Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography - Publikacja - MOST Wiedzy

Wyszukiwarka

Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography

Abstrakt

Paper presents investigation of fracture phenomenon in plain concrete and in concrete reinforced with both recycled steel fibers (RSF) and industrial steel fibers (ISF). The wedge splitting test (WST), which enables stable crack propagation for quasi-brittle materials, was carried out on 75 75 75 mm cube samples. Initially, fracture process zone development was investigated only on the surface of samples using Digital Image Correlation which is a non-destructive optical testing method. Furthermore, to anal- yse the 3D cracking phenomenon (formation, development, width, shape and curvature) X-ray micro computed tomography was used. Micro-CT images were taken during continuous deformation process - without unloading sample during scanning. X-ray micro-computed tomography was also used to visu- alise and characterise air voids and fibers (length, diameter and orientation) embedded in concrete. The mechanical properties of plain, RSF and ISF reinforced concrete in terms of compressive strength, tensile splitting strength, shrinkage, tensile and residual strength in 3-point bending were additionally described.

Cytowania

  • 5 8

    CrossRef

  • 5 6

    Web of Science

  • 6 2

    Scopus

Cytuj jako

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
CONSTRUCTION AND BUILDING MATERIALS nr 183, strony 283 - 299,
ISSN: 0950-0618
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Skarżyński Ł., Suchorzewski J.: Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography// CONSTRUCTION AND BUILDING MATERIALS. -Vol. 183, (2018), s.283-299
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.conbuildmat.2018.06.182
Bibliografia: test
  1. Z. Bažant, J. Planas, Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials, CRC Press LLC, Boca Raton, 1997. otwiera się w nowej karcie
  2. G. Lilliu, J.G.M. van Mier, 3D lattice type fracture model for concrete, Eng. Fract. Mech. 70 (2003) 927-941. otwiera się w nowej karcie
  3. Ł. Skar _ zyń ski, M. Nitka, J. Tejchman, Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray lCT images of internal structure, Eng. Fract. Mech. 147 (2015) 13-35.
  4. A.-L. Hoang, E. Fehling, Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete, Constr. Build. Mater. 153 (2017) 790-806.
  5. J.-H. Lee, B. Cho, E. Choi, Flexural capacity of reinforced concrete with a consideration of concrete strength and fiber content, Constr. Build. Mater. 138 (2017) 222-231. otwiera się w nowej karcie
  6. D.-Y. Yoo, Y.-S. Yoo, N. Banthia, Flexural response od steel-fiber-reinforced concrete beams: effect of strength, fiber content and strain-rate, Cem. Concr. Compos. 64 (2015) 84-92. otwiera się w nowej karcie
  7. Z. Wu, C. Shi, W. Hi, L. Wu, Effects of steel fibres distribution on mechanical properties of ultra high performance concrete, Constr. Build. Mater. 103 (2016) 8-14. otwiera się w nowej karcie
  8. M.N. Soutsos, T.T. Le, A.P. Lampropoulos, Flexural performance of fibre reinforced concrete made with steel and synthetic fibers, Constr. Build. Mater. 36 (2012) 704-710. otwiera się w nowej karcie
  9. J.M. Yang, K.H. Min, H.O. Shin, Y.S. Yoon, Effect of steel and synthetic fibers on flexural behaviour of high strength concrete beams reinforced with FRP bars, Compos. B Eng. 43 (3) (2012) 1077-1086. otwiera się w nowej karcie
  10. A. Caggiano, S. Gambarelli, E. Martinelli, N. Nistricò, M. Pepe, Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete, Constr. Build. Mater. 125 (2016) 1035-1043. otwiera się w nowej karcie
  11. A. Mada, F. Minelli, G.A. Plizzari, Flexural behaviour of RC beams in fiber reinforced concrete, Compos. B Eng. 43 (2012) 2930-2937.
  12. A. Caggiano, H. Xargay, P. Folino, E. Martinelli, Experimental and numerical characterization of the bond behaviour of steel fibers recovered from waste tyres embedded in cementitious matrices, Cem. Concr. Compos. 62 (2015) 146-155. otwiera się w nowej karcie
  13. A. Caggiano, P. Folino, C. Lima, E. Martinelli, M. Pepe, On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fiber, Constr. Build. Mater. 147 (2017) 286-295. otwiera się w nowej karcie
  14. A. Caggiano, G. Etse, E. Martinelli, Interface model for fracture behaviour of Fiber Reinforced Concrete Composites (FRCCs): theoretical formulation and numerical implementation, Eur. J. Environ. Civ. Eng. 15 (9) (2011) 1339-1359. otwiera się w nowej karcie
  15. O. Sengul, Mechanical behaviour of concretes containing waste steel fibers recovered from scrap tyres, Constr. Build. Mater. 122 (2016) 649-658. otwiera się w nowej karcie
  16. M. Leone, G. Centonze, D. Colonna, F. Micelli, M.A. Aiello, Fiber-reinforced concrete with low content of recycled steel fiber: shear behaviour, Constr. Build. Mater. 161 (2018) 141-155. otwiera się w nowej karcie
  17. K.M. Nemati, Fracture analysis of concrete using scanning electron microscopy, Scanning 19 (1997) 426-430. otwiera się w nowej karcie
  18. R.V. Balendran, H.W. Pang, H.X. Wen, Use of scanning electron microscopy in concrete studies, Struct. Surv. 16 (1998) 146-153. otwiera się w nowej karcie
  19. S.H. Hadjab, M. Chabaat, J.F. Thimus, Use of Scanning Electron microscope and the non-local isotropic damage model to investigate fracture process zone in notched concrete beams, Exp. Mech. 47 (2007) 473-484. otwiera się w nowej karcie
  20. J. Bhargava, A. Rehnström, High speed photography for fracture studies of concrete, Cem. Concr. Res. 5 (1975) 239-248. otwiera się w nowej karcie
  21. J.A. Leendertz, Interferometric displacement measurement on scattering surfaces utilizing speckle effect, J. Phys. E: Sci. Instrum. 3 (1970) 214-218. otwiera się w nowej karcie
  22. P. Jacquot, J.M. Fournier, Interferometry in Speckle Light: Theory and Applications, Springer, Berlin, 2000. otwiera się w nowej karcie
  23. A. Maji, C. Ouyang, S.P. Shah, Fracture mechanisms of concrete based on acoustic emission, J. Mater. Res. 5 (1990) 206-217. otwiera się w nowej karcie
  24. H. Mihashi, N. Nomura, Correlation between characteristics of fracture process zone and tension-softening properties of concrete, Nucl. Eng. Des. 165 (1996) 359-376. otwiera się w nowej karcie
  25. A. Carpinteri, G. Lacidogna, Damage diagnostic in concrete and masonry structures by acoustic emission technique, Autom. Control Robot. 3 (2003) 755-764. otwiera się w nowej karcie
  26. K. Otsuka, H. Date, Fracture process zone in concrete tension specimen, Eng. Fract. Mech. 65 (2000) 111-131. otwiera się w nowej karcie
  27. H. Hadjab, Fracture process zone in concrete beams: experimental investigation and numerical modelling, in: Proceedings of the SEM Annual Conference, June 1-4, Albuquerque New Mexico USA, 2009.
  28. G. Nagy, T. Zhang, W. Franklin, E. Landis, E. Nagy, D. Keane, Volume and surface area distributions of cracks in concrete, in: C. Arcelli, L.P. Cordella, G.S. di Baja (Eds.), Visual Form 2001, vol. 2059, 2001, pp. 759-768. otwiera się w nowej karcie
  29. E. Landis, E. Nagy, D. Keane, Microstructure and fracture in three dimensions, Eng. Fract. Mech. 70 (2003) 911-925. otwiera się w nowej karcie
  30. M.A.B. Promentilla, T. Sugiyama, X-ray microtomography of mortars exposed to freezing-thawing action, J. Adv. Concr. Technol. 8 (2010) 97-111. otwiera się w nowej karcie
  31. Ł. Skar _ zyń ski, J. Tejchman, Experimental investigations of fracture by means of X-ray micro computed tomography, Strain (2015), https://doi.org/10.1111/ str.12168. otwiera się w nowej karcie
  32. S. Ri, M. Fujigaki, Y. Morimoto, Sampling Moiré method for accurate small deformation distribution, Measurement 50 (2010) 501-508. otwiera się w nowej karcie
  33. S. Ri, T. Muramatsu, M. Saka, K. Nanbara, D. Kobayashi, Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures, Exp. Mech. 52 (2012) 331-340. otwiera się w nowej karcie
  34. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. van Hemelrijck, A.M. Habraken, Quality assessment of speckle patterns for digital image correlation, Opti. Lasers Eng. 44 (2006) 1132-1145. otwiera się w nowej karcie
  35. G. Corr, M. Accardi, L. Graham-Brady, S. Shah, Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete, Eng. Fract. Mech. 74 (2007) 109-121. otwiera się w nowej karcie
  36. B. Pan, H. Xie, Z. Wang, K. Qian, Z. Wang, Study on subset size selection in digital image correlation for spackle patterns, Opt. Express 16 (2008) 7037- 7048. otwiera się w nowej karcie
  37. Z. Wu, H. Rong, J. Zheng, W. Dong, An experimental investigation on the FPZ properties in concrete using digital image correlation technique, Eng. Fract. Mech. 78 (2011) 2978-2990. otwiera się w nowej karcie
  38. S.Y. Alam, A. Loukili, F. Grondin, Monitoring size effect on crack opening in concrete by Digital Image Correlation, Eur. J. Environ. Civ. Eng. 16 (2012) 1-19. otwiera się w nowej karcie
  39. Ł. Skar _ zyń ski, J. Kozicki, J. Tejchman, Application of DIC technique to concrete - study on objectivity of measured surface displacements, Exp. Mech. 53 (2013) 1545-1559.
  40. O. Orell, J. Vuorinen, J. Jokinen, H. Kettunen, P. Hytönen, J. Turunen, M. Kanerva, Characterization of elastic constants of anisotropic composites in compression using digital image correlation, Compos. Struct. 185 (2018) 176-185. otwiera się w nowej karcie
  41. Y. Su, Z. Gao, Q. Zhang, S. Wu, Spatial uncertainity of measurement errors in digital image correlation, Opt. Lasers Eng. 110 (2018) 113-121. otwiera się w nowej karcie
  42. L.I. Farfán-Cabrera, J.B. Pascual-Francisco, E.A. Gallardo-Hernández, O. Susarrey-Huerta, Application of digital image correlation technique to evaluate creep degradation of sealing elastomers due to exposure to fluids, Polym. Test. 65 (2018) 134-141. otwiera się w nowej karcie
  43. M. Mehdikhani, M. Aravand, B. Sabuncuoglu, M.G. Callens, S.V. Lomov, L. Gorbatikh, Full-field strain measurements at the micro-scale in fiber- reinforced composites using digital image correlation, Compos. Struct. 140 (2016) 192-201. otwiera się w nowej karcie
  44. M. Hamrat, B. Boulekbache, M. Chemrouk, S. Amziane, Flexural cracking behaviour of normal strength, high strength and high strength fiber concrete beams using Digital Image Correlation technique, Constr. Build. Mater. 106 (2016) 678-692. otwiera się w nowej karcie
  45. Y.-R. Zhao, L. Wang, Z.-K. Lei, X.-F. Han, Y.-M. Xing, Experimental study on dynamic mechanical properties of the basalt fiber reinforced concrete after the freeze thaw based on the digital image correlation method, Constr. Build. Mater. 147 (2017) 194-202. otwiera się w nowej karcie
  46. E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, L. Van Hoorebeke, An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging, J. Microsc. 250 (2013) 21-31. otwiera się w nowej karcie
  47. T.K. Sampath, P. Simic, R. Sendak, N. Draca, A.E. Bowe, S. O'Brien, S.C. Schiavi, J. M. McPherson, S. Vukicevic, Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats, J. Bone Miner. Res. 22 (2007) 849-859. otwiera się w nowej karcie
  48. D. Cantre, E. Herremans, P. Verboven, J. Ampofo-Asiama, B.M. Nicolai, Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao) during ripening using X-ray computed microtomography, Innovative Food Sci. Emerg. Technol. 24 (2014) 28-39. otwiera się w nowej karcie
  49. H.S. Tuan, W. Hutmacher, Application of micro-CT and computation modeling in bone tissue engineering, Comput. Aided Des. 37 (2005) 1151-1161. otwiera się w nowej karcie
  50. D. Tilman, F. Pfeiffer, O. Bunk, Ch. Grunzweig, E. Hempel, S. Popescu, P. Vock, Ch. David, Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen, Invest. Radiol. 45 (2010) 445-452.
  51. K.I. Ignatiev, W.K. Lee, K. Fezzaa, S.R. Stock, Phase contrast stereometry: fatigue crack mapping in three dimensions, Philos. Mag. 85 (2005) 3273-3300. otwiera się w nowej karcie
  52. T.J. Marrow, J.Y. Buffiere, P.J. Withers, G. Johnson, D. Engelberg, High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron, Int. J. Fatigue 26 (2004) 717-725. otwiera się w nowej karcie
  53. E.N. Landis, E.N. Nagy, D.T. Keane, Microtomographic measurements of internal damage in portland-cement-based composites, J. Aerosp. Eng. 10 (1997) 2-6. otwiera się w nowej karcie
  54. S. Lu, E.N. Landis, D.T. Keane, X-ray microtomographic studies of pore structure and permeability in Portland cement concrete, Mater. Struct. 39 (2006) 611- 620. otwiera się w nowej karcie
  55. N. Burlion, D. Bernard, D. Chen, X-ray microtomography: aplication to microstructure analysis of a cementitious material during leaching process, Cem. Concr. Res. 36 (2006) 346-357. otwiera się w nowej karcie
  56. B. Chevalier, Introduction of X-ray CT application in geotechnical engineering - theory and practice, Conf. Ser. Mater. Sci. Eng. 10 (2010), https://doi.org/ 10.1088/1757-899X/10/1/012089. otwiera się w nowej karcie
  57. P. Besuell, G. Viggiani, N. Lenoir, J. Desrues, M. Bornert, X-ray micro-CT for studying strain localization in clay rocks under triaxial compression, in: Advances in X-ray Tomography for Geomaterials, 2nd International Workshop on X-Ray CT for Geomaterials, 2006, pp. 35-52. otwiera się w nowej karcie
  58. F. Prade, F. Schaff, S. Senck, P. Meyer, J. Mohr, J. Kastner, F. Pfeiffer, Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography, NDT and E Int. 86 (2017) 65-72. otwiera się w nowej karcie
  59. R. Wang, X. Gao, J. Zhang, G. Han, Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method, Constr. Build. Mater. 160 (2018) 39-47. otwiera się w nowej karcie
  60. T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, X-ray computed tomography harnessed to determine 3D spacing of steel fibers in self compacting (SCC) slabs, Constr. Build. Mater. 74 (2015) 102-208. otwiera się w nowej karcie
  61. G.L. Balázs, O. Czoboly, E. Lublóy, K. Kapitány, A. Barsi, Observation of steel fibres in concrete with Computed Tomography, Constr. Build. Mater. 140 (2017) 534-541. otwiera się w nowej karcie
  62. T. Ponikiewski, M. Gołaszewski, M. Rudzki, M. Bugdol, Determination of steel fibres distribution in self-compacting concrete beams using X-ray computed tomography, Arch. Civ. Eng. 2 (2015) 558-568 [xx] R. Wang, X. Gao, J. Zhang, G. Han, Spatial distribution of steel fibres and air bubbles in UHPC cylinder determined by X-ray CT method, Constr. Build. Mater. 160 (2018) 39-47.. otwiera się w nowej karcie
  63. B. Zhou, Y. Uchida, Influence of flowablity, casting time and framework geometry on fiber orientation and mechanical properties of UHPFRC, Cem. Concr. Res. 95 (2017) 164-177. otwiera się w nowej karcie
  64. T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography, Constr. Build. Mater. 68 (2014) 333-340. otwiera się w nowej karcie
  65. Y. Akkaya, A. Peled, S.P. Shah, Parameters related to fiber length and processing in cementitious composites, Mater. Struct. 33 (1999) 515-524. otwiera się w nowej karcie
  66. EN 12390-2:2009 Testing Hardened Concrete -Part 2: Making and Curing Specimens for Strength Tests. otwiera się w nowej karcie
  67. EN 12390-3:2009 Testing Hardened Concrete -Part 3: Compressive Strength of Test Specimens. otwiera się w nowej karcie
  68. V.C. Li, A simplified micromechanical model of compressive strength of fiber- reinforced cementitious composites, Cem. Concr. Res. 14 (2) (1992) 131-141. otwiera się w nowej karcie
  69. EN 12390-6:2011 Testing Hardened Concrete -Part 6: Tensile Splitting Strength of Test Specimens. otwiera się w nowej karcie
  70. A.M. Neville, Properties of Concrete, John Wiley & Sons, 1996. otwiera się w nowej karcie
  71. Instrukcja ITB 194/98 Badanie cech mechanicznych betonu na próbkach wykonanych w formach (in polish). otwiera się w nowej karcie
  72. A. Dehghan, K. Peterson, A. Shvarzman, Recycled glass fiber reinforced polymer additions to Portland cement concrete, Constr. Build. Mater. 146 (2017) 238- 250. otwiera się w nowej karcie
  73. A. Noushini, K. Vessalas, G. Arabian, B. Samali, Drying shrinkage behaviour of fiber reinforced concrete incorporating polyvinyl alcohol fibers and fly ash, Adv. Civ. Eng. (2014). https://doi.org/10.1155.2014.836173. otwiera się w nowej karcie
  74. RILEM TC 162-TDF, Test and design methods for steel fiber reinforced concrete: bending test, Mater. Struct. 35 (2002) 579-582. otwiera się w nowej karcie
  75. EN 14651:2005+A1:2007 Test Method for Metallic Fiber Concrete. Measuring the Flexural Tensile Strength (limit of proportionality (LOP), residual). otwiera się w nowej karcie
  76. H.N. Linsbauer, E.K. Tschegg, Fracture energy determination of concrete with cube specimens, Zement und Beton 31 (1986) 38-40 (in german).
  77. S. Korte, V. Boel, W. De Corte, G. De Schutter, Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge splitting tests, Constr. Build. Mater. 57 (2014) 1-8. otwiera się w nowej karcie
  78. Y. Dai, D. Gruber, H. Harmuth, Determination of the behavior of MgO- refractories using multi-cycle wedge splitting test and digital image correlation, J. Eur. Ceram. Soc. 37 (15) (2017) 5035-5043. otwiera się w nowej karcie
  79. J. Suchorzewski, J. Tejchman, M. Nitka, Discrete element method simulations of fracture in concrete under uniaxial compression based on its internal structure, Int. J. Damage Mech. (2017), https://doi.org/10.1177/ 1056789517690915. otwiera się w nowej karcie
  80. Ł. Skar _ zyń ski, J. Tejchman, Modeling the effect of material composition on the tensile properties of concrete, in: Jaap Weerheijm (Ed.), Understanding the Tensile Properties of Concrete, vol. 48, Woodhead Publishing Limited, 2013, pp. 52-97.
Weryfikacja:
Politechnika Gdańska

wyświetlono 62 razy

Publikacje, które mogą cię zainteresować

Meta Tagi