (southern Baltic) in the years 1956-2015. Balt. Coast. Zone 2017, 20, 2016-2020. otwiera się w nowej karcie
  5. Agafonova, S.A.; Frolova, N.L.; Krylenko, I.N.; Sazonov, A.A.; Golovlyov, P.P. Dangerous ice phenomena on the lowland rivers of European Russia. Nat. Hazards 2017, 88, 171-188, doi:10.1007/s11069-016-2580-x. otwiera się w nowej karcie
  6. Takács, K.; Kern, Z. Multidecadal changes in the river ice regime of the lower course of the River Drava since AD 1875. J. Hydrol. 2015, 529, 1890-1900, doi:10.1016/j.jhydrol.2015.01.040. otwiera się w nowej karcie
  7. Sabău, D.; Şerban, G.; Kocsis, I.; Stroi, P.; Stroi, R. Winter Phenomena (Ice Jam) on Rivers from the Romanian Upper Tisa Watershed in 2006-2017 Winter Season. In Water Management and the Environment: Case Studies; otwiera się w nowej karcie
  8. Zelenakova, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; Volume 86, pp. 125-174, ISBN 978-3-319-79013-8.
  9. Keve, G. Space-Time Ice Monitoring of the Hungarian Lower-Danube. Period. Polytech. Civ. Eng. 2017, 61, 27-38, doi:10.3311/PPci.9116. otwiera się w nowej karcie
  10. Ionita, M.; Badaluta, C.-A.; Scholz, P.; Chelcea, S. Vanishing river ice cover in the lower part of the Danube basin-Signs of a changing climate. Sci. Rep. 2018, 8, 7948, doi:10.1038/s41598-018-26357-w. otwiera się w nowej karcie
  11. Magnuson, J.J. Historical Trends in Lake and River Ice Cover in the Northern Hemisphere. Science 2000, 289, 1743-1746, doi:10.1126/science.289.5485.1743. otwiera się w nowej karcie
  12. Kokkonen, T.; Leppäranta, M. River Kymijoki ice phenomena and water quality. In Proceedings of the 17th Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, AB, Canada, 21-24 July 2013.
  13. Pavelsky, T.M.; Smith, L.C. Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series. Remote Sens. Environ. 2004, 93, 328-338, doi:10.1016/j.rse.2004.07.018. otwiera się w nowej karcie
  14. Liu, L.; Yan, J. The application of MODIS data on ice flood monitoring of Yellow River. In Proceedings of the MIPPR 2005: SAR and Multispectral Image Processing, Wuhan, China, 3-4 November 2005; Volume 6043, pp. 780-785. otwiera się w nowej karcie
  15. Chaouch, N.; Temimi, M.; Romanov, P.; Cabrera, R.; McKillop, G.; Khanbilvardi, R. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data: River ice monitoring over Susquehanna River using MODIS imagery. Hydrol. Process. 2014, 28, 62-73, doi:10.1002/hyp.9548. otwiera się w nowej karcie
  16. Kraatz, S.; Khanbilvardi, R.; Romanov, P. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping. Remote Sens. 2017, 9, 229, doi:10.3390/rs9030229. otwiera się w nowej karcie
  17. Beltaos, S. River Ice Jams; Water Resources Publication: Littleton, CO, USA, 1995; ISBN 978-0-918334-87-9. otwiera się w nowej karcie
  18. Beltaos, S.; Prowse, T.D.; Carter, T. Ice regime of the lower Peace River and ice-jam flooding of the Peace- Athabasca Delta. Hydrol. Process. 2006, 20, 4009-4029, doi:10.1002/hyp.6417. otwiera się w nowej karcie
  19. Derecki, J.A.; Quinn, F.H. Record St. Clair River Ice Jam of 1984. J. Hydraul. Eng. 1986, 112, 1182-1193, doi:10.1061/(ASCE)0733-9429(1986)112:12(1182). otwiera się w nowej karcie
  20. Shen, H.T.; Gao, L.; Kolerski, T.; Liu, L. Dynamics of Ice Jam Formation and Release. J. Coast. Res. 2008, 52, 25-32, doi:10.2112/1551-5036-52.sp1.25. otwiera się w nowej karcie
  21. Shen, H.T.; Lu, S.; Crissman, R.D. Numerical simulation of ice transport over the Lake Erie-Niagara River ice boom. Cold Reg. Sci. Technol. 1997, 26, 17-33, doi:10.1016/S0165-232X(97)00005-0. otwiera się w nowej karcie
  22. Lu, S.; Shen, H.T.; Crissman, R.D. Numerical Study of Ice Jam Dynamics in Upper Niagara River. J. Cold Reg. Eng. 1999, 13, 78-102, doi:10.1061/(ASCE)0887-381X(1999)13:2(78). otwiera się w nowej karcie
  23. Knack, I.; Shen, H.T.; Huang, F. Numerical model study on ice impact on Lake Superior outflow limit. Can. J. Civ. Eng. 2015, 42, 656-664, doi:10.1139/cjce-2014-0276. otwiera się w nowej karcie
  24. Kandamby, A.; Jayasundara, N.; Shen, H.T.; Deyhle, C. A numerical river ice model for Elbe River. In Proceedings of the 20th IAHR International Symposium on Ice, Lahti, Finland, Lahti, 14-17 June 2010; University of Helsinki: Helsinki, Finland.
  25. Kolerski, T.; Shen, H.T.; Kioka, S. A Numerical Model Study on Ice Boom in a Coastal Lake. J. Coast. Res. 2013, 291, 177-186, doi:10.2112/JCOASTRES-D-12-00236.1. otwiera się w nowej karcie
  26. Fu, C.; Popescu, I.; Wang, C.; Mynett, A.E.; Zhang, F. Challenges in modelling river flow and ice regime on the Ningxia-Inner Mongolia reach of the Yellow River, China. Hydrol. Earth Syst. Sci. 2014, 18, 1225-1237, doi:10.5194/hess-18-1225-2014. otwiera się w nowej karcie
  27. Carson, R.; Beltaos, S.; Groeneveld, J.; Healy, D.; She, Y.; Malenchak, J.; Morris, M.; Saucet, J.-P.; Kolerski, T.; Shen, H.T. Comparative testing of numerical models of river ice jams. Can. J. Civ. Eng. 2011, 38, 669-678, doi:10.1139/l11-036. otwiera się w nowej karcie
  28. Shen, H.T. Mathematical modeling of river ice processes. Cold Reg. Sci. Technol. 2010, 62, 3-13. otwiera się w nowej karcie
  29. Pariset, E.; Hausser, R.; Gagnon, A. Formation of Ice Covers and Ice Jams in Rivers. J. Hydraul. Div. 1966, 92, 1-24. otwiera się w nowej karcie
  30. Lindenschmidt, K.-E.; Huokuna, M.; Burrell, B.C.; Beltaos, S. Lessons learned from past ice-jam floods concerning the challenges of flood mapping. Int. J. River Basin Manag. 2018, 1-13, doi:10.1080/15715124.2018.1439496. otwiera się w nowej karcie
  31. Carstensen, D. Ice conditions and ice forces. In Proceedings of the Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Darmstadt, Hesse, Germany, 24-30 August 2008; pp. 283-287.
  32. Mokwa, M.; Tymiński, T. Ice phenomena in Wroclaw Waterway Junction. In Hydraulic and Hydrological Aspects of Floods in the Vistula and Oder Catchments in 2010;
  33. Kałuża, T., Ed.; Bogucki Press: Poznań, Poland, 2013; pp. 107-122, ISBN 978-83-7986-007-4. otwiera się w nowej karcie
  34. Girjatowicz, J.P. The North Atlantic Oscillation influence on the Odra river estuary hydrological conditions. Estua. Coast. Shelf Sci. 2007, 74, 395-402, doi:10.1016/j.ecss.2007.04.037. otwiera się w nowej karcie
  35. Zaleski, J. Project operations manual Odra-Vistula Flood Management; Project Cooperation Unit: Wroclaw, Poland, 2015.
  36. UNECE. Map of the European Inland Waterway Network; UNECE: Swizerland, Geneva, 2012. otwiera się w nowej karcie
  37. Kreft, A. Ice breaking operation on Lower Odra River in winter season 2010/2011. Logistyka 2011, 6, 4837- 4850.
  38. Kreft, A.; Parzonka, W. Issues related to the modernization of river regulation structures on the border section of the Lower Odra river. Infrastruct. Ecol. Rural Areas 2007, 4/2, 123-134.
  39. Tuthill Andrew, M. Structural Ice Control: A Review. J. Cold Reg. Eng. 1998, 12, 33-51, doi:10.1061/(ASCE)0887-381X(1998)12:2(33). otwiera się w nowej karcie
  40. Ashton, G.D. River ice suppression by side channel discharge of warm water. In Preprints: IAHR International Symposium on Ice, Quebec, 1981: Textes Preliminaires: AIRH Symposium International Sur la Glace L'AIRH, Quebec, 1981; Université Laval: Quebec City, Canada, 1981; p. 71. otwiera się w nowej karcie
  41. Ashton, G.D. River and Lake Ice Engineering; Water Resources Publication: Littleton, CO, USA, 1986; ISBN 0- 918334-59-4. otwiera się w nowej karcie
  42. Wang, T.; Guo, X.; Fu, H.; Guo, Y.; Peng, X.; Wu, Y.; Li, J.; Xia, Y. Effects of Water Depth and Ice Thickness on Ice Cover Blasting for Ice Jam Flood Prevention: A Case Study on the Heilong River, China. Water 2018, 10, 700, doi:10.3390/w10060700. otwiera się w nowej karcie
  43. Shen, H.T. River Ice Processes. In Advances in Water Resources Management; Handbook of Environmental Engineering; Springer: Cham, Switzerland, 2016; pp. 483-530, ISBN 978-3-319-22923-2. otwiera się w nowej karcie
  44. Shen, H.T.; Su, J.; Liu, L. SPH Simulation of River Ice Dynamics. J. Comput. Phys. 2000, 165, 752-770, doi:10.1006/jcph.2000.6639. otwiera się w nowej karcie
  45. Kundzewicz, Z.W.; Szamalek, K.; Kowalczak, P. The great flood of 1997 in Poland. Hydrol. Sci. J. 1999, 44, 855-870. otwiera się w nowej karcie
  46. Kolerski, T. Ice cover progression due to flow regulation at the Wloclawek dam. Acta Sci. Polonorum Formatio Circumiectus 2015, 14, 229-240. otwiera się w nowej karcie
  47. Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696-703, doi:10.1139/cjce-2014-0275. otwiera się w nowej karcie
  48. Kolerski, T. Modeling of ice phenomena in the mouth of the Vistula River. Acta Geophys. 2014, 62, 893-914, doi:10.2478/s11600-014-0213-x. otwiera się w nowej karcie
  49. Deyhle, C. A Numerical Model for Ice Simulation and Forecasting on Elbe River. WasserWirtschaft 2014, 104, 12-17, doi:10.1365/s35147-014-1210-3. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 28 razy

Publikacje, które mogą cię zainteresować

Meta Tagi